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ABSTRACT

During operation, software systems produce large amounts
of log events, comprising notifications of different severity
from various hardware and software components. These
data include important information that helps to diagnose
problems in the system, e.g., post-mortem root cause anal-
ysis. Manual processing of system logs after a problem oc-
curred is a common practice. However, it is time-consuming
and error-prone. Moreover, this way, problems are diag-
nosed after they occurred—even though the data may al-
ready include symptoms of upcoming problems.

To address these challenges, we developed the SCAPE ap-
proach for automatic system event classification and pre-
diction, employing machine learning techniques. This pa-
per introduces SCAPE, including a brief description of the
proof-of-concept implementation. SCAPE is part of our
Hora framework for online failure prediction in component-
based software systems. The experimental evaluation, using
a publicly available supercomputer event log, demonstrates
SCAPE’s high classification accuracy and first results on
applying the prediction to a real world data set.
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1. INTRODUCTION

Large and complex systems nowadays contain a huge num-
ber of hardware and software components. In order to de-
liver the service correctly, the components have to operate
and communicate with each other. A failure or a small prob-
lem in a critical part may cause the entire system to fail.
Thus, detecting problems in large systems before they ac-
tually occur is a challenging task but can provide a huge
benefit. Being able to predict what is going to happen, e.g.,
which part of the system is going to fail or which harddrives
are going to crash, gives the system administrators time to
fix or prepare for the upcoming problems.
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Log files are one of the most valuable piece of information.
They contain execution traces, warnings, error messages,
etc., which represent the status of each part of the system [5].
They can be used to analyze how the problem develops and
propagates to other parts. The simplest way of log analysis
is to manually investigate its contents. However, for large
systems which produce megabytes of log per minute, this
is a time-consuming task and is infeasible in practice. Fur-
thermore, the analysis is usually done after the system has
already experienced a problem to investigate the root cause
and does not help prevent the problem from occurring at
runtime.

In this paper, we propose an approach called SCAPE, which
aims to analyze the log messages at runtime and predict
the problems that may occur in advance. The approach
employs machine learning techniques to identify and learn
the patterns in the log messages that are the signs of possible
problems.

The core components of our SCAPE approach are (i.) event
preprocessing, (ii.) event classification, and (iii.) event
prediction. The goal of the preprocessing is to prepare the
event streams for the subsequent steps. First, the events
are normalized, e.g., replacing numbers and identifiers by
generic template placeholders. Second, the amount of log
data is reduced on-the-fly by removing redundant/similar
log events observed in a configurable time window. The
algorithm used for the preprocessing is based on Adaptive
Semantic Filtering [3] and Duplicate Removal Filtering that
we have developed. Both filters remove redundant messages
by considering the similarity coefficient between them. The
event classification and prediction are both based on ma-
chine learning techniques although they have different pur-
poses. The event classification aims to identify the type of
event based on the log messages while event prediction aims
to predict whether specific types of events will occur in the
future.

We developed a proof-of-concept implementation of the ap-
proach in form of a reusable and extensible framework for
log event classification and prediction. The framework sup-
ports the model learning, the event classification and predic-
tion, as well as infrastructure for evaluating the classification
and prediction quality of the machine learning algorithms by
employing standard metrics like true/false positive/negative
rates, as well as derived measures like accuracy, precision,
F-measure, etc. The framework implementation is based



on the Kieker [11] framework for monitoring and dynamic
analysis of software systems, and on the data mining tool
Weka [1].

In order to investigate SCAPE’s classification and predic-
tion quality, we applied it to a publicly available system
event log of a Blue Gene/L supercomputer. Particularly, we
were interested in the following research questions (RQs):
How do different machine learning algorithms perform for
system event classification and prediction (RQ1) and What
is the impact of log filtering on the size of the dataset and on
the classification and prediction quality (RQ2)? The evalu-
ation results for the classification show a very high accuracy.
For the event prediction, we present promising preliminary
results.

This paper is a part of our online failure prediction frame-
work for component-based software systems called Hora [7,
8]. The aim of the Hora approach is to predict failures of in-
dividual components and to combine the prediction results
at the system-level to infer about the possible consequences
of the predicted component failures. The work in this paper
therefore serves as a basis for predicting failures by analyzing
log files of components in the system.

To summarize, the contributions of this paper are (i.) our
SCAPE approach for system event classification and pre-
diction, (4.) its implementation in form of a reusable and
extensible framework, as well as (iii.) the experimental eval-
uation based on a supercomputer log provided by other re-
searchers. Supplementary material for this paper, including
the implementation, as well as the data and the scripts re-
sulting from the evaluation are publicly available online.*

The remainder of this paper is structured as follows. Sec-
tion 2 introduces our SCAPE approach. A brief overview of
the SCAPE implementation is provided in Section 3. The
evaluation follows in Section 4. Section 5 discusses related
work and the conclusion is drawn in Section 6.

2. SYSTEM EVENT CLASSIFICATION AND

PREDICTION APPROACH

The goal of our approach is to classify system log events into
categories and predict future events based on the past ob-
servations. The approach is divided into three steps, namely
(i.) preprocessing, (ii.) system event classification, and
(iii.) system event prediction. These three steps will be
detailed in Sections 2.1-2.3.

2.1 Preprocessing

Log files of large systems usually contain huge amounts of
log entries. However, many of the log entries contain redun-
dant information, as a single root cause may trigger mul-
tiple components of the system to write log entries to the
file. Moreover, the components may even produce different
log messages for the same root cause. However, redundant
log entries describe the same information and are not of in-
terest for machine learning purposes. In order to remove
redundant log events, we employ a combination of log mes-
sage normalization and filtering, as detailed in Sections 2.1.1
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4 torus receiver x+ input pipe error(s) (dcr 0x02ec) detected
1 torus receiver x- input pipe error(s) (dcr 0x02ed) detected
191790399 L3 EDRAM error(s) (dcr 0x0157) detected

2 L3 EDRAM error(s) (dcr 0x0157) detected

Error receiving packet, expecting type 57

3 torus receiver y+ input pipe error(s) (dcr 0x02ee) detected
3 torus receiver z- input pipe error(s) (dcr 0x02f1) detected

(a) before normalization

number torus receiver x input pipe error detected
number torus receiver x input pipe error detected
number register edram error detected

number register edram error detected

error receiving packet expecting type number
number torus receiver y input pipe error detected
number torus receiver z input pipe error detected

(b) after normalization
Figure 1: Application of normalization on log records

and 2.1.2. The key idea behind the filtering is to remove re-
dundant information by considering the time gap and the
semantic correlation between two log records. For the fil-
tering, we use the approach of Adaptive Semantic Filter by
Liang et al. [2] and our Duplicate Removal Filter. A part
from the original Adaptive Semantic Filter is also used for
the log normalization.

2.1.1 Log Message Normalization

As proposed by Liang et al. [2], log messages can be normal-
ized by applying transformations that include the following
steps:

1. Removing punctuation, e.g., . ; : ? ! =-[]
| <>+

2. Removing definite and indefinite articles, e.g., a, an,
the

3. Removing weak words, e.g., be, is are, of, at, such,
after, from

4. Replacing all numbers by the word NUMBER

5. Replacing all hex addresses with N digits by the word
NDigitHex_Addr

6. Replacing domain specific identifiers by corresponding
words such as REGISTER or DIRECTORY

7. Replacing all dates by DATE

Figure 1 exemplifies the effect of applying the normaliza-
tion. Six example log messages from the Blue Gene/L log,
used in the evaluation, are shown in Figure la; the corre-
sponding normalized messages are shown in Figure 1b. It
is obvious that very similar log messages are mapped to the
same normalized log message. This enables to programmat-
ically grasp the semantic context of log messages as identical
normalized log messages that are also mostly semantically
identical.



2.1.2 Filtering

After the log is normalized by applying the aforementioned
step, it can be processed by the filtering step, which removes
redundant information. This section describes two types of
filters used in this paper, namely Adaptive Semantic Filter-
ing and Duplicate Removal Filtering.

Adaptive Semantic Filter. Liang et al. [2] propose a fil-
tering algorithm, called Adaptive Semantic Filtering (ASF),
which isolates important events in the Blue Gene/L log by
removing redundant log entries. Log entries are considered
redundant when they occur within a certain time frame and
have a certain semantic correlation. The general idea behind
ASF is that log records occurring close to each other in time
most probably originate from the same root cause, even if
the semantic correlation is not extraordinary high. On the
other hand, log records with a larger time difference in be-
tween more probably originate from different root causes.
Hence, the semantic correlation of two log records also needs
to be higher in order to consider them to be redundant. To
face this, ASF requires a higher semantic correlation of two
log records if the time difference between them is greater
than a certain threshold.

To calculate the semantic correlation between two log en-
tries, the log messages are first normalized, as described
in Section 2.1.1 and then transformed into dictionaries of
words. As the dictionaries are simply boolean vectors, simi-
larity coefficients such as the Phi correlation coefficient can
be used to compute the correlation. We denote cq, € Np
with a,b € 0,1 as the number of words that are not present
in any of the two log messages (a = b = 0), that are only
present in the first log message (a = 1,b = 0), that are only
present in the second log message (a = 0,b = 1) and that
are present in both log messages (¢ = b = 1). The Phi
correlation coefficient is then defined as [2]:

b= €00C11 — C01C10 (1)
\/(Coo + co1)(c10 + c11)(coo + c10)(co1 + c11)

The formula yields similarity coefficients between —1 to 1.
The more similar two log messages are (high coo or high
c11), the closer the Phi correlation coefficient is to 1 and the
more different two log messages are (high co1 or high ¢10),
the closer the Phi correlation coefficient is to —1. The two
messages that have a high coefficient are reduced to only
one even though they occur far apart from each other. On
the other hand, two messages that are less similar may be
reduced if they occur close to each other.

Duplicate Removal Filter. The duplicate removal filter
(DRF) is a filter that we have developed based on a straight-
forward idea: the log messages that have the same informa-
tion and occur within a certain time span can be reduced to
only one log record. This removal step aims to decrease the
computation complexity of the Phi correlation coefficient,
while still maintaining a high classification quality.
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2.2 System Event Classification

The information contained in the log files can be used to
conclude about the current state of the system, whether the
system is running normally or it is experiencing a problem.
Although the log messages may have certain formats or pat-
terns, they usually differ across different parts or different
versions of the system. Furthermore, log files can grow very
large in complex systems which makes manual classification
infeasible.

Our event classification approach is based on supervised ma-
chine learning which takes a set of manually labeled log mes-
sages as input to the algorithm. The algorithm learns an
internal model, e.g., decision trees, data clusters, and prob-
abilistic representations, from the data by discovering the
patterns of log messages and the relationship to the given
labels. After the model is trained, it is used to classify log
messages that are produced at runtime and tag them with
a label.

Given the example in Figure la, the classification process
starts by having a subset of the log manually labeled by the
system administrators [5]. The labeled log is presented in
Figure 2 where the labels are added to the beginning of the
log messages. This example subset of log contains only two
types of labels: “-” and “KERNREC” which implies that the
machine learning model trained with this data will be able
to classify and predict only two types of labels. At runtime,
the unlabeled log messages are fed to the model which will
classify them with the corresponding label.

- 4 torus receiver x+ input pipe error(s) (dcr 0x02ec) detected
- 1 torus receiver x- input pipe error(s) (dcr 0x02ed) detected
- 191790399 L3 EDRAM error(s) (dcr 0x0157) detected

- 2 L3 EDRAM error(s) (dcr 0x0157) detected

KERNREC Error receiving packet, expecting type 57

- 3 torus receiver y+ input pipe error(s) (dcr 0x02ee) detected
- 3 torus receiver z- input pipe error(s) (dcr 0x02f1) detected

Figure 2: Example of labeled log messages

To give a concrete example, Table 1 provides all labels con-
tained in the Blue Gene/L log file, which is used in the eval-
uation, with examples of log messages and statistics about
the number of occurrences in the data. The events that are
classified in this stage will serve as a basis for predicting
future events described in the next section.

2.3 System Event Prediction

The idea of event prediction is based on an assumption that
patterns in the event log can lead to certain events in the
near future. Unlike event classification, which aims to clas-
sify a log message with a label, event prediction looks at the
current sequence of messages and tries to predict if any type
of event will occur soon.

The training process of system event prediction starts by
grouping a certain number of log messages from the past to
the most recent one. Instead of taking the label of the cur-
rent message for the training, we look ahead in time and take
the label of the message in the future. However, predicting
the occurrence of one label exactly at a specific time in the
future is virtually impossible. This is because the predicted
label may occur a few seconds earlier or later which makes
our prediction a false positive. Therefore, we employ a pre-



KERNEL FATAL rts assertion failed: personality->version == BGLPERSONALITY_VERSION in void start() at start.cc:131

MONITOR FAILURE monitor caught java.lang.UnsupportedOperationException: power module U9 not present and is stopping

LINKCARD FATAL MidplaneSwitchController::parity Alignment() pap failed: R22-M0-L0-U22-D, status=00000000 00000000

APP FATAL ciod: Error creating node map from file /p/gb2/pakinl/sweep3d-5x5x400-10mk-3mmi-1024pes-sweep/sweep.map

Count Label Message
1 KBERNBIT KBERNEL FATAL ddr: redundant bit steering failed, sequencer timeout
KERNEXT KERNEL FATAL external input interrupt (unit=0x03 bit=0x01): tree header with no target waiting
1 KERNTLBE KERNEL FATAL instruction TLB error interrupt
1 MONILL MONITOR FAILURE monitor caught java.lang.lllegalStateException: while executing CONTROL Operation
2 LINKBLL LINKCARD FATAL MidplaneSwitchController::clearPort() bll.clear_port failed: R63-M0-L0-U19-A
2 MONNULL MONITOR FAILURE While inserting monitor info into DB caught java.lang.NullPointerException
3 KERNFLOAT | KERNEL FATAL floating point unavailable interrupt
3 KERNRTSA
3 MMCS MMCS FATAL L3 major internal error
5 KERNPROG KERNEL FATAL program interrupt
10 APPTORUS APP FATAL external input interrupt (unit=0x02 bit=0x00): uncorrectable torus error
10 MASNORM BGLMASTER FAILURE mmcs_server exited normally with exit code 13
12 MONPOW
14 KERNNOETH | KERNEL FATAL no ethernet link
14 LINKPAP
16 KERNCON KERNEL FATAL MailboxMonitor::serviceMailboxes() lib_ido_error: -1033 BGLERR_IDO_PKT_TIMEOUT
18 KERNPAN KERNEL FATAL kernel panic
24 LINKDISC LINKCARD FATAL MidplaneSwitchController::sendTrain() port disconnected: R0O7-M1-L1-U19-E
37 MASABNORM | BGLMASTER FAILURE mmcs_server exited abnormally due to signal: Aborted
94 KERNSERV KERNEL FATAL Power Good signal deactivated: R73-M1-N5. A service action may be required.
144 APPALLOC APP FATAL ciod: Error creating node map from file /p/gb2/draeger/benchmark/dat16k 062205/mapl6k_bipartyz
166 LINKIAP LINKCARD FATAL MidplaneSwitchController::receiveTrain() iap failed: R72-M1-L1-U18-A, status=beeaabff ec000000
192 KERNPOW KERNEL FATAL Power deactivated: R05-M0-N4
209 KERNSOCK KERNEL FATAL MailboxMonitor::serviceMailboxes() lib_ido_error: -1019 socket closed
320 APPCHILD APP FATAL ciod: Error creating node map from file /p/gbh2/cabot/miranda/newmaps/8k_128x64x1_8x4x4.map
342 KERNMC KERNEL FATAL machine check interrupt
512 APPBUSY
720 KERNMNT KERNEL FATAL Error: unable to mount filesystem
816 APPOUT APP FATAL ciod: LOGIN chdir(/p/gbl/stella/RAPTOR/2183) failed: Input/output error
1503 KERNMICRO | KERNEL FATAL Microloader Assertion
1991 APPTO APP FATAL ciod: Error reading message prefix on CioStream socket to 172.16.96.116:41739, Connection timed out
2048 APPUNAV APP FATAL ciod: Error creating node map from file /home/auselton/bgl/64mps.sequential.mapfile
2370 APPRES APP FATAL ciod: Error reading message prefix after LOAD_MESSAGE on CioStream socket to 172.16.96.116:52783
3983 KERNRTSP KERNEL FATAL rts panic! - stopping execution
5983 APPREAD APP FATAL ciod: failed to read message prefix on control stream CioStream socket to 172.16.96.116:33399
6145 KERNREC KERNEL FATAL Error receiving packet on tree network, expecting type 57 instead of type 3
23338 KERNTERM KERNEL FATAL rts: kernel terminated for reason 1004rts: bad message header
31531 KERNMNTF KERNEL FATAL Lustre mount FAILED : bglioll : block.id : location
49651 APPSEV APP FATAL ciod: Error reading message prefix after LOGIN.MESSAGE on CioStream socket
63491 KERNSTOR KERNEL FATAL data storage interrupt
152734 KERNDTLB KERNEL FATAL data TLB error interrupt
4399503 - KERNEL INFO instruction cache parity error corrected

Table 1: Statistics and example of log file collected from Blue Gene/L

diction window where a prediction is regarded as correct if
the predicted label occurs in this time window. Nonethe-
less, another issue remains in the consideration of the label
as there can be many labels occurring in the prediction win-
dow. We solve this issue by dropping the type of the labels
and consider a prediction as correct if there is at least a
certain amount of any labels excluding “-” in that period.

Figure 3 illustrates our prediction approach. The parame-
ters that can be adjusted for event prediction are the number
of past observations to be taken into account, how long we
look into the future (lead time), the length of the predic-
tion window, and the percentage of the messages that have
to be labeled with a fault state so that a failure should be
predicted in this timeframe (sensitivity).

\ , \ ,
i Observation window i Lead time | Prediction window |
i i i i
| | | |
| | | |
i i | |
| | | |
i H i H
L %% % . L% % . t
€i Cit1 €it2 €i+3 €ita

Figure 3: Timeline of system event prediction

Using the example in Figure 1a for the illustration, the train-
ing phase groups a certain number of log messages together.
Assume that the number of past observation is three, three
consecutive log messages will be grouped as one entry. Fig-
ure 4a shows the first group of log messages. The next group
of messages is obtained by sliding the observation window
to the next message which is shown in Figure 4b.

As we are predicting whether there will be any label occur-
ring in the near future, we neglect the label of those messages
in the group and take the label of the future messages in-
stead. Assume that the prediction window is two messages
ahead in the future and contains two messages which are:
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4 torus receiver x+ input pipe error(s) (dcr 0x02ec) detected
1 torus receiver x- input pipe error(s) (dcr 0x02ed) detected
191790399 L3 EDRAM error(s) (dcr 0x0157) detected

(a) First group of log messages

1 torus receiver x- input pipe error(s) (dcr 0x02ed) detected
191790399 L3 EDRAM error(s) (dcr 0x0157) detected
2 L3 EDRAM error(s) (dcr 0x0157) detected

(b) Second group of log messages
Figure 4: Example of grouped log messages

KERNREC Error receiving packet, expecting type 57
- 3 torus receiver y+ input pipe error(s) (dcr 0x02ee) detected

If we set the sensitivity to 50%, the first group of messages
will be labeled as a “+” as it contains at least 50% of the
messages not labeled with “-”.

On the other hand, the prediction window of the second
group of log messages will also slide to the next message
and contain:

- 3 torus receiver y+ input pipe error(s) (dcr 0x02ee) detected
- 3 torus receiver z- input pipe error(s) (dcr 0x02f1) detected

. ”

, as this

“ ”

The second group of messages will be labeled as a
prediction window does not contain any label other than

This grouping process continues for the remaining part of
the available log. When all log messages are processed, the
grouped and labeled entries are used for training the model.
At runtime, the new log messages are grouped according
to the configured parameters and fed to the trained model
which predicts the future event for that group.



3. FRAMEWORK ARCHITECTURE

We developed a framework that implements our event classi-
fication and prediction approach. The framework is written
in Java and is built on the Kieker monitoring framework [11].
The Kieker’s pipe-and-filter architecture provides the flexi-
bility to handle variable input and output interfaces. This
allows our framework to analyze both log files in offline mode
to evaluate the quality of machine learning algorithms, and
to predict upcoming failures in running software systems.

As illustrated in Figure 5, the framework consists of a set
of interconnected filters that process streams of incoming
log messages. The filters serve for preprocessing, labeling,
shuffling, evaluation, training, and prediction. The filters
allow for both event classification and prediction, and are
detailed below.

Log message

Preprocessing Filter

Labelling Filter
Shuffling Filter
Evaluation Filter

Classification and
prediction results

Prediction Filter

Training Filter

Figure 5: Architecture overview of SCAPE

Preprocessing filter. The preprocessing filter includes all
the functionalities described in Section 2.1. The filter can be
configured to apply different combinations of the described
preprocessing steps. For example, it can be set to only nor-
malize the log, normalize and apply ASF, or normalize and
apply DRF.

Labeling filter. This filter takes care of re-arranging the log
messages and labeling them to align with the corresponding
approach. If the purpose of the execution is to classify the
messages, the messages will be tagged with their original
labels. On the other hand, if it is predicting the future event,
messages will be grouped together and will be assigned the
label that occurs in the future.

Shuffling filter. The shuffling filter uses stratified sampling
to change the order of the messages in the log file. Its pur-
pose is to distribute all types of messages equally over the
dataset which increases the stability of the evaluation over
different parts of the log file.

Training Filter. The training filter is responsible for train-
ing the classification and prediction models by taking the
log messages and the labels as input. The output of this
filter is a machine learning model which is ready to be used
for both classifying or predicting future events.

Prediction Filter. The prediction filter receives the unla-
beled log messages collected at runtime as input as well as
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the models obtained from the training filter. The output of
the prediction filter are the labels of the input messages.

Evaluation Filter. The evaluation filter collects the pre-
processed data from previous filters and splits them into ten
parts. It then executes the 10-fold cross-validation by di-
recting the data to the training and prediction filters and
collects the results.

4. EVALUATION

This section describes the evaluation of the approach applied
to a publicly available log file collected from a supercom-
puter at Sandia National Laboratories [5].2 Our evaluation
aims to answer the following research questions:

e RQl: How do different machine learning algorithms
perform for system event classification and prediction?

e RQ2: What is the impact of log filtering on the size of
the dataset and on the classification quality?

In Section 4.1 we describe the details of the dataset used in
the evaluation. Section 4.2 explains the methodology of the
evaluation. Section 4.3 presents the results of event classifi-
cation and prediction in order to answer RQ1 and RQ2.

4.1 Dataset

The dataset used in the evaluation is a log file which con-
tains 215 days of log messages generated by a Blue Gene/L
supercomputer system, which has 131,072 processors and
32,768 GB of RAM [5]. Each message contains the category
(label), the timestamp (GMT), the date, the name of the
device, and the actual message. The category or label of
each message is identified and added by the system admin-
istrator. It indicates the type of the alert that the respective
message represents. As presented in Table 1, there are 42
types of labels in total, including the empty label.

4.2 Methodology

The log file of Blue Gene/L contains a large number of log
messages and all of the data cannot be processed at once
in the evaluation. We, thus, split the log file into blocks
where each block contains approximately the same number
of log messages. However, the log messages are not gener-
ated uniformly over the time, i.e., some types of messages
may occur more often at the beginning of the file and vice
versa. If the blocks are split by the temporal ordering of the
messages, the non-uniform distribution can affect the eval-
uation since some types of messages may not occur in some
blocks. Therefore, we used stratified sampling to maintain
the proportion of the types of messages in all blocks.

The machine learning library used in our evaluation is
Weka [1]. It provides many machine learning algorithms.
In order to determine the classification quality, we use the
common approach of 10-fold cross-validation which splits the
data of each block into 10 parts and uses 9 parts for training
the model and 1 part for the validation. The validation is re-
peated 10 times and the final result is obtained by averaging
the results of all runs. We used the standard metrics, such
as, true/false positive/negative rates, to evaluate the exper-
iment results. The detailed description of these metrics can
be found in [10].

http://www.cs.sandia.gov/~jrstear/logs/



4.3 Results

This section presents the results of the evaluation, address-
ing the previously mentioned research questions.

4.3.1 Quality of System Event Classification

For event classification, we selected two attributes of the
log messages and used them to train the models. These
attributes are the label and the actual message of the log.
The other attributes, such as, timestamp, location, are ne-
glected as they are independent and do not contribute to
the assignment of the label of the message.

Figure 6 illustrates the precision and recall of classifying the
label KERNMNTF over 19 blocks. The log file is split into
blocks using stratified sampling and normalized according to
Section 2.1.1. It can be seen from both plots that precision
and recall are similar in all blocks. This result concludes that
the log file can be split and evaluated separately without
significant deviation between blocks.
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Block Block

(a) Precision (b) Recall
Figure 6: Precision and recall of KERNMNTF label using
naive Bayes on normalized log file

Figure 7 illustrates the F-measure of three configurations of
event classification, namely (.) naive Bayes without normal-
ization, (i.) naive Bayes with normalization, and
(i1.) C4.5 with normalization.

Figure 7a is the result of applying naive Bayes on the orig-
inal unfiltered log messages. As the log file is not normal-
ized, the messages contain noise from the numerical values,
weak words, etc. This noise results in the highly varying
F-measure across different labels. Figures 7b and 7c illus-
trate the F-measure of classification using naive Bayes and
C4.5 on the normalized log file. The results show signifi-
cant improvements of all labels over the original log file and,
on average, C4.5 performs better than naive Bayes. Specifi-
cally, the number of labels for which naive Bayes has a recall
of zero—leading to an undefined F-measure—is considerably
higher than for C4.5.

From the classification results, we can conclude that log
normalization helps increase the classification quality as the
noise in the messages are filtered out. Moreover, C4.5 out-
performs naive Bayes with F-measure values of 1 for classi-
fying most of the labels.

4.3.2  Impact of Log Filtering

Figure 8 shows the number of log messages with INFO sever-
ity plotted according to their temporal position in the log
file. By comparing the y-axis of the plots, it can be ob-
served that there is a significant reduction in the number
of peaks of similarly labeled records located close to each
other. Whilst in hour 2,932 there are more than 130,000 log
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Figure 7: F-measure of event classification using different
algorithms

records with INFO severity—after filtering there remain only
less than 30 for ASF and 400 for tuned ASF and DRF. This
shows that the filters are capable of effectively eliminating
large amounts of redundant log records that occur close to
each other.

To evaluate the impact of the log filtering on the event clas-
sification, the ASF and DRF techniques (see Section 2.1.2)
are applied to the log messages to produce a reduced set
of log records. The log messages that are the output of the
filters are used as a training set of the machine learning algo-
rithms. Once the algorithms are trained, the classification is
done on the original set of log messages excluding those that
are used in the training. It is important to note that—as the
log file is large—the log messages are split into blocks where
each block contains 500,000 log messages and the evaluation
is carried out for every block.

The impact of the filtering on the system event classification
is depicted in Figure 9. The first and the second boxes
show the F-measure of the original ASF and the ASF that
is tuned to produce the best result. The third box shows
the F-measure when applying DRF. It can be seen that the
F-measure of the tuned ASF and DRF are approximately
the same but are slightly higher than the original ASF.

This result concludes that, although the tuned ASF and
DRF perform better than the original ASF, the improve-
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Figure 8: Number of messages with INFO severity before
and after applying different filters

ment is not quite significant. Moreover, the tuned ASF is
specifically adjusted for this set of data and may not pro-
duce as good result for log files collected from other systems.
Nonetheless, DRF which we developed proves to be as ef-
fective as the tuned ASF in filtering out the redundant log
messages with less computational complexity.
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0

Ongm‘a\ ASF Tune(‘j ASF Dll-lF
Figure 9: F-measure of event classification when applying

different filters

4.3.3  Quality of System Event Prediction

The system event prediction described in Section 2.3 has
a number of parameters. These parameters are evaluated
individually by varying the value of one parameter while
fixing the others. We experimented with various machine
learning algorithms, e.g., naive Bayes, C4.5, Random Forest,
RepTree, K*, K-nearest neighbours on the normalized log
messages and filtered by DRF. The preliminary results show
that the naive Bayes and C4.5 outperform the others. Hence,
the following results are the experiment of naive Bayes and
C4.5 as the exhaustive experiment of all algorithms with all
configurations is computationally expensive and infeasible.

Table 2a shows the resulting F-measures for predicting the
future event when the number of past observations is varied
from 1 to 16. For this configuration, the lead time and the
length of the prediction window are set to 600 seconds, and
the sensitivity is set to 20%. From the table, naive Bayes
appears to have the highest F-measure when taking into
account only one past observation while the C4.5 has the
highest F-measure with 16 past observations.
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Table 2b presents the resulting F-measures when the lead
time varies from 0 to 2,800 seconds with 3 past observa-
tions, a prediction window of 600 seconds, and sensitivity at
20%. From the table, we can observe that the lead time of
0 seconds has the best F-measure. In other words, our pre-
diction is most accurate when the prediction window starts
right after the observation window.

Table 2c shows the resulting F-measures for prediction win-
dows from 60 to 4,800 seconds with 3 past observations,
lead time of 600 seconds, and sensitivity at 20%. It is ob-
vious that the longer the prediction window, the better the
F-measure as the longer window covers a longer time span
which increases the chance of including more events in that
period. However, there is a trade-off between prediction ac-
curacy and the significance of the prediction as the longer the
prediction window is, the less useful it becomes. Therefore,
the selection of the prediction window is context-dependent
and needs to be adjusted according to the target system.

The last parameter of the prediction is the sensitivity. The
result is shown in Table 2d. The best sensitivity for naive
Bayes is 1% while C4.5 performs best with 40%. It is worth
noting that, the higher the sensitivity, the lower the F-
measure. The reason is because higher sensitivity means
more log messages have to have labels other than “-”. This
is especially difficult if the sensitivity is 100% which means
there can be no “-” label in the prediction window.

In conclusion, the parameters that result in a similar effect
for both algorithms are the lead time and the length of the
prediction window. The smaller the lead time, the better
the accuracy as it is easier to make predictions in the near
future than further away in time. Likewise, the longer the
prediction window, the better the accuracy as it increases
the chance of events occurring in that time span.

On the other hand, the number of past observations and
the sensitivity show opposite effects on the two algorithms.
While the higher number of past observations reduces the
accuracy of naive Bayes, it increases the accuracy of C4.5.
However, in this case, the effect of the sensitivity does not
seem to be correlated with the prediction accuracy and,
therefore, should be adjusted specifically per application.

Algorithm Number of past observations
1 2 3 4 6 8 16
NaiveBayes 0.603 0.517 0.506 0.500 0.501 0.501 0.503
C4.5 0.621 0.626 0.624 0.624 0.624 0.626 0.634

(a) Different number of past observations

Algorithm Load time (se0)
0 60 120 300 600 1200 2800
NaiveBaycs | 0.668 | 0.580 | 0.547 | 0.517 | 0.506 | 0.511 | 0.506
C4.5 0.877 0.672 0.634 0.627 0.624 0.640 0.625
(b) Different lead time
Algorithm Prodiction window (s6c)
60 120 300 600 1200 2800 4800
NaiveBayes | 0.491 | 0.493 | 0.485 | 0.506 | 0.5611 | 0.532 | 0.558
C4.5 0.579 0.578 0.598 0.624 0.640 0.625 0.635
(c) Different prediction window
Algorithm Sonsitivit
% 5% T0% | 20% | 40% [ 80% [ 100%
NaiveBaycs | 0.546 | 0522 | 0.516 | 0.506 | 0.462 | 0.519 | 0.300
C4.5 0.523 0.572 0.609 0.624 0.691 0.234 -

(d) Different sensitivity
Table 2: F-measures of system event prediction with differ-
ent parameter configurations



5. RELATED WORK

The comprehensive analysis of log files collected from su-
percomputers was investigated by Oliner and Stearley [5]
where the authors inspect the characteristics of the log and
the challenges to identify alerts in five different high per-
formance computing (HPC) systems. The authors further
introduce an approach called Nodelnfo to detect alerts in
the log using an unsupervised algorithm for anomaly detec-
tion [6]. The goal of the work was to identify the regions in
the log file in which the alerts occur.

Zheng et al. [14] propose an approach to predict failures and
their locations in the Blue Gene/P supercomputer. The ap-
proach employs genetic algorithms to generate rules that
can best represent the log pattern preceding failures. Yu
et al. [13] compares two widely-used approaches, which are
period-based and event-based, to predict failures in Blue
Gene/P. A Bayesian prediction model is used to evaluate
the accuracy of both methods and the results show that
the event-based approach outperforms the period-based ap-
proach. Liang et al. [3] split log files into windows and ex-
tract the statistics of events into features. Different machine
learning algorithms are then applied to learn the extracted
features and predict whether a failure is pending.

Xu et al. [12] detect problems in large-scale systems by com-
bining source code analysis with machine learning to mine
composite features and detect operational problems at run-
time. Nakka et al. [4] predicts node failures in HPC systems
by analyzing many parameters, such as, time of usage, sys-
tem idle time, etc., and applying a decision tree classifier to
predict a failure within the next one hour. Salfner [9] em-
ploys and extends the traditional hidden Markov models to
predict failures based on the event log of a telecommunica-
tion system.

Our approach takes a new direction by classifying messages
using supervised machine learning algorithms. Based on the
classified messages, we predict the events that can occur in
the near future. The prediction provides useful information
and warnings to the system administrators to initiate coun-
termeasures in advance before the problems actually arise.

6. CONCLUSION

Software systems in production produce large event logs
with messages of different severity from different sources.
The data contain important information to diagnose system
failures but processing these data is a big challenge. In this
paper, we presented our SCAPE approach for automatic
classification and prediction of event log. A proof-of-concept
implementation is provided in form of a reusable and exten-
sible framework, which is part of our Hora online failure pre-
diction approach. We evaluated our approach by applying
it to a large, publicly available event log of a Blue Gene/L
supercomputer. The evaluation results revealed a high clas-
sification quality and showed promising initial results for
the event prediction. In our future work, we will focus on
the improvement of the prediction quality of individual la-
bels. Moreover, as part of the overall Hora vision [8], we will
combine the event log analysis with other quality-of-service
evaluation techniques available in the Hora framework, e.g.,
time series analysis, to extend its online failure prediction
capability.
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