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ABSTRACT
We consider a restless bandit problem with Gaussian au-
toregressive arms, where the state of an arm is only ob-
served when it is played and the state-dependent reward is
collected. Since arms are only partially observable, a good
decision policy needs to account for the fact that information
about the state of an arm becomes more and more obsolete
while the arm is not being played. Thus, the decision maker
faces a tradeoff between exploiting those arms that are be-
lieved to be currently the most rewarding (i.e. those with the
largest conditional mean), and exploring arms with a high
conditional variance. Moreover, one would like the decision
policy to remain tractable despite the infinite state space and
also in systems with many arms. A policy that gives some
priority to exploration is the Whittle index policy, for which
we establish structural properties. These motivate a para-
metric index policy that is computationally much simpler
than the Whittle index but can still outperform the myopic
policy. Furthermore, we examine the many-arm behavior of
the system under the parametric policy, identifying equa-
tions describing its asymptotic dynamics. Based on these
insights we provide a simple heuristic algorithm to evalu-
ate the performance of index policies; the latter is used to
optimize the parametric index.

Categories and Subject Descriptors
I.2.8 [Problem Solving, Control Methods, and Search]:
Control theory

Keywords
Restless bandits, partially observable, Whittle index, per-
formance evaluation, asymptotic dynamics

1. INTRODUCTION
Inherent to the problem of decision making under partial
observability is the tradeoff between exploration and ex-
ploitation: Should we collect new information, or opt for
the immediate payoff? We investigate this question for a

reward observing restless multiarmed bandit problem, where
at every point in discrete time the decision maker wants to
play a fixed number k out of d arms, with the objective
of maximizing the expected (discounted or average) reward
achieved over an infinite time horizon. The state of an arm
is restless as it evolves also when the arm is not played, and
partially observable as it can only be observed whenever the
arm is played and the state-dependent reward is collected.
This type of bandit problem has drawn much attention in
recent literature, e.g. [3, 8, 9]. We call it reward observing to
distinguish from other types of partially observable decision
problems, for example those where the decision maker does
not have fully accurate information due to measurement er-
rors [11].

In view of the reward observing character of the problem,
one would like a model that allows in a non-artificial way to
keep track of the decision maker’s current need for exploring
an arm rather than exploiting others. As a starting point we
assume in this paper that state processes are AR(1), Gaus-
sian autoregressions of order 1. Since states are normally
distributed, the objectives of exploitation and exploration
naturally correspond to the conditional mean and variance
of an arm, which at the same time contain all relevant infor-
mation concerning its state (and thus fully describe the belief
state of the arm). The AR(1) model has been found useful
for example for modeling channels in wireless networks [1].
It seems that in the context of decision making under reward
observability it has previously only been considered in [3],
where the myopic (greedy) policy was compared numerically
to an ad hoc randomized policy.

While in principle an optimal policy for Markovian restless
bandit problems can be obtained with the aid of dynamic
programming, in practice this is typically computationally
infeasible [12]. Particularly when the system is large (with
many arms), one therefore often resorts to the class of in-
dex policies, which remain tractable due to a decoupling of
arms. For every arm, the information available is mapped
to some real-valued priority index which does not depend on
the state or history of any other arm. At every time slot the
policy then activates those k arms that correspond to the k
largest indices.

It has been shown in [15] and more recently in [14] that
– under technical conditions that are not satisfied by the
model considered in this paper – an index policy known as
the Whittle index [16] is asymptotically optimal for restless



bandit problems. These results hold as the number of arms
tends to infinity while the ratio of played arms, k/d, tends
to a constant ρ, a regime also considered in this paper. Fur-
thermore, under the restrictive assumption that arms can be
modeled as identically distributed two state Markov chains
(Gilbert-Elliott), the authors of [9] derive non-asymptotic
optimality results for the Whittle index for the reward ob-
serving decision problem. The key feature of the Gilbert-
Elliott model is that due to its simplicity the Whittle index
can be computed in closed form. For the AR(1), however,
no optimal policy is known and a closed-form expression for
the Whittle index does not appear to be available.

Our contributions are both structural and asymptotic. Con-
sidering the discounted reward case, we find structural prop-
erties of the one armed subsidy problem associated with the
Whittle index. We establish convexity and monotonicity
properties which, based on non-restrictive assumptions, im-
ply the existence of a switching curve and the monotonicity
of the related Whittle index. These properties motivate a
simple parametric index which quantifies the virtue of ex-
ploration compared to exploitation in terms of variance and
mean. For this index we analyze the mean-field behavior of
the system in the average reward case. In particular, we put
forward a deterministic measure-valued recursion that ap-
proximately describes the distribution of belief states when
the number of arms is non-small. We merge these ideas
into a performance evaluation and optimization procedure,
which we illustrate to be asymptotically exact.

The paper is organized as follows. In Section 2 we formulate
the decision problem. Sections 3 and 4 present our contri-
butions with respect to structural and asymptotic analysis
of the problem. We conclude in Section 5.

2. MODEL AND FRAMEWORK
The state processes X(t) :=

(
X1(t), . . . , Xd(t)

)
are assumed

to be independent, and satisfy the AR(1) recursion,

Xi(t) = ϕXi(t− 1) + εi(t),

with
{
εi(t)

}
t
denoting an i.i.d. sequence of N (

0, σ2
)
ran-

dom variables. The parameters ϕ, σ are assumed to be
known. We restrict our exposition to the case ϕ ∈ (0, 1),
whence the processes are stable and observations are posi-
tively correlated over time.

At every point in time the decision maker may choose whether
or not to play arm i, i.e., to observe its state and collect
the reward. We denote the action of playing arm i by
ai(t) = 1 (active), while ai(t) = 0 (passive) refers to the
action of not playing. We require that exactly k arms have
to be activated at each decision time, i.e., the action vector
a(t) :=

(
a1(t), . . . , ad(t)

)
satisfies

∑d
i=1 ai(t) = k.

We are in the partially observable setting, that is, the state
of an arm is only observed when that arm is activated, while
at every time slot all arms evolve to the next state. Thus,
the states of the d−k passive arms are unknown to the deci-
sion maker, and he has to rely on his belief concerning these
states. The belief state of arm i at time t is given by the
probability distribution over all of its possible states condi-
tional on the information available at that time. Since this
distribution is Normal, the belief state is fully characterized

by the conditional mean and variance defined as

μi(t) :=E
[
Xi(t)

∣∣Xi

(
t− ηi(t)

)
, ηi(t)

]
(1)

=ϕηi(t)Xi

(
t− ηi(t)

)
,

νi(t) := Var
(
Xi(t)

∣∣Xi (t− ηi(t)) , ηi(t)
)

(2)

=σ2

ηi(t)−1∑
h=0

ϕ2h = σ2 1− ϕ2ηi(t)

1− ϕ2
.

Here, ηi(t) := min {h ≥ 1|ai(t− h) = 1} denotes the number
of time steps ago arm i was last played and observed. We
denote the joint (belief) state space of (μi, νi) by Ψ := Ψ1×
Ψ2 so that (μ,ν) ∈ Ψd. It is worth noting that Ψ1 = R and
Ψ2 is countable and bounded by [νmin, νmax) :=

[
σ2, σ2/(1−

ϕ2)
)
. The conditional variance increases in ηi, i.e. while the

arm is not being played.

The following evolutions show how the belief states are up-
dated in a Markovian manner; these also appear in [3].
Let Yμ,ν denote a generic random variable with distribu-
tion N (μ, ν). If action ai(t) is chosen at time t, then at
time t+ 1,

(
μi(t+ 1), νi(t+ 1)

)
=

⎧⎨⎩
(
ϕμi(t), ϕ

2 νi(t) + σ2
)
, ai(t) = 0,(

ϕYμi(t), νi(t) , σ
2
)
, ai(t) = 1.

(3)

Here, the realization of Yμi(t),νi(t) corresponds to the realiza-
tion of the state process the decision maker observes when
playing arm i at time t. On the other hand, if the arm is
not played, then the previous belief state is updated in a
deterministic fashion as no new observation of the state of
arm i is made.

In summary, as time evolves from t to t + 1, given the cur-
rent belief states (μ,ν) and a policy π : Ψ → {0, 1}d, the
following chain of actions takes place:

(μ,ν) a

∑d
i=1 Xiai

π

observe state,

collect reward
update belief

The aim is to find a policy π so as to maximize the accumu-
lated rewards over an infinite time horizon as evaluated by
the total expected discounted reward criterion,

V π(μ,ν) := lim
T→∞

Eπ
μ,ν

[
T∑

t=0

βt
d∑

i=1

Xi(t) ai(t)

]
, (4)

where β ∈ (0, 1), and the subscript indicates conditioning
on X(0) ∼ N (

μ, diag(ν)
)
, or the average expected reward

criterion

Gπ(μ,ν) := lim inf
T→∞

1

T
Eπ
μ,ν

[
T−1∑
t=0

d∑
i=1

Xi(t) ai(t)

]
. (5)

Note that Xi(t) in (4) and (5) can be replaced by μi(t).



Lemma 2.1. The function V π is well-defined in the sense
that the limit in (4) exists and is finite. Furthermore, the
optimal value function supπ V π is finite.

In view of computational tractability we restrict our expo-
sition to policies from the class of index policies.

3. INDEX POLICIES
An index policy is a policy of the form

πγ(μ,ν) = argmax
a:

∑d
i=1 ai=k

{
d∑

i=1

γ (μi, νi) ai

}
, (6)

where the index function γ : Ψ → R maps the belief state
of each arm to some priority index. That is, at every point
in time, πγ activates those k arms that correspond to the k
largest indices; ties are broken arbitrarily. Without loss of
generality the index function can be written as

γ(μ, ν) = μ+ q(μ, ν) (7)

for some known function q : Ψ → R. The basic example is
the myopic index with q ≡ 0. The resulting policy always
activates those k arms with the largest expected immediate
reward. As it does not account for information growing ob-
solete (giving full priority to exploitation), the performance
of the myopic policy deteriorates as β ↑ 1. A more sophis-
ticated index policy, the Whittle index, is surveyed in the
next subsection.

3.1 Whittle Index
The Whittle index is a generalization of the Gittins index
to the restless bandit case in which state processes (or be-
lief states) evolve irrespective of whether an arm is being
played or not – as opposed to the classical multiarmed ban-
dit problem [6, 7] in which the states of unplayed arms do
not evolve. In order to devise a heuristic policy for a restless
multiarmed bandit problem, Whittle [16] considered arms
separately (i.e., he considered d decoupled one-armed ban-
dits), and introduced a subsidy paid for leaving the arm
under consideration passive. Intuitively this subsidy can
be thought of as a substitute for the rewards the decision
maker could have obtained from playing other arms in the
multiarmed setting; from a theoretical point of view it is a
Lagrange multiplier associated with the relaxed constraint
that k arms have to be activated on average rather than
requiring that exactly k arms be activated. Due to this re-
laxation, the Whittle index policy is not generally optimal
for small systems but, at least under certain conditions that
do not apply here, it is asymptotically optimal as k, d → ∞
with k/d → ρ [14, 15]. This is also the asymptotic regime
we consider in Section 4.

We show how to obtain the Whittle index when the under-
lying states are AR(1), and provide structural results.

Consider a special one-armed bandit problem where at each
time slot, the decision maker can either activate the arm
(a = 1) or leave it passive (a = 0). When it is activated,
then the decision maker observes the state and collects the
corresponding reward. When the arm remains passive, he
obtains a (possibly negative) subsidy λ. The objectives are
analogous to (4) and (5), but our focus in this section is

on (4). We call this problem one-armed bandit problem with
subsidy. The Whittle index is then defined as the smallest
subsidy for which it is optimal to leave the arm passive.

Definition 3.1. Let Pλ denote the passive set associated
with the one-armed problem with subsidy λ,

Pλ := {(μ, ν) | a = 0 is optimal action}.
Then the Whittle index associated with this arm and state
(μ, ν) is given by ω(μ, ν) = inf {λ | (μ, ν) ∈ Pλ}.

This way, the Whittle index is obtained from the optimal
policy for the one-armed problem with subsidy, which can be
derived from the optimal value function as outlined below.
The Whittle index policy is sensible only if any arm rested
under the subsidy λ remains passive under every subsidy

λ̃ > λ. If this is the case, the one-armed bandit problem
is called indexable [16]. Even if the state space is finite,
proving indexability is likely to be highly involved [5]; we
assume that it holds here as confirmed through extensive
numerical experimentation (see for example Fig. 1).

The discount-optimal value function V λ := supπ V λ,π for
the one-armed problem with subsidy can be obtained us-
ing value iteration (see Prop. 3.2). For the average re-
ward case one can formulate a similar result stating that
Gλ := supπ Gλ,π can be found from relative value iteration
as defined for example in [13, Section 8.5.5]. First we intro-
duce the operator Tv := maxa∈{0,1} Tav, where

Tav (μ, ν) :=

{
λ+ β v(ϕμ, ϕ2ν + σ2), a = 0,

μ+ β
∫∞
−∞ v (ϕy, σ2)φμ,ν(y) dy, a = 1,

with φμ,ν denoting the normal density with mean μ and
variance ν. Proofs can be found in the appendix.

Proposition 3.2. For V λ
0 ≡ 0 the iteration

V λ
n = TV λ

n−1 (8)

converges to a unique function V λ : Ψ → R as n → ∞ that
satisfies the Bellman equation,

V λ = TV λ.

This V λ is the discount-optimal value function for the one-
arm bandit problem with subsidy λ. An optimal policy for
this problem maps (μ, ν) to action a if V λ(μ, ν) = TaV

λ(μ, ν).

Structural Properties. Let us first consider monotonicity
properties of the optimal value function V λ.

Lemma 3.3. Let ϕ ∈ (0, 1). Then V λ(·, ν) is convex, con-
tinuous, non-decreasing, and not constant; and V λ(μ, ·) is
non-decreasing.

Fig. 1 and similar numerical experiments1 suggest that the
passive set Pλ and the active set Pc

λ are separated by a
1To execute the value iteration we truncate Ψ1 to [−6σ, 6σ],
and consider λ ∈ [−2σ, 2σ]. Discretization is done in steps
of size 0.01, which is preserved when truncating Ψ2.



switching curve (defined on the countable space Ψ2).

Assumption 1. It holds that μ := sup
{
μ | (μ, ν) ∈ Pλ

}
<

∞ and μ := inf
{
μ | (μ, ν) ∈ Pc

λ

}
> −∞.

We conjecture that this assumption generally holds here; it
states that if the expected reward obtained when playing
is large enough, then it is optimal to indeed play the arm,
while if it is very small, we should rather take the subsidy. To
see that there is a switching curve, it remains to be proven
that in between μ and μ there are no μ1 < μ2 such that
(μ1, ν) ∈ Pc

λ and (μ2, ν) ∈ Pλ.

4 21.05
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−3

−2

−1

0

1

2
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μ

λ = −2
λ = −1

λ = 0
λ = 1

Figure 1: Switching curves: below the curve the optimal

action is passive, above it is active. β = 0.8, ϕ = 0.9, σ = 2.

Proposition 3.4. If Assumption 1 holds, then a policy
that achieves the optimal value function V λ is a threshold
policy: There exists a switching curve (sequence) ζλ : Ψ2 →
Ψ1 such that Pλ = {(μ, ν) |μ ≤ ζλ(ν)}.

Numerical evidence such as provided in Fig. 1 suggests that
the switching curve is in fact strictly decreasing, i.e. it is
optimal to give some priority to exploration.

Assumption 2. The switching curve is non-increasing.

It follows from the assumptions and Prop. 3.4 that theWhit-
tle index is monotone.

Corollary 3.5. Provided Assumption 1 holds, the Whit-
tle index ω(μ, ν) is non-decreasing in μ. If in addition As-
sumption 2 holds, then ω(μ, ν) is non-decreasing in ν.

Consequently, the Whittle index policy assigns compara-
tively larger indices to arms that have not been activated for
a longer time. In accordance with this observation, Fig. 2
shows that the correction term q(μ, ν) is positive and in-
creases in ν. It is larger for μ close to zero, which may be
explained by noting that exploration is less important if |μ|
is large, for in that case there is less uncertainty about the
direction in which μ will evolve. Furthermore, we confirmed
numerically that the slope of ζλ(ν) increases as β increases
as in this case exploration becomes more beneficial.

4 21.05
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−2

−1

0

1

2
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μ
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1
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2

Figure 2: Correction term q(μ, ν) obtained for the Whit-

tle index. β = 0.8, ϕ = 0.9, σ = 2.

3.2 Parametric Index
As no closed form for the Whittle index is available, the
Whittle indices have to be computed and stored for every
belief state in Ψ, while the evaluation of the optimal value
function for the one-armed problem with subsidy is compu-
tationally expensive. Therefore, instead of finding the index
for the one-armed problem with subsidy that is optimal (the
Whittle index), we propose to find the index that is optimal
when restricting to a family of parametric functions. A sim-
ple example is obtained by picking a function q(μ, ν) that is
proportional to ν, the most obvious measure for the decision
maker’s uncertainty. This yields the parametric index

γ(μ, ν) = μ+ θν, (9)

where θ ≥ 0 as motivated by Corollary 3.5. The correction
term θν allows to adjust the priority the decision maker
wants to give to exploration. We denote the associated pol-
icy by πθ.

The parametric index can be related to the Whittle index
as follows. Numerical experiments (such as Fig. 1 for dis-
counted, and related experiments for average rewards) sug-
gest that the optimal switching curve may be well approx-
imated by a linear function, the slope of which is negative
but does not depend on λ. The position of the curve on
the other hand does depend on λ. Such an approximation
is given by ζλ(ν) ≈ −θν + λ+ c with θ ≥ 0, c ∈ R. As ζλ(ν)
takes some value μ ∈ R, solving for λ (which may correspond
to the Whittle index) suggests using an index of the form
(9), where without loss of generality we take c = 0.

In the next section we show that we can explicitly describe
the asymptotic dynamics of the system induced by πθ.

4. SYSTEM WITH MANY ARMS
We investigate the behavior of the system with many arms
as d → ∞ and kd/d → ρ. Section 4.1 outlines the main
idea: the limiting proportion of belief states remains stable
in an equilibrium system with infinitely many arms. In Sec-
tion 4.2 we relate the equilibrium system to a single arm
process, and use this connection to propose an algorithm for
performance evaluation. This algorithm is used to optimize
πθ in Section 4.3.



4.1 Limiting Empirical Distribution
We first informally describe the intuition motivating this
section. Consider the system with d arms as before, and to
simplify the exposition suppose for now that the system is
stationary. Let Γi(t) denote the process of indices associated
with arm i, that is, Γi(t) := γ

(
μi(t), νi(t)

)
. Note that the

index processes Γi(t) and Γj(t), i, j = 1, . . . , d, are generally
dependent because the belief states of both arms depend on
the action that was chosen, which in turn depends on the
index of all arms in the system (as they are coupled by the
requirement that those k arms with the largest indices are
activated). Let us now focus on a single arm i in this system
and suppose that its belief state evolves from ψ at time t to

another belief state ψ̃ at time t + 1. While d is small, this
certainly changes the proportion of arms with current belief
state ψ considerably. However, if d is very large, we should
be able to find another arm j whose new belief state at time
t is (in close proximity to) ψ. It thus seems reasonable to ex-
pect that, as we add more arms to the system, it approaches
a mean-field limit in which the proportion of arms associ-
ated with a certain belief state remains fixed. Thus, in the
limit, the action chosen for a certain arm is independent of
the current belief state of any other arm, as there is always
the same proportion of arms associated with a certain belief
state in the system.

Let us now more formally investigate the proportion of arms
that are associated with a certain belief state at time t. We
focus on parametric index functions as defined in (9). The
empirical measure

Md(C, t) :=
1

d

d∑
i=1

1
{(

μi(t), νi(t)
) ∈ C

}
(10)

quantifies the proportion of arms in the d-dimensional sys-
tem whose belief state falls into C ∈ B(Ψ) at time t, where
B(Ψ) denotes the Borel σ-algebra on Ψ. It is related to the
measure on indices,

M̃d(B, t) :=
1

d

d∑
i=1

1
{
Γi(t) ∈ B

}
(11)

with B ∈ B(R), through

M̃d(B, t) = Md

({
(μ, ν) ∈ Ψ |μ+ θν ∈ B

}
, t

)
. (12)

We examine the dynamics of Md(C, t). To this end we enu-

merate the elements in Ψ2, that is, ν
(h) = σ2(1−ϕ2(h+1))/(1−

ϕ2), h = 0, 1, 2 . . . , so that h+1 is the number of time steps
since an arm was played last. We refer to h as the age of an
arm. Then (10) can be written as, with B ∈ B(R),

∞∑
h=0

Md
h(B, t) :=

∞∑
h=0

1

d

∑
i: νi(t)=ν(h)

1
{
μi(t) ∈ B

}
. (13)

Many-arms Asymptotics. As motivated at the beginning
of this section, it is reasonable to believe that the limit-
ing proportion of arms associated with a certain belief state
evolves deterministically, and thus, that the dynamics of the
limiting system can be described by non-random measures
mh(·, t). For brevity we write mh(x, t) for mh

(
(−∞, x], t),

and denote by Φμ,ν the normal distribution function with
mean μ and variance ν. We define mh(·, t) by the recursion

mh

(
x, t+ 1

)
(14)

=

⎧⎪⎨⎪⎩
∑∞

h=0

∫∞
�h(t)

Φz,ν(h)

(
x
ϕ

)
mh(dz, t), h = 0,

mh−1

(
min

{
x
ϕ
, �h−1(t)

}
, t
)
, h ≥ 1,

where �h(t) := �(t)− θν(h) with �(t) defined by

�(t) = sup

{
�
∣∣∣ ∞∑

h=0

m̃h

(
[�,∞), t

)
= ρ

}
. (15)

Here, m̃h denotes the measure on indices, i.e.

m̃h(B, t) = mh

({
μ ∈ Ψ1 |μ+ θν(h) ∈ B

}
, t
)
, (16)

cf. Eqn. (12). Note that �h(t) is a threshold such that at
time t the policy πθ activates all arms that are of age h and
have conditional mean μ(t) ≥ �h(t), h ≥ 0. Obviously, if the
policy is myopic, then �h(t) = �(t) does not depend on the
age of an arm and the above expressions can be simplified.
Recursion (14) is obtained based on the dynamics of the
belief states as given in (3). The evolution of m0(·, t) is
determined by the evolution of the belief state of all arms
that have been played in the previous time slot. If h > 0 on
the other hand, we use that arms of age h must have been
of age h− 1 at the previous decision time; and since they
have not been activated, their mean must have been below
the threshold �h(t− 1).

For the (pre-limit) empirical processes Md it obviously holds
that Md(Ψ, t) = 1 as well as Md

0 (Ψ1, t) = kd/d. These
properties carry over to the limiting measure.

Lemma 4.1. If the sequence {mh(B, 0)}h satisfies

m0

(
Ψ1, 0

)
= ρ, and

∞∑
h=0

mh

(
Ψ1, 0

)
= 1, (17)

then the same holds for mh(B, t) for all t > 0.

This is easily proven by induction using (14)–(16). We be-
lieve that (14) indeed describes the mean-field behavior of
the dynamical system:

Conjecture 1. Assume that Md
h(B, 0) converges weakly

to mh(B, 0) for all h ≥ 0,

Md
h(B, 0)

w−→ mh(B, 0),

as d → ∞ while limd→∞ kd/d = ρ. Then, for all t, h ≥ 0,

Md
h(B, t)

w−→ mh(B, t).

Long-run Equilibrium. Note from (14) that for h ≤ t we
can express mh(B, t) in terms of m0(B, t),

mh

(
x, t

)
= m0

(
min

j=1,...,h

{
x

ϕh
,
�h−j(t− j)

ϕh−j

}
, t− h

)
.



Then the fixed-point equation corresponding to (14) is given
by

m∗
0

(
x
)
=

∞∑
h=0

∫ ∞

�∗
h

Φz,ν(h)

(
x

ϕ

)
m∗

h(dz)

=

∞∑
h=0

∫ minj

�∗h−j

ϕh−j

�∗
h

ϕh

Φϕhz,ν(h)

(
x

ϕh

)
m∗

0(dz)

where j = 1, . . . , h. Here, �∗h = �∗ − θν(h) where the steady
state �∗ is defined by

�∗ = sup

{
�
∣∣∣ ∞∑

h=0

m̃∗
h

(
[�,∞)

)
= ρ

}
, (18)

and m̃∗ again denotes the measure on indices, cf. (16).

The above system of equations describes possible equilib-
rium points of the measure valued dynamical system. It is
intricate due to the coupling of �∗, m̃∗ and the measures
mh, h ≥ 0. Nevertheless, the system is elegant in that its
solution can potentially be described through a single mea-
sure, namely m∗

0.

For the special case of θ = 0 (myopic) we verified numeri-
cally that with arbitrary initial choice {mh(·, 0)} satisfying
(17) an equilibrium point satisfying (18) is indeed attracting.
Furthermore, when d and t are large enough, the proportion
of arms associated with a certain belief state in a simulated
system with d arms is indeed fixed and well approximated by
the solution to (18) when operated under the myopic policy.

4.2 The Equilibrium Index Process
We now relate the system with many arms operated under
πθ to a special one-armed process with threshold. For this
process the arm is activated whenever the index exceeds a
specified threshold �, i.e. a(t) = 1{μ(t) + θν(t) ≥ �}. Be-
cause the evolution of the belief state and thus the evolution
of the index depends on �, we denote the associated stochas-
tic process of indices by Γ�(t) := μ(t) + θν(t).

Suppose that � is picked in such a way that we activate

with probability ρ; denote it by �. Then a policy π�
θ that

chooses action ai(t) = 1
{
μi(t) + θνi(t) ≥ �

}
for every arm

i in an unconstrained system with d arms is a policy which
activates ρ d arms on average (this is essentially the idea
behind Whittle’s relaxation [16]). Thus, as d → ∞, the

policy π�
θ activates approximately a proportion ρ of arms at

every decision time.

We believe that in steady state (as t → ∞ or under sta-
tionarity) the equilibrium of the measure-valued dynamical
system is directly related to the one-armed process with this
particular threshold �, and further � equals �∗ of (18).

Conjecture 2. Assume that the index is parametric, and
that Γ�(t) is stationary. Then the equation

P
(
Γ�(t) ≥ �

)
= ρ (19)

has a unique solution �∗, which satisfies Eqn. (18), and

P
(
Γ�∗(t) ∈ B

)
=

∞∑
h=0

m̃∗
h(B), ∀B ∈ B(R).

A practical implication of Conj. 1 and 2 combined is that in
the limit, as d → ∞ and t → ∞, a parametric index policy
πθ is equivalent to the policy that activates arm i in an un-
constrained system whenever Γi(t) ≥ �∗, where �∗ is defined
by (19). This motivates the following simple algorithm for
performance evaluation.

Algorithm Performance evaluation.

1: For large T determine �̂∗ such that T−1
∑T

t=0 ai(t) = ρ is

achieved for a policy π�̂∗
θ .

2: Use the sample path of Step 1 to obtain an estimate G for
the expected average reward of the one-armed system.

3: Output Gd := dG as an approximation of the expected aver-
age reward of the multiarmed system with d arms operated
under πθ.

The virtue of this algorithm is that the behavior of the many-
armed system is approximated by simulating a much simpler
one-armed problem.

4.3 Optimized Parametric Index
The algorithm can be used to approximate the best parame-
ter values for a parametrized index policy. We approximate
θ∗ := argmaxθ Gd(θ) by θ

∗
:= argmaxθ G(θ), where Gd(θ)

is the average reward obtained under πθ for the problem
with d arms, and G(θ) is the estimator for G(θ) as obtained
from Step 2 of the algorithm. Fig. 3 depicts the estimated
expected average reward G(θ) as a function of θ. The figure
suggests that for large ϕ, the myopic policy (which corre-
sponds to θ = 0) can be improved significantly.
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Ḡ
(
θ
)

ϕ = 0.9
ϕ = 0.925
ϕ = 0.96
ϕ = 0.975

Figure 3: Expected average reward G(θ) computed

by the algorithm as a function of θ. σ = 2, ϕ ∈
{0.9, 0.925, 0.95, 0.975}, ρ = 0.4, T = 2× 106.

We now examine the performance of πθ when the parameter
is chosen to be θ

∗
. In contrast to the approximation Gd(θ)

that is obtained from the algorithm, we denote the estimated
average reward obtained by Monte Carlo simulation of the

d-armed system by Ĝd(θ). We define θ̂∗d := argmaxθ Ĝd(θ).

Accordingly, Ĝd

(
θ
∗)

and Ĝd

(
θ̂∗d
)
are the average rewards



obtained when simulating the system under πθ, where θ is

chosen as θ
∗
and θ̂∗d respectively. In Fig. 4 we compare these

quantities to the average rewards obtained when simulating
the system under the Whittle index and the myopic pol-
icy. Unsurprisingly, the Whittle index policy outperforms
the other index policies – in fact, we believe it to be asymp-
totically optimal. However, the parametrized index does
considerably better than the myopic.

Importantly, we note from Fig. 4 that θ̂∗d is indeed well ap-
proximated by θ

∗
. Thus, instead of optimizing the param-

eter by simulating the multidimensional d-armed system,
we can approximate the best θ-value directly from the one-
armed process with threshold for any value of d (such that
kd = �ρ d
).
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Figure 4: Comparison of average rewards achieved per

arm under the Whittle, the parametric index (9) and the

myopic policy. The parameter θ is found by optimizing

(i) the problem with d arms (dotted), and (ii) the one-

armed problem. ϕ = 0.9, σ = 2, ρ = 0.4, T = 100, 000.

5. CONCLUDING REMARKS
This paper provides a starting point for a rigorous investi-
gation of the structural properties and performance of index
policies in partially observable restless bandit problems with
AR(1) arms. This incorporates (i) the analysis of the Whit-
tle index as a likely candidate for an asymptotically optimal
policy as d → ∞ while kd/d → ρ, and (ii) insights into the
behavior of the system in this asymptotic regime. In addi-
tion to our conjectures above, we also believe that some form
of asymptotic independence holds for the index processes as
the number of arms grows large. In this context we men-
tion that Γi, i = 1, . . . , d, are exchangeable [2]. This may
yield a path for proving asymptotic independence. The re-
cursions on measures defining the limiting dynamical system
can perhaps be treated along the lines of [10].

Furthermore, many of the ideas in this paper can be gener-
alized. For example, the results obtained in Section 3.1 for
discounted rewards similarly hold in the average reward case,
and the assumptions made in that section generally hold for
the problem we consider. Beyond that, we can extend the
treatment to AR processes of higher order, heterogeneous
arms and bandit problems with correlated arms.
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APPENDIX

Proof of Lemma 2.1. For each arm i we have

Eμi,νi |Xi(t)| ≤Eμi,νi

[
ϕt |Xi(0)|+

t−1∑
j=0

ϕj
i |εi(t− j)|

]

≤
√

2νi
π

+ |μi|+
√

2

π

1

1− ϕ
=: B(μi, νi),



which is finite, and thus,

sup
π

∞∑
t=0

βtEπ
μi,νi

[
d∑

i=1

|Xi(t)ai(t)|
]
≤ dmaxi B(μi, νi)

1− β
< ∞,

whence supπ V π(μ,ν) is finite, and
∑∞

t=0 β
t ∑d

i=1 |Xi(t)ai(t)|
converges almost surely to a finite limit. The variables
ZT :=

∑T
t=0 β

t ∑d
i=1 Xi(t)ai(t) thus converge almost surely

as T → ∞ and are dominated by the absolute sum which has
finite mean. Hence, by dominated convergence Eπ

μ,νZT →
Eπ
μ,ν

[∑∞
t=0 β

t ∑d
i=1 Xi(t)ai(t)

]
.

Proof of Proposition 3.2. Define b(μ) := 1+μ2. Then,
because |max{m,μ}| ≤ (

1+ |m|)b(μ), the absolute value of
the expected immediate reward under both actions (passive,
active) is bounded by

(
1 + |m|)b(μ) for any belief state in

Ψ. Furthermore,∫ ∞

−∞
b(ϕy)φμ,ν(y)dy ≤ (

1 + ϕ2νmax

)
b(μ)

and hence, b is an upper bounding function in the sense of
[4, Def. 7.1.2]. The implication of this is that the space
V of measurable functions v : Ψ → R with finite weighted
supremum norm defined by

‖v‖b := sup
μ,ν

|v(μ, ν)|
b(μ)

< ∞

contains the optimal value function V . We apply [4, Thm.
7.2.1]. To verify the main condition of the latter, define the
operator Q by

Qv(μ, ν) :=

max

{
βv(ϕμ, ϕ2ν + σ2), β

∫ ∞

−∞
v(ϕy, σ2)φμ,ν(y)dy

}
.

Take b(μ, ν) = b(μ) as defined above and observe that

Qnb(μ, ν) ≤ βn
(
1 + ϕ2νmax + ϕ2n (ν + μ2) ),

whence Qnb → 0 as n → ∞. Noting that the further regu-
larity conditions of [4, Thm. 7.2.1] are satisfied, we obtain
that with initial choice V0 ≡ 0 the value iteration converges
to an optimal value function, and an optimal policy exists;
namely, it is optimal to take the action that maximizes the
right-hand side of the Bellman equation. The uniqueness of
the value function can be seen as follows. Let v and w be
two fixed points of T . Then

Tnv(μ, ν) = T
(
Tn−1v(μ, ν)

)
= · · · = v(μ, ν),

for every n ∈ N. Because Qn → 0 we know that for every
(μ, ν) there exists nμ such that

|Tnμv(μ, ν)− Tnμw(μ, ν)|
b(μ, ν)

≤ α sup
μ,ν

|v(μ, ν)− w(μ, ν)|
b(μ, ν)

for some α ∈ (0, 1). Hence,

‖v − w‖b = sup
μ,ν

|Tnμv(μ, ν)− Tnμw(μ, ν)|
b(μ, ν)

≤ α‖v − w‖b,

which implies that v ≡ w.

Proof of Lemma 3.3. The proof is by induction on (8),
and consists of three parts. Part (a) refers to the convexity

assertion, which implies continuity. In Part (b) we prove the
monotonicity properties of V m(·, ν) for fixed ν, whereas in
Part (c) we show monotonicity of V m(μ, ·) with μ fixed.

(a) Suprema, expectations, compositions of convex and in-
creasing functions as well as linear combinations with non-
negative weights of convex functions are convex. Then the
result follows from (8) by induction.

(b) For V m
0 ≡ 0, we have that V m

1 (·, ν) is non-decreasing
and thus we may assume that V m

n (·, ν) is non-decreasing
for some n. If μ1 ≤ μ2, then by the stochastic ordering
of Yμi,ν ∼ N (μi, ν) it holds that E

[
V m
n

(
ϕYμ1,ν , σ

2
)] ≤

E
[
V m
n

(
ϕYμ2,ν , σ

2
)]
. It follows by induction that V m

n is
non-decreasing in μ for all n ∈ N, and thus their limit V m

is non-decreasing in μ. Furthermore, since a lower bound
for V m is given by the value obtained when always playing
active, μ/(1 − ϕβ), which is strictly increasing in μ, it is
evident that V m cannot be constant in μ.

(c) Let V m
0 ≡ 0. Then V m

1 (μ, ·) is constant and thus non-
decreasing. Assume that V m

n (μ, ·) is non-decreasing. We
prove below that E

[
V m
n

(
ϕYμ,ν , σ

2
)]

is non-decreasing in
ν. Then it follows by induction that V m

n is non-decreasing
in ν for every n, and thus, so is V m.

For brevity we assume that V m(·, ν) is differentiable. Define
g(y) := V m

n (ϕ
√
νy + μ, σ2); this is increasing and convex as

it is a composition of a convex and a monotone increasing
function. Applying Jensen’s inequality we obtain

∂

∂ν
E
[
V m
n

(
ϕYμ,ν , σ

2)]
=

ϕ

2
√
ν

∫ ∞

−∞
y V m′

n

(
ϕ
√
νy + μ, σ2)φ0,1(y) dy

=
ϕ

2
√
ν

∫ ∞

−∞
y g′(y)φ0,1(y) dy

≥ ϕ

2
√
ν

∫ ∞

−∞

(
g(y)− g(0)

)
φ0,1(y) dy ≥ 0

because g is convex (and thus g(b)− g(a) ≤ g′(b)(b− a) for
all a, b in R, the domain of g).

Proof of Proposition 3.4. V m(·, ν) is non-decreasing
and convex by Lemma 3.3, and thus, the same holds for
TaV

m, a = 0, 1. By Assumption 1 both passive and active
set are non-empty, whence T0V

m(·, ν) and T1V
m(·, ν) inter-

sect. Since both functions are convex and increasing, they
can intersect at most twice (if their paths are equal on a con-
nected set of points, we refer to this as a single intersection).
But since by assumption T0V

m(μ, ν) ≥ T1V
m(μ, ν) for all

μ < μ whereas T1V
m(μ, ν) > T0V

m(μ, ν) for all μ > μ, they
can only intersect exactly once, whence there is a unique
switching point, which we denote by ζm(ν). This argument
applies for every ν ∈ Ψ2.

Proof of Corollary 3.5. Let μ1 ≤ μ2, then Prop. 3.4
implies (μ1, ν) ∈ Pω(μ2,ν). Hence, ω(μ2, ν) ∈ {m | (μ1, ν) ∈ Pm}
and thus, ω(μ1, ν) ≤ ω(μ2, ν) by definition of the Whittle
index as an infimum. The monotonicity of ω(μ, ·) follows
along similar lines using Assumption 2.


