Automatic Application Performance Improvements through
VM Parameter Modification after Runtime Behavior
Analysis

Nicolas Neu
University of New Brunswick
Fredericton, New Brunswick

Canada
nneu@unb.ca

Kenneth B. Kent
University of New Brunswick
Fredericton, New Brunswick

Canada

ken@unb.ca

Charlie Gracie
IBM
Ottawa, Ontario
. Canada
charlie_gracie@ca.ibm.com

Andre Hinkenjann
Hochschule Bonn-Rhein-Sieg
Sankt Augustin, North
Rhein-Westphalia
Germany
andre.hinkenjann@h-
brs.de

ABSTRACT

This article describes an approach to rapidly prototype the
parameters of a Java application run on the IBM J9 Virtual
Machine in order to improve its performance. It works by
analyzing VM output and searching for behavioral patterns.
These patterns are matched against a list of known patterns
for which rules exist that specify how to adapt the VM to
a given application. Adapting the application is done by
adding parameters and changing existing ones. The process
is fully automated and carried out by a toolkit. The toolkit
iteratively cycles through multiple possible parameter sets,
benchmarks them and proposes the best alternative to the
user. The user can, without any prior knowledge about the
Java application or the VM improve the performance of the
deployed application and quickly cycle through a multitude
of different settings to benchmark them. When tested with
the representative benchmarks, improvements of up to 150%
were achieved.

Categories and Subject Descriptors

C.4 [Performance of Systems|: Performance attributes;
D.3.4 [Programming Languages|: Processors—run-time
environments,optimization; D.4.2 [Operating Systems]:
Storage Management—garbage collection

Keywords
Java Virtual Machine, Garbage Collection, Performance Op-
timizations

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

VALUETOOLS 2014, December 09-11, Bratislava, Slovakia

Copyright © 2015 ICST 978-1-63190-057-0

DOI 10.4108/icst.valuetools.2014.258196

147

1. INTRODUCTION

The times of JVM performance being a deterrent when the
use of Java was discussed for a new project are long over.
Advancements like Just-In-Time compilation or constant im-
provements of the garbage collection have propelled the JVM
up to a point, where it’s performance for a wide array of
business and scientific applications are on par with their na-
tive equivalents. Once thought of as one the greatest weak-
nesses in the Java ecosystem, performance is now one of
the JVM’s strong suits. It has been adapted as a runtime
environment not only for Java but also for a multitude of
other languages, new and old, that compile to Java byte-
code. Introducing a new layer of abstraction between the
machine and the code might have been disadvantageous at
one point, but the benefits developers and administrators
gain by having easy access to the runtime environment and
it’s surrounding tooling outweigh these concern by far. One
example is the parametrization of the VM which makes it
possible to modify for example the size and layout of the
heap or the algorithm used for the garbage collection pol-
icy. The IBM J9 JVM, which is used as the reference JVM
throughout this article, has about 250 different parameters.
Deciding which parameters to choose and what value to set
them to for a given application requires intricate knowledge
about both the JVM’s internals as well as the application it-
self. This article presents a toolkit that enables users dealing
with Java applications to rapidly prototype different VM pa-
rameters for an instant performance improvement without
having to change programming code or other deployment
details.

2. BACKGROUND
2.1 Garbage Collection In A Nutshell

Generally, a runtime providing a garbage collection service
is composed of two elements. The mutator and the collec-
tor. The mutator is creating the data while the collector is
responsible for cleaning up and guaranteeing available mem-
ory space. The collection can be performed in two ways:

1. Stop-The-World: All mutators have to be stopped and
wait for the collector process(es) to finish before resum-
ing work.

2. Concurrent: The collection itself or steps preparing
the collection can be carried out in parallel to the mu-
tator process.

Stop the World collectors work well with a lot of applications
requiring high throughput as the collection time is mostly
proportionate to the heap size. Stopping the mutator yet
makes them unsuitable for work with systems with low la-
tency requirements. [4]

All collectors independent from their working principle share
two properties: Safeness and Completeness. No objects that
could still be used at a later point are to be removed and
all objects that are not in use anymore will be discarded
eventually [3]. Objects still in use are referred to as alive,
all other objects are considered dead. Alive objects can be
distinguished through the following characteristics [2]:

1. The object is referenced from the stack, a local variable
or a static field.

2. The object is referenced by another live object.

3. The object is referenced by the JVM.

2.2 Garbage Collection Mechanisms
2.2.1 Mark-And-Sweep

The garbage collector walks, starting from a root node, over
the whole heap and marks all visited objects as alive. During
the next step, the heap is traversed again and all non-marked
objects are removed. As a third, optional step the heap can
also be compacted to avoid fragmentation.

2.2.2 Copying

The memory is divided into two spaces, a From and a To
space. After an object in the From space is identified as
alive, it is immediately copied to the To space. Then, the
roles are switched and the old To space becomes the new
From space and vice-versa. Data in the To space is simply
overwritten. This approach avoids memory fragmentation in
an efficient manner as there is no need to keep track of free
memory gaps. Memory gaps with too little space for any
object to fit in are also not possible since new data is writ-
ten in a continuous manner. Constant copying also allows
reordering of closely related objects for cache improvements.

2.2.3 Generational

As most young objects that are freshly created are very likely
to die and objects that already reached a certain age have
a low mortality probability [8], young and old objects are
treated differently. Young objects are allocated in the nurs-
ery space and are only promoted to tenure space after they
reach a sufficient age, i.e. they survived enough gc cycles.
The tenure space needs to be collected less frequently.

148

2.3 IBM J9 JVM Garbage Collection Policies
Currently there are four different garbage collection poli-
cies implemented in the IBM J9 JVM from which the user
can choose. Each of these implementations have a different
working principle and can differ drastically from one an-
other. All of them have been designed with a specific use
case in mind.

2.3.1 Gencon

Uses a generational, partially concurrent, copying garbage
collection algorithm. Most work is carried out concurrently,
only utilizing stop-the-world phases when necessary. A rather
inexpensive partial garbage collection only affecting the young
space (called scavenge run) is carried out very frequently.
Collections of the old space are much less common. The
identification of dead objects can be done concurrently, the
actual removal happens during a stop-the-world global col-
lection including both the old and young space. Gencon is
the default garbage collection policy and well suited for a
wide range of applications.

2.3.2 Balanced

Like gencon, the balanced garbage collector segments the
heap. However, the memory is divided into a lot more
smaller regions, with each region being selfcontained and
individually collected. The choice of which region exactly
is garbage collected is made at the start of each new cycle
and depends on the heap usage pattern of the application.
A copying approach is used, with each free region being a
potential candidate for a To region. It was designed to re-
duce performance drops during garbage collection and even
exceed the average performance. Accepting a lower overall
average performance in exchange for reduced peaks of per-
formance deterioration intends to counter the effect growing
heap sizes have on the garbage collector [5]. Bigger heaps
mean a larger area for the garbage collector to monitor which
results in longer collection pauses.

Similar object, for example objects of the same age are
grouped together. Young objects are grouped together in
eden regions that are collected more frequently. A halt of
all mutator threads is generally required for a collection to
take place. Marking of objects however can happen concur-
rently.

2.3.3 opthruput

This policy uses a nonsegmented heap layout and applies a
mark-sweep garbage collection algorithm with an additional
compact step if needed. No concurrent operations are taking
place, allowing all computational power to be used by the
mutator threads. This results in increased throughput for
non collection phases. Longer garbage collection pauses are
the result, especially for larger heap sizes.

2.3.4 optavgpause

Very similar to optthruput in its working mechanisms. While
optthruput relies solely on a stop-the-world approach for
its collections, optavgpause performs selected tasks concur-
rently. The overly long halts of the optthruput algorithm
are reduced by this. During execution, GC threads con-
currently mark dead objects. The following stop the world

phase now takes significantly less time. While overall per-
formance might be worse than with other policies, this pol-
icy is especially useful when the application context requires
constant throughput. Pause times rarely exceed 0.2 millisec-
onds. For comparison: Gencon pauses take between one and
ten milliseconds, balanced halts the execution regularly for
even more than ten milliseconds.

3. APPROACH

To get a set of recommended parameters for the JVM, a
rule based approach is used. The ruleset is made up of mul-
tiple rules. A rule provides a mapping between observed
behaviour and proposed action. A single rule consists of
two parts: condition and an action. The condition describes
a possible performance problem an application exhibits as
well as identifiers or indicators that can be used to activate
this rule. The action defines which parameters or combina-
tion of parameters should be modified or added in order to
avoid those kinds of problems. For parameters that require
a quantitative part like the exact size of the heapspace, the
algorithm to derive this number has to be part of the action
as well. The data required to run these rules against is cre-
ated by the VM itself in the form of a verbose logfile. This
approach can be broken down into these three steps:

1. Execute the application with enabled logging. The J9
-verbose parameter family provides information about
garbage collection, the heap constitution, class load-
ing, etc.

2. Analyze the generated logfile and infer runtime pat-
terns and possible problems.

3. Change the parameters accordingly and rerun the ap-
plication. Measure the change of execution time. Re-
peat this process until desired results are reached.

The iterative aspect of this approach becomes important as
the characteristics displayed by the JVM might change sig-
nificantly with modified settings. For example, switching to
a different garbage collection policy brings with it a change
in the heap layout and how data allocation and cleanup is
handled. More or less heap space is now required. A re-
peated run might be required to identify the exact extent.
Provided that the application does not require any user in-
put during its execution, this process can be completely au-
tomated. The application’s execution is started through a
toolkit which uses the default parameters with logging en-
abled. After the application terminated, this logfile is sent
through a streaming parser extracting relevant characteris-
tics and stores them for later retrieval. In the next step, the
rules are applied. Each rule queries against the characteris-
tics to determine whether the activation criteria have been
met. If this is the case, the parameter is specified based
on the characteristics and added to the parameter set. The
application is then run again with the changed parameters.
The process is stopped after all relevant parameters have
been tried out. If two conflicting rules are triggered, both
resulting parameters are added to the parameter set for later
evaluation.

149

4. RULES

This section gives examples for the rules an application is
tested for when it is run.

4.1 Choosing the Right Garbage Collection Pol-
icy

Given the right environment and testing conditions, each
garbage policy is able to outperform the others. There is
not a single best policy. Which policy to choose depends on
the type of application and what the requirements regarding
the performance are. A description of the use cases suited
to each policy as well as indicators suggesting a switch to a
certain policy are found below.

gencon: The gencon GC policy is suitable for a wide array
of different applications for which it provides a good perfor-
mance. A comparison of 52 benchmark results consisting of
the SPECjvm2008 [7] and the dacapo [1] benchmark suite
shows, that for varying heapsizes gencon always yielded the
most instances of gencon outperforming competing GC poli-
cies. The gencon policy should be used for first iterations if
the runtime behavior is not yet known.

balanced: Besides being very well suited for large heapsizes
as each region can be collected separately over the course
of multiple GC cycles, it demonstrates to be effective in the
following cases:

e High average collection times can be countered by switch-
ing to the balanced garbage collection policy. Avoiding
them was one of the main goals during the design of
this policy. For the gencon policy, an average global
collection time four times higher than the average time
spent for a partial collection can be taken as an indi-
cator.

e [f the overall time spent in the garbage collection phase
is over four percent, a switch to the balanced policy
might cut this down.

e Unusually long collection times for single collection can
also hint that a switch could be in order. For a seg-
mented policy, a time of more than four seconds spent
in a global collection cycle or more than two seconds
spent on a partial collection can be considered overly
long.

e The region based approach can help when dealing with
a high number of large objects. The balanced pol-
icy can mitigate a high number of allocation failures
caused by large objects. The percentage of allocation
failures caused by objects larger than 200Kb can be
used as an indicator for this: if it is higher than twenty,
the region based approach might be a better fit.

optavgpause and optthruput: It is likely that both of these
policies are outperformed by their counterparts using seg-
mented memories. This becomes even more evident with
increasing heap sizes. While maybe subpar in terms of over-
all performance, they excel when the abilities hinted at by
their names are required: Low average pause times or a high
data throughput with as few interruptions as possible. One

exception are applications with a very low runtime. As both
policies do not require extra time to set up multiple regions
on the heap during startup, applications with a runtime un-
der 2 seconds should be benchmarked with one of these poli-
cies. While the optavgpause policy performs slightly better
on average, the same application run with the optthruput
policy and an adjusted, application specific heap size usually
exceeds these numbers.

Besides raw performance numbers, it is important to con-
sider the context in which the application is deployed. Ini-
tially highly divergent performance for different garbage col-
lection policies converge when additional measures like heap
adjustments are performed. To quantify the degree, how
much the performance for all four policies differs when they
are fully optimized, the coefficient of variations can be ap-
plied. It measures the relative dispersion in a data set. In
a test run with over 40 benchmarks, 90% of the benchmark
scores had a coefficient of variations of less than 0.1. The
results for all four policies are close together. Additional
requirements, like consistently low pause times for soft real-
time applications (optavgpause) can realistically be consid-
ered without sacrificing too much performance.

4.2 Finetuning the GC

To measure the effect a rule has on the performance of an ap-
plication, extensive benchmarking was conducted. All per-
formance benchmarks have been carried out using software
from the SPECjvm and dacapo benchmark suites, 44 in to-
tal. Both benchmarksuites are comprised of open source
applications with realistic, non-trivial workloads that only
have been slightly altered to work as a benchmarking soft-
ware. Every benchmark mimics a real world application that
stresses different subsystems of the Java Virtual Machine.

All results are compared to the performance achieved with
the JVM running default settings. Since some benchmarks
require additional memory, the heap size has been set to
one Gigabyte. All other parameters were left at the default
setting. A speedup refers to the relative difference between
running an application with the optimized parameters com-
pared to running it with the default JVM settings. Not all
rules are equally effective for all different kinds of programs.
For some types the speedup can be drastic while only minor
differences can be noted for other applications that might
rely on different rules. When examining the effectiveness of
these rules, the average change over all benchmark is noted,
as well as the maximum improvement that was achieved.

4.2.1 Adjusting the Heap Size

It seems intuitive that running the JVM with too little mem-
ory is detrimental to performance. The garbage collection
process has to be triggered unnecessarily often slowing down
the whole application. Excessive memory usage can also
lead to an application crash if the amount of memory re-
quired exceeds the available memory. Performance concerns
can also arise in the adverse case with too much heap space
available. Garbage collection is avoided for a longer period
of time until the whole space is filled up. Subsequent col-
lection cycles now take up more time as a larger space has
to be monitored. Setting the heap size to a fixed value in a
way, so that at the moment of maximum heap consumption
the heap is at a 70% occupancy gives the JVM enough space

150

for dynamic allocations without constantly needing to free
memory while staying at an adequate size which can easily
be covered by the garbage collector. Setting the heap to a
fixed size also relives it from the overhead introduced by au-
tomatic memory resizing. Doing this is especially efficient
when using the balanced policy. When compared to the per-
formance using default settings, benchmarks could be sped
up by up to a factor of 2.82 with an average of 1.22.

4.2.2 Region Sizing

Different applications exhibit different rates of object cre-
ation and decay. When using the gencon policy, objects
that are discarded quickly after their creation stay in the
the nursery without ever being moved to the tenure space.
While the JVM has some means of resizing the different seg-
ments, its extent is limited. If factors suggesting a high child
mortality rate are identified, a manual adjustment can im-
prove the performance by making more room for new objects
using formerly unused tenure space memory. There are two
indicators to be found in the logs that point to a nonoptimal
heap partition:

e Nursery Space Occupation: If the nursery’s occupa-
tion is constantly found to be above 70%, increasing its
size becomes necessary. The magnitude of the increase
is determined by the occupation and higher occupan-
cies require a bigger increase. In general, it is desirable
to keep the maximum occupation around 70% again.
Performance improvements of up to 33% were regis-
tered for some benchmarks compared to the default
settings, with the average improvement of 5%.

e Tenuring Rate: The rate of tenuring for a given ap-
plication can be determined through the following for-
mula:

data copied to tenured space

data occupying nursery space

A high value means that large proportions of the nurs-
ery are tenured during a collection. Long nursery and
frequent tenure space collections are the consequence
as many young objects are prematurely tenured. In-
creasing the nursery space shifts the proportion be-
tween young and old area towards a larger young area.
If the computed rate exceeds two percent, an increase
of the nursery space should be considered. A higher
rate requires a bigger increase. A 31% performance in-
crease can be witnessed for selected benchmarks with
an average increase of 3%.

It is recommended to combine both measures, resizing the
heap as well as readjusting the heap segments when using
the generational concurrent policy. When doing so it has to
be kept in mind that both parameters are interdependent
and one can not be changed without affecting the other.
Decreasing the heap size while increasing the nursery can
lead to a situation where one component of the heap is larger
than the whole heap: The JVM will refuse to start. New
values have to be adjusted after all recommendations have
been created to retain the proportions between the different
components.

4.2.3 Setting the Tenure Age

The tenure age specifies the number of collection cycles an
object survives before being promoted to tenure space when
using the gencon policy. This value is normally automati-
cally adjusted by the VM over the runtime of the applica-
tion. It can be set to a fixed value. If the tenure age falls
below three, objects are quickly tenured. Setting the tenure
age to a fixed low value right from the start of the execution
can increase performance as the optimal tenuring strategy is
applied earlier. Values of three and lower indicate, that ob-
jects are generally tenured very quickly after their creation.
Performance improvements of up to 34% were observed af-
ter this rule was applied, an average improvement of 3% was
achieved.

5. AUTOMATING THE PROCESS

Applying these rules manually is error prone and requires
significant effort. By automating this process, there is no
need for the user to interact during the benchmarking pro-
cess. As running an application might take up to several
hours, this frees the user to constantly check results and al-
lows the user to focus on other tasks. It is also well suited for
the iterative approach as multiple settings can be prototyped
successively. It makes it also easier, to run the application
repeatedly with the same settings to mitigate possible vari-
ations in the benchmark score.

The analysis program is written in Python, using libzml as
a parsing library and PySide to display a graphical user in-
terface. To start the analysis, the user just has to select the
executable jar file. The application is then executed multiple
times (can be user defined) with logging enabled. After each
iteration, the logfile generated by the Java JVM is analyzed
to aggregate relevant information. This includes informa-
tion about the number and frequency of different times of
garbage collection, the reasons for the collections and the
memory layout at the time of the garbage collection kickoff.
The execution time is also recorded. The aggregate data
that was created during multiple iterations is now averaged
and compared with the rules. If the datapoint lies within
the area defined by one of the rules, the corresponding pa-
rameter is added to an execution queue where it waits for
benchmarking. If for example the average time for all it-
erations spent in garbage collection is over four percent, a
benchmark run with the balanced garbage collection policy
will be queued. Adjusting balanced garbage collection spe-
cific options will be done once this run has been finished.
To remove duplicates, elements that are to be added to the
queue are compared to the items in a list of past runs. This
avoids running a certain set of parameters multiple times.
After the maximum number of different parameter settings
is reached, the benchmarking process is stopped. In the re-
sult list, the parameters along with the achieved runtime are
displayed. The user can now take the parameters with the
lowest runtime results to either use it for the deployment
of the tested java software or as a starting point for further
manual testing and tweaking.

Benchmarks can measure performance in two different ways:
Constant time and varying workload or a constant workload
with varying execution times. In the first case, the sys-
tem tries to execute as many operations during a given time
frame as possible. The second type measures, how long it

151

takes to perform a predefined number of operations. Since
the execution time is used as a performance indicator, only
benchmarks belonging to the second category can be used
to verify the efficiency of the toolkit. Applications which do
not have a predefined set of work which is handled before
the applications stops have to be adjusted. A server applica-
tion would for example need a light wrapper that emulates
a predefined workload. After this workload is processed,
the application is stopped and the time can be taken. The
benchmarks from the dacapo benchmark suite fulfil this re-
quirement. Instead of the actual benchmark score displayed
by dacapo [1], the runtime was used as a performance metric
which means that set up and tear down times are included
in the measurement. This was necessary as to enable the
automatic assessment of the runtime characteristics. The
results can be found in Table 1. The benchmark scores were
obtained by taking the average results of 25 runs. A maxi-
mum of 15 different parameter sets were tested. These set-
tings can be changed by the user.

benchmark default optimal improvement optimal

avg. avg. reached
avrora 8.339 7.150 16.6% 2
batik 5.566 4.664 19.3% 11
eclipse 131.739 131.739 0% 1
fop 2.753 2.487 10.7% 11
h2 15.997 13.980 14.4% 3
jython 45.924 44.2491 3.8% 4
luindex 5.8512 5.8512 0% 1
lusearch 6.185 2.467 150.7% 3
pmd 7.294 6.880 6.0% 8
sunflow 7.949 5.591 42.2% 3
tomecat 20.782 17.494 18.8% 15
xalan 3.832 3.061 25.2% 7
Average 25.65% 5.75
Table 1: Performance results for automated tun-

ing evaluation. Average results in seconds. Lower
numbers are better. Optimum reached describes the
number of runs until an optimal set was found.

For most benchmarks, the best result could be found dur-
ing the first couple iterations. For three, eleven or more
different parameter sets were applied before arriving at the
setting that would yield the best performance. Parameters
improving the performance can often be found after several
iterations. These results are however often improved upon
during subsequent iterations. Specifying the number of iter-
ations per run and the maximum number of parameter sets
is always a trade off between the time that is spent on the
optimization process and the quality of the results. For most
applications with a stable execution time five to ten itera-
tions and a maximum number of 15 different parameter sets
should suffice to gain satisfying results. If more time can
be allotted to the benchmarking process, the results might
improve significantly.

Figure 1 shows a screenshot of the application after finishing
the benchmarking process for a test application.

AP - hstcomaats; Purseverbes Dptimines
- =
. c 3. 12Macapo 5. 13 bach St P
P] e
8t ettt CioM_Toraee st
B somt

! 1603
M At 4 BB gk barrd

doveage rursese: 3414
e
Avrugn e 198

3 Kruarits:] 1 g Teruradr L e -bgpckcr-ganen

P———
T

Figure 1: Screenshot of the parameter optimizing
tool after running a set of benchmarks for an appli-
cation.

6. FUTURE WORK

Future work might include the creation of an application
specific database which enables the lookup of a set of opti-
mal parameters for a given platform. Given either the name
and version of the application or a list of characteristics ob-
tained during the execution of a Java application, a set of
proven and verified parameters are returned that can then
instantly be applied to the VM without the need of running
the application again.

The toolkit is currently limited to applications for which
the performance can be assessed by measuring the elapsed
runtime. Applications like servers that do not fall into this
category have to be modified so that they can be used. To
avoid having to modify an applications code or writing a
wrapper that might skew the benchmark results, a plugin
like system can be devised that allows for a custom defined
performance assessment. This might for example include
the parsing of the applications output which could then be
translated in specific performance metrics.

Due to the high number of parameters, new rules and combi-
nations of different modifications are very likely to be found.
The process of incorporating them into the already existing
ruleset has been made as easy and straight forward as possi-
ble, so that an all-encompassing set can be created over the
course of continued J9 JVM research. This can also include
the modification of the JVM to extract additional charac-
teristics which can then be fed into the tuning toolkit. One
example is the inclusion of trace events that can record and
make JVM execution details accessible [9].

7. CONCLUSION

152

This article presented a set of rules that can be applied to
all applications running on the IBM J9 JVM, changing its
behavior and improving the performance. By automatically
applying a combination of these rules to a given application,
a user can gain performance improvements without the need
to touch any existing code or change the current deployment

in any other way. Benchmarks showed, that this can result in
performance improvements of 150% for selected applications

without any interaction necessary.

8. REFERENCES

[1] Stephen M. Blackburn, Robin Garner, Chris Hoffmann,
Asjad M. Khang, Kathryn S. McKinley, Rotem
Bentzur, Amer Diwan, Daniel Feinberg, Daniel
Frampton, Samuel Z. Guyer, Martin Hirzel, Antony
Hosking, Maria Jump, Han Lee, J. Eliot B. Moss,
Aashish Phansalkar, Darko Stefanovi¢, Thomas
VanDrunen, Daniel von Dincklage, and Ben
Wiedermann, The dacapo benchmarks: java
benchmarking development and analysis, SIGPLAN
Not. 41 (2006), no. 10, 169-190.

Joshua Engel, Programming for the java virtual
machine, Addison-Wesley Professional, 7 1999.

Daniel John Frampton, An investigation into automatic
dynamic memory management strategies using
compacting collection, (2003).

Georgios Gousios, Vassilios Karakoidas, and Diomidis
Spinellis, Tuning java’s memory manager for high
performance server applications, Proceedings of the 5th
International System Administration and Network
Engineering Conference SANE 06 (Alexios Zavras, ed.),
NLUUG, Stichting SANE, May 2006, pp. 69-83.

IBM, Garbage collection in websphere application server
v8, part 2: Balanced garbage collection as a new option,
http://www.ibm.com/developerworks/websphere/
techjournal/1108_sciampacone/1108_sciampacone.
html, Accessed: 2013-05-30.

IBM, Java technology, ibm style: Garbage collection
policies, http://www.ibm.com/developerworks/java/
library/j-ibmjava2/, Accessed: 2013-02-08.

Standard Performance Evaluation Corporation,
Specjum2008 (java virtual machine benchmark),
http://www.spec.org/jvm2008/, Accessed:
2013-06-010.

David Ungar, Generation scavenging: A non-disruptive
high performance storage reclamation algorithm,
Proceedings of the first ACM SIGSOFT/SIGPLAN
software engineering symposium on Practical software
development environments (New York, NY, USA), SDE
1, ACM, 1984, pp. 157-167.

Y. Wang, G. Johnson, and K. B. Kent, Improving J9
Virtual Machine with LTTng for Efficient and Effective
Tracing, Software: Practice and Experience,
http://dx.doi.org/10.1002/spe.2282, no. 2282. issn
1097-024X.

[2

3

[4

[5]

8

