
End-to-End Delay Bounds for Variable Length Packet
Transmissions under Flow Transformations

Hao Wang and Jens Schmitt
DISCO Lab, University of Kaiserslautern

{wang, jschmitt}@informatik.uni-kl.de

ABSTRACT
A fundamental contribution of network calculus is the con-
volution-form representation of networks which enables tight
end-to-end delay bounds. Recently, this has been extended
to the case where the data flow is subject to transformations
on its way to the destination. Yet, the extension, based on
so-called scaling elements, only applies to a setting of iden-
tically sized data units, e.g., bits. In practice, of course, one
often has to deal with variable-length packets. Therefore,
in this paper, we address this case and propose two novel
methods to derive delay bounds for variable-length packets
subject to flow transformations. One is a relatively direct ex-
tension of existing work and the other one represents a more
detailed treatment of packetization effects. In a numerical
evaluation, we show the clear superiority of the latter one
and also validate the bounds by simulation results.

Categories and Subject Descriptors
C.2.m [Computer-Communication Networks]: Miscel-
laneous; C.4 [Performance of Systems]: Modeling tech-
niques

General Terms
Performance, Theory

Keywords
Variable length packet, demultiplexing, network calculus,
packet scaling element.

1. INTRODUCTION
Network calculus has been established as a promising ap-
proximative approach to queueing theory. Simply speaking,
by using inequalities instead of equalities, it can circum-
vent some long-standing fundamental problems in queueing
theory, especially in networks with non-Poisson arrivals and
multiple nodes. Network calculus was originally conceived
by Cruz [5] in the early 1990s and soon after by Chang [2].
Subsequently, many researchers have contributed to it ([3,

11, 9]). The high modelling power of the network calculus
has been transposed into several important applications for
network engineering problems: traditionally in the Internet’s
Quality of Service proposals IntServ and DiffServ, and more
recently in diverse environments such as for example wire-
less sensor networks [14], switched Ethernets [15], System-
on-Chip (SoC) [1], or even to speed-up of simulations [10].

A key to good performance bounds is the convolution-form
expression of multi-node networks. If we describe the service
provided by a node i as a lower bound process Si(s, t) for
time 0 ≤ s ≤ t, a tandem of n nodes also provides a lower
bound for the service process

S1 ⊗ S2 ⊗ · · · ⊗ Sn ,

where “⊗” denotes the (min,+) convolution defined as S1 ⊗
S2 = inf0≤s≤t{S1(0, s) + S2(s, t)}. As a consequence, the
end-to-end performance analysis can be obtained by apply-
ing a single-node analysis. Yet, this convolution-form has
a limitation: the flows in the network are assumed to be
transported unaltered. However, in many real-world appli-
cations a data flow is often transformed during its transfer;
for instance, some parts are lost, routed to another desti-
nation, or even aggregated with other data. Previous work
in deterministic network calculus has proposed the so-called
data scaling element [7] to model such flow transformation.
A subsequent work then introduced the stochastic scaling el-
ement [4], which represents the network in convolution-form
and provides a flexible means of capturing actual transfor-
mations. The key idea therein is to commute the scaling
element with a dynamic server element recursively in or-
der to obtain a single-node form representation of the net-
work. However, these models have a limitation: they scale
the flow only at the granularity of identical length data units
(bits or packets). This is quite restrictive as many networks
use variable-length packets and information and events like
sending and receiving cannot be observed at the bit-level.
In this paper, we therefore propose a new scaling element
which respects flows as a sequence of (variable-length) pack-
ets rather than just bits. The critical challenge in defining
such a scaling element at the packet-level is that it should
preserve the convolution-form expression of multi-node net-
works. To ease the exposure we focus on an abstract but
widely applicable flow transformation operation: the demul-
tiplexing of packets, i.e. to thin a flow of packets by selecting
only some of them, e.g. due to network operations such as
routing, load balancing, or simply loss of packets.

We are, of course not the first to treat the case of variable-
length packets (though, to the best of our knowledge we are
the first to take this into account under flow transforma-
tions). In particular, the packetizer element [11, 3] has been
introduced in network calculus to deal with flows of variable-
length packets. [12, 8] have extended it to the stochastic set-
tings. [12] models heavy-tailed arrivals with packet distri-
butions. [8] reveals the inherent dependence brought by the
packet process to the arrivals and services. We also use the
packetizer but now in combination with a scaling element in
order to model flow transformations at the packet level. In
previous work of ours [16] we showed a novel model to under-
stand the demultiplexing for first-in-first-out (FIFO) servers
and to compute tighter end-to-end delay bounds. Yet, for
the n-node network to preserve the convolution-form the
computation of the performance measures turned out to be
hard. Therefore, in this paper, we commute the packet-level
scaling element and the dynamic server (as proposed for the
bit level in [4]), in order to provide a tractable end-to-end
delay bound computation.

The rest of this paper is organized as follows. In Section 2,
we recall several fundamental definitions of network calculus
and provide extensions of some of them under the assump-
tion of variable length packets. In Section 3, we present two
methods to compute the end-to-end delay bounds. The first
is a relatively direct extension of [4], whereas the second
provides a more detailed treatment of the packetization of
flows. In Section 4 we compare two methods and compare
them against simulation results. We conclude in Section 5.

2. MODELLING THE DEMULTIPLEXING
OFVARIABLELENGTHPACKETFLOWS

In this section we first recall the definitions of demultiplex-
ing, the scaling element, and the packetizer. Next, we define
the packet scaling element. Further, we discuss alternative
system models when analyzing the end-to-end delay of a
packet. Throughout the paper, the time model is discrete.

In the framework of network calculus, a data flow from a
source to a destination is modelled by an arrival process
A(t), which counts the number of arriving data units (bits)
in time interval (0, t]. The bivariate form is accordingly
A(s, t) := A(t) − A(s). We also denote a(t) = A(t − 1, t),
i.e., the arriving data units in time slot t. We model the flow
departing from a server as the process D(t) with the corre-
sponding definition. These model the flow of bits. For many
networks, the flow of bits is transformed on the way to their
destination. For example, a flow can be expanded by some
extra data or some parts of the flow can be lost. One in-
teresting transformation is the demultiplexing, whereby the
flow is split into multiple sub-flows. For example, if a part
of the original flow is routed to another destination at some
node, then the flow is demultiplexed into two sub-flows, one
for each destination. We denote these as two arrival pro-
cesses A(1)(t), A(2)(t) satisfying

A(t) = A(1)(t) + A(2)(t) ,

for all t ≥ 0. If we describe the splitting operation on the bit-
level as an indicator function 1{“this bit goes to destination (1)”},
which equals to 1 if term true, 0 otherwise, we have that

A(1)(t) =
∑A(t)

i=1 1{“bit i goes to destination (1)”}. Denoting this

indicator function for bit i as Xi, we define the scaling el-
ement as a random process X = (Xi)i≥1 (a more general
definition can be found in [4]). We denote the scaled ar-
rivals as AX(t) and

AX(t) =

A(t)∑
i=1

Xi , ∀t ≥ 0 .

Then we can use this scaling element to model the demul-
tiplexing operation. Clearly, with 1 = (1, 1, . . .) we get

A(2)(t) = A1−X(t). As we assume that the demultiplex-
ing operation happens instantaneously, the scaling element
has no queue.

However, in real-world the bits perhaps belong to differ-
ent (variable length) packets, and transformations happen
on the whole packet instead of each bit. For the demulti-
plexing example, we may simply know the routing proba-
bility of a complete packet to one destination. To model
this (packet-level) demultiplexing operation, we need to ex-
tend the scope of the scaling element. Yet, before we do
that, we first integrate variable length packets into the net-
work calculus framework. We denote the packet lengths as
a sequence of positive integer random variables l1, l2, A
packet process L(n), n ≥ 1 is a cumulation of these r.v.’s,
L(n) = l1 + l2 + · · · + ln, and ln = L(n) − L(n − 1) with
L(0) = 0. A packet flow is modelled using the definition of
packetizer ([3], [11]).

Definition 1 (Packetizer). Given a packet process L(n)
and an arrival process A(t), an L-packetizer is a network ele-
ment expressed by a function PL(·) satisfying for all A(t), t ≥
0

PL (A(t)) = L(Nt) ,

where

Nt = max {m : L(m) ≤ A(t)} . (1)

We say that a flow A(t) is L-packetized if A(t) = PL (A(t))
for any t ≥ 0. So a packet flow is an L-packetized arrival
process. Note, the function PL is not restricted to a real
network element with a queue, it can also be used to parse
a bit flow (e.g., with marks) into packets and not change its
timing. In the rest of this paper, we will use both meanings.

Now we consider the demultiplexing of a packet flow. We
extend the definition of the scaling element.

Definition 2 (Packet Scaling Element). A packet
scaling element consists of an L-packetized arrival process
A(t) =

∑Nt

i=1 li, a packet scaling process X taking non-negative
integer values and a scaled packetized flow defined for all
t ≥ 0 as

AX(t) =

Nt∑
i=1

liXi .

We can use the packet scaling element to model the trans-
formation of the packet flow, specifically, the demultiplexing
case. liXi means li · 1{“packet i goes to destination (1)”}, i.e., de-
multiplexing operates on each packet and Xi equals either
0 or 1.

Figure 1: Network elements: (a) dynamic server,
(b) packetizer, (c) packet scaling element, (d) pack-
etized server.

A packet flow is usually processed or served by a queueing
system before or after being demultiplexed. To analyze the
delay of a packet through this system we distinguish two
models. One is, after being served by each node the output
is always packets, i.e., the bits are packetized by a packetizer
PL. The other is, there is no packetizer after service, yet we
observe from the bit flow the last bit of each packet accord-
ing to a packet process L. In previous work [4] we derive the
end-to-end delay bound for the bit flow under flow transfor-
mation. The second case can be a critical challenge for that
approach (L-modulated scaling process and sampling due to
L). In this paper, we focus on the first case and assume that
the packetization is not changed along the path.

In network calculus, we characterize the queueing system
using a dynamic server ([3]). By convention, we denote it
as S(s, t) for 0 ≤ s ≤ t. Note that it is not the server itself
but only a property of the server. It defines a lower bound
process on the service such that the following convolution
inequality holds for all t ≥ 0.

D(t) ≥ A⊗ S(t) := inf
0≤s≤t

{A(s) + S(s, t)} .

When the inequality holds with equality, we say the dynamic
server is exact. Note that the convolution of two concate-
nated dynamic servers S1⊗S2 is still a dynamic server (con-
cept of convolution-form network). We define a packetized
server as a bit server followed by a packetizer PL, and de-
note the dynamic server of it as SL(s, t). Given the dynamic
server of the bit server S and the packet process L and as-
suming that a maximum packet size lmax exists, we obtain
a possible SL,

SL(s, t) = [S(s, t)− lmax]+ . (2)

The proof follows using a busy time analysis.

We illustrate the network elements in Figure 1. Now we
define the packet delay.

Definition 3 (Packet Delay). A process W (t) is called
packet delay (process), if for all t ≥ 0

W (t) = inf {d ≥ 0 : PL (A(t)) ≤ PL (D(t+ d))} .

Here we assume the service is FIFO. The packet delay is a
virtual delay that would be experienced by a packet which
arrives at time t.

3. END-TO-END DELAY OF A NETWORK
WITH FLOW DEMULTIPLEXING

Figure 2: A network model consisting of packetized
arrivals, services and packet scaling elements.

In this section, we compute the end-to-end packet delay for
networks with multiple demultiplexers. According to previ-
ous work, there are two ways to compute the end-to-end de-
lay: (1) commute service and scaling elements [4], (2) get the
leftover service for the flow of interest if the server uses FIFO
scheduling [16]. In this paper, we use the first, i.e., we re-
peatedly move all the packet scaling elements in front of the
packetized servers and obtain the convolution-form of the
network. Then we calculate the end-to-end delay bounds.
Here, we have two choices: one is to “normalize” the packet
flow as well as the bitwise service with packet size, so that
the observation is directly on each packet irrespective of its
size (→ Section 3.1); the other is to use Definition 3 and de-
rive the delay bound directly through observing the original
bit flow with packetizers (→ Section 3.2). For the packet
flow we assume that the packet lengths li’s are i.i.d. with
lmax < ∞. In fact, this assumption can be justified in many
real-world applications with heterogeneous, large-scale, and
high degree of multiplexing environment.

3.1 Observing the Packet Flow
Consider Figure 2, we lift our observation of the flow directly
from the bit level to the packet level. This means we view
each packet as a single data unit ignoring its size. Then we
re-express the service this packet receives. After doing so we
can derive the end-to-end packet delay bound directly using
the calculation from [4].

Consider the arrivals consist of packets whose arrival times
are defined as the arrival time of the last bit, we can model
these time jumps with a counting process and together with
a packet size distribution, model the arrival process as a

compound process - A(t) =
∑N(t)

i=1 li, where {N(t), t ≥ 0}
is the counting process, i.e., the number of arriving pack-
ets in time t, and li is the i-th packet size. This seems to
be a slightly different description of a packetized flow, be-
cause here we do not assume a packetizer element in the
network. Yet, the packetized process resulting from pack-
etizer is also covered by this definition. Consequently, we
obtain an arrival process of packets - {N(t), t ≥ 0}. We call
this approach “normalization” of the bit flow by the packet
sizes.

Such a sequence of packets will be served by a service ele-
ment described by the bitwise service capacity together with
a packetizer. How much service capacity does a packet re-
ceive? To answer this question is not very hard. For exam-
ple, assume that a packet with length l will be served by a
server with constant service capacity C bits/s, so the service
rate for this packet is C/l packets/s. This is the “normal-
ization” on the service side. The constant capacity server is
transformed into a variable capacity server. We write it as
Snorm(s, t) =

∑t

i=s
c(i) for all 0 ≤ s ≤ t. Here all the c(i)’s

are the time varying capacities of serving a packet at time
i.

In [4], we derive the end-to-end delay bounds for a flow
with identically sized data units. The derivation is based
on moment generating function (MGF, denoted by MX(θ)
for r.v. X and any θ > 0, MX(θ) = E[eθX]) bounds of the
arrivals and the services and expresses a network with flow
transformations in a convolution-form. Therein, the servers
are assumed to have constant MGF bounds. However, to use
the same derivation is quite challenging, because now on one
hand, the servers have variable capacities and to know their
MGF bounds is hard; on the other hand, they are “normal-
ized” by the same packet process and hence dependent of
each other.

To obtain the MGF of the dynamic server we can firstly
express the inter-service time. Then we use the (inverse)
Laplace transform of the convolution of inter-arrival times
and packet size distributions to compute the p.d.f. of the
inter-service time. Thirdly, we use renewal theory to ob-
tain the p.d.f. of the counting process of the service. At
last, the MGF follows by its definition. About the depen-
dency, Hölder inequality might be a solution, but many pa-
rameters are introduced. We may also construct or prove
some negative correlations after we use the Chernoff bound
in Theorem 1 of [4]. All of these approaches lay their fo-
cus on the accuracy of the expressiveness, yet, they lose the
analytical tractability. In this section, we just want to pro-
vide a method to calculate the end-to-end delay for variable-
length packet flows that follows closely the approach in [4]
and then compare it against the more sophisticated method
using the packet scaling element. Assume that the bit-wise
capacity S(t) is offered work-conserving with variant rates
and let S(t) ≥ Ct for any t ≥ 0 such that MGF bound
MS(t)(−θ) ≤ e−θCt for θ > 0, then we can vaguely write
c(i) ≥ C/lx, where lx means either some packet length or
∞. We assume the packet size has a limit, i.e., lx ≤ lmax.
Clearly, c(i) ≥ C/lmax. We obtain a lower bound of this
normalized dynamic server Snorm(s, t) ≥ C

lmax
(t− s). Now,

we represent the dynamic server as a server with the nor-
malized capacity - C/lmax. And this solves the above prob-
lems at the same time. Consider the same network sce-
nario as in Theorem 1. We assume the compound process
as the arrivals instead of using packetizer. We also assume
MSj(t)(−θ) ≤ e−θCjt, j ≥ 1 at each bit server. The end-to-
end delay has the following stochastic bound

Pr(W > d) ≤ Knbd .

We point out, the only difference between this result and
Theorem 1 in [4] is that the MGF bound of each service is

MSnorm
i

(s,t)(−θ) ≤ e−θ
Ci

lmax
(t−s) . (3)

We also point out, when we do the “normalization” to the
service, whether there exists a real packetizer component or
not does not change the packet delay analysis, because only
after the last bit of a packet is served by the bit-wise server,
the service of this packet is considered to be finished, this is
just as if there was a packetizer virtually.

3.2 Observing the Original Bit Flowwith Pack-
etizers

In the previous subsection, we provided an approach to cal-
culate end-to-end delay bounds for variable-lengths packet
flows under flow demultiplexing which observes a flow on

Figure 3: Commutation of packetized service and
packet scaling.

the packet-level rather than the bit level. Now we directly
observe the flow on the bit level as in Figure 2. From
[4] we know when deriving the end-to-end delay bound we
should avoid summing up the delay bounds node-by-node,
but rather use the “pay burst only once”principle. To do so,
we express the network in convolution-form through moving
the scaling elements between two servers to the front. The
challenge now is that the scaling element is not at the bit
level anymore. We provide the following lemma to commute
the service and scaling element at packet-level, which is in-
strumental to the derivation of end-to-end delay bounds.

Lemma 1. (Commutation of Packet Scaling Ele-

ment and Dynamic Server). Consider system (a) and (b)
with packetized arrivals A(t) = PL(A(t)) in Figure 3. We

define TL(s, t) :=
∑Nt

i=Ms+1 liXi as the exact dynamic server

in (b), where A(s) =
∑Ms

i=1 li, A(s) + SL(s, t) =
∑Nt

i=1 li. If
A, S, X, and L are independent, then for all t ≥ 0,

F (t) ≤ EX(t) .

The proof follows by using the definitions of the exact dy-
namic server and TL. See details in [17]. Through this
lemma, we see that there are less departures for the trans-
formed system than in the original system, which ensures
that the delays are higher. The expression of TL looks com-
plicated, but the meaning is clear.

∑Nt

i=Ms+1 li are the pa-
ckets served from time s to t. And because after passing
through a scaling element X, only a scaled part of these
packets is sent to the next server, the service they received
should also be a scaled part of the total service. After re-
cursively using this lemma we get an expression for the net-
work in terms of a scaled arrival process served by a dynamic
server in convolution-form. The arrivals have the form⎛

⎜⎝· · ·
(
AX1

)
X2

. .
.
⎞
⎟⎠

Xk

(t) ,

if there are k packet scaling elements. We denote it as
A(k)(t). The alert reader may note that, for the bit flow,
the concatenation of scaling elements can be naturally for-

mulated as
(
AX1

)X2 (t) =
∑∑A(t)

j=1 X1,j

i=1 X2,i, whereas for
the packet flow, this is not true any more. We point out
that they are just different in appearance but the same in
essence - after each round of scaling we choose a part of
the packets (bits) from the input flow. Therefore, we pro-

vide the delicate expression of A(k)(t), which will be used
in the rest of this section. Assume an L-packetized flow
A(t) = l1 + l2 + · · ·+ lNt , where Nt is given in Eq. (1). We
first denote the packets respectively the number of packets
in the arrivals until time t after each round of scaling as lk,i

respectively m
(k)
t . Clearly for k > 0

m
(0)
t = Nt ,

m
(1)
t =

m
(0)
t∑

i=1

1{X1,i>0} ,

· · ·

m
(k)
t =

m
(k−1)
t∑
i=1

1{Xk,i>0} . (4)

Further we denote A(k)(t) as

AX1(t) = l1X1,1 + · · ·+ lNtX1,Nt

= l1,1 + · · ·+ l
1,m

(1)
t

,(
AX1

)X2

(t) = l1,1X2,1 + · · ·+ l
1,m

(1)
t

X
2,m

(1)
t

= l2,1 + · · ·+ l
2,m

(2)
t

,

· · ·

A(k)(t) = lk,1 + · · ·+ l
k,m

(k)
t

=

m
(k−1)
t∑
i=1

lk−1,iXk,i . (5)

Next, we provide two useful lemmas for deriving the end-to-
end delay bounds. The proofs can also be found in [17].

Lemma 2 (Stationarity Bound). Assume that the pa-
ckets li’s of a packet process L are i.i.d. , the Xi’s of a
packet scaling element X are also i.i.d. , A and B are two
L-packetized arrival processes, then for all s, t, x > 0,

Pr
(
AX(t)−BX(s) ≥ x

)
≤ Pr

(
(A(t)−B(s))X ≥ x

)
.

Lemma 3. (Recursive MGF Bound of Scaled Pro-

cess). Assume that A is an L-packetized process, SL
i is the

packetized server, li’s are i.i.d. with maximal length lmax <
∞, and Xi’s are Markov-Modulated On-Off (MMOO) loss
processes and independent of A and SL

i , if we denote Vn−1(θn)
as

E

[
e
θ
(
···(A(t−s)−SL

1 (s,u1))
X1−···−SL

n−1(un−2,un−1)
)
Xn−1

]
,

then for all 0 ≤ s ≤ u1 ≤ · · · ≤ un−1 ≤ t, and n > 1,

Vn−1(θn) ≤ e−θn−1S
L
n−1(un−2,un−1)Vn−2(θn−1) ,

where θi > 0, 1 ≤ i ≤ n is given in the proof.

We now derive the end-to-end delay bound and show that
it grows in O(n) where n is the number of nodes.

Theorem 1. (End-to-end Delay Bounds in a Packet

Flow Transformation Network). Consider the network
scenario from Figure 2 where an L-packetized arrival process
A(t) = PL(A(t)) traverses a series of stationary and (mu-
tually) independent bit level service elements followed by an
L-packetizer and scaling elements denoted by SL

1 , S
L
2 , . . . , S

L
n

and i.i.d. loss processes X1, X2, . . . , Xn−1, respectively. As-
sume the packet lengths of L - li’s are i.i.d. . Assume the
MGF bounds MA(s,t)(θ) ≤ eθrA(θ)(t−s) and MSk(t)(−θ) ≤

e−θCkt, for k = 1, 2, . . . , n, and some θ > 0. We also

assume that the maximum packet length lmax < ∞. Un-
der a stability condition, to be explicitly given in the proof,
for θi > 0, i = 1, 2, . . . , n, we have the following end-to-end
steady state delay bounds for all d ≥ 0

Pr(W > d) ≤ e(
∑n

i=1 θi+θ1)lmaxKnbd , (6)

where the constants K and b are also given in the proof.
Moreover, the ε-quantiles scale as O(n), for ε > 0.

Proof. First we use Lemma 1 to transform the system
view. To do so, we iteratively commute the packetized server
and the packet scaling element k times. See Figure 4. Since
the output of the transformed system is smaller than or
equal to the original system, the delay bound of the trans-
formed one must be larger than or equal to the delay bound
of the original one, hence, we compute the delay bound of
this transformed system.

Figure 4: Apply Lemma 1 for k times.

Next, fix t, d ≥ 0. For k, s ≥ 0 we define U0(s, u0) = A(s),
for u0 = s, and then recursively

Uk(s, uk) =
(
Uk−1(s, uk−1) + SL

k (uk−1, uk)
)Xk

for k ≥ 1 and uk−1 ≤ uk. We prove the theorem at the first
steps by induction. For k ≥ 1 we assume the following two
statements (S1) and (S2) for the induction:

(S1) Pr(Wk(t) > d) ≤
∑

0≤s≤t

∑
s≤u1≤···≤uk−1≤t+d

Pr
(
A(k−1)(t) > Uk−1(s, uk−1) + SL

k (uk−1, t+ d)
)

,

and for fixed s and uk,

(S2)
(
A(k−1)(s) + TL

k−1 ⊗ SL
k (s, uk)

)
Xk

= inf
s≤u1≤···≤uk

Uk(s, uk) ,

where TL
k is defined recursively as TL

0 (0) = 0, TL
0 (s) = ∞

for all s > 0, and for Ns the number of packets in A(s)

TL
k (s, uk) :=

Nuk∑
i=m

(k−1)
s

lk−1,iXk,i ,

where

m
(k−1)
s∑
i=1

lk−1,i = A(k−1)(s) ,

Nuk∑
i=1

lk−1,i = A(k−1)(s) + TL
k−1 ⊗ SL

k (s, uk) . (7)

First we prove the initial step of the induction, i.e., k = 1.
For statement (S1), we have

Pr(W1(t) > d) = Pr(A(t) > D(t+ d))

≤ Pr
(
A(t) > A⊗ SL

1 (t+ d)
)

≤
∑

0≤s≤t

Pr
(
A(t) > A(s) + SL

1 (s, t+ d)
)

=
∑

0≤s≤t

Pr
(
A(0)(t) > U0(s, u0) + SL

1 (s, t+ d)
)

.

In the first line we used the definition of packet delay. In the
second line we used the definition of dynamic server. And in
the third line we expanded the convolution and used Boole’s
inequality. In turn for statement (S2), we have

(
A(0)(s) + TL

0 ⊗ SL
1 (s, u1)

)X1

=

(
A(s) + inf

s≤x≤u1

{
TL
0 (s, x) + SL

1 (x, u1)
})X1

=
(
A(s) + SL

1 (s, u1)
)
X1

= inf
s≤u1

(
A(s) + SL

1 (s, u1)
)X1

= inf
s≤u1

(
U0(s, u0) + SL

1 (u0, u1)
)X1

= inf
s≤u1

U1(s, u1) .

In the third line we used that TL
0 (0) = 0, TL

0 (s) = ∞. In the
fourth line we rewrote the third line using inf, because s and
u1 are actually fixed. In the fifth line we used the definition
of U0. In the last line we used the recursive definition of Uk.

For the induction we next assume that (S1) and (S2) hold for
k ≥ 1. Then we prove them for k + 1. Using the argument
from the initial step of the induction we can write the end-
to-end delay until the k + 1th node

Pr(Wk+1(t) > d)

≤ Pr

(
A(k)(t) ≥ inf

0≤s≤t+d

{
A(k)(s) + TL

k ⊗ SL
k+1(s, t+ d)

})

≤
∑

0≤s≤t

∑
s≤uk≤t+d

Pr
(
A(k)(t) ≥ A(k)(s) + TL

k (s, uk)

+SL
k+1(uk, t+ d)

)

=
∑

0≤s≤t

∑
s≤uk≤t+d

Pr

(
A(k)(t) ≥

m
(k−1)
s∑
i=1

lk−1,iXk,i +

Nuk∑
i=m

(k−1)
s

lk−1,iXk,i + SL
k+1(uk, t+ d)

)

=
∑

0≤s≤t

∑
s≤uk≤t+d

Pr

(
A(k)(t) ≥

Nuk∑
i=1

lk−1,iXk,i +

SL
k+1(uk, t+ d)

)

=
∑

0≤s≤t

∑
s≤uk≤t+d

Pr
(
A(k)(t) ≥

(
A(k−1)(s) +

TL
k−1 ⊗ SL

k (s, uk)
)
Xk + SL

k+1(uk, t+ d)
)

=
∑

0≤s≤t

∑
s≤uk≤t+d

Pr
(
A(k)(t) ≥ inf

s≤u1≤···≤uk

Uk(s, uk)

+SL
k+1(uk, t+ d)

)
≤

∑
0≤s≤t

∑
s≤u1≤···≤uk≤t+d

Pr
(
A(k)(t) ≥ Uk(s, uk) +

SL
k+1(uk, t+ d)

)
.

In the third line we expanded the convolution and used
Boole’s inequality. In the fourth line we used Eq. (4), (5),
and (7). In the sixth line we used Eq. (7) again. Next we
used the inductive hypothesis for (S2) and Boole’s inequal-
ity in the last two lines, which completes the induction for
(S1).

To prove (S2) for k + 1 we have(
A(k)(s) + TL

k ⊗ SL
k+1(s, uk+1)

)
Xk+1

=

(
A(k)(s) + inf

s≤uk≤uk+1

{
TL
k (s, uk) + SL

k+1(uk, uk+1)
})Xk+1

= inf
s≤uk≤uk+1

(
A(k)(s) + TL

k (s, uk) + SL
k+1(uk, uk+1)

)
Xk+1

= inf
s≤uk≤uk+1

(
m

(k−1)
s∑
i=1

lk−1,iXk,i +

Nuk∑
i=m

(k−1)
s

lk−1,iXk,i

+SL
k+1(uk, uk+1)

)Xk+1

= inf
s≤uk≤uk+1

⎛
⎝Nuk∑

i=1

lk−1,iXk,i + SL
k+1(uk, uk+1)

⎞
⎠

Xk+1

= inf
s≤uk≤uk+1

((
A(k−1)(s) + TL

k−1 ⊗ SL
k (s, uk)

)
Xk

+SL
k+1(uk, uk+1)

)
Xk+1

= inf
s≤uk≤uk+1

(
inf

s≤u1≤···≤uk

Uk(s, uk) + SL
k+1(uk, uk+1)

)Xk+1

= inf
s≤u1≤···≤uk+1

Uk+1(s, uk+1) .

In the sixth line we used Eq. (7). In the seventh line we
used the induction hypothesis. In the last line we used the
definition of Uk.

Next, we use the statement (S1) to compute the end-to-end
delay bound on Wn(t) for k = n. We have

Pr(Wn(t) > d)

≤
∑

0≤s≤t

∑
s≤u1≤···≤un−1≤t+d

Pr

(
A(n−1)(t) >

(
· · ·

(
(A(s) + SL

1 (s, u1))
X1 + SL

2 (u1, u2)
)
X2 + · · ·

+SL
n−1(un−2, un−1)

)
Xn−1

+ SL
n (un−1, t+ d)

)

≤
∑

0≤s≤t

∑
s≤u1≤···≤un−1≤t+d

Pr

((
· · ·

(
(A(t− s)−

SL
1 (s, u1))

X1 − SL
2 (u1, u2)

)
X2 − · · · −

SL
n−1(un−2, un−1)

)Xn−1

> SL
n (un−1, t+ d)

)

≤
∑

0≤s≤t

∑
s≤u1≤···≤un−1≤t+d

e−θnSL
n (un−1,t+d) ·

E

[
e
θn

(
···
(
(A(t−s)−SL

1 (s,u1))
X1−SL

2 (u1,u2)
)
X2

−

···−SL
n−1(un−2,un−1)

)
Xn−1]

≤
∑

0≤s≤t

∑
s≤u1≤···≤un−1≤t+d

e−θnSL
n (un−1,t+d)

e−θn−1S
L
n−1(un−2,un−1) · · · e−θ1S

L
1 (s,u1)eθ1rA(θ1)(s,t) .

In the second line we expanded the recursion in the state-
ment (S1). In the third line we repeatedly applied the sta-
tionarity bound from Lemma 2. In the fourth line we used
Chernoff’s Bound for some θn > 0. In the fifth line we re-
cursively applied Lemma 3. To do so, we let θiRi−1(θi) =
logMl(θi−1), which is already stated in Lemma 3, Ri−1(θi) =
1
θi

logMXi−1(logMl(θi)). Here, all SL
i ’s are packetized dy-

namic servers in the form of Eq. (2). Note that, if we let

b = sup
{
e−θnCn , e−θn−1Cn−1 , . . . , e−θ1C1

}
, (8)

we have

Pr(Wn(t) > d)

≤
∑

0≤s≤t

ed·log be
∑n

i=1 θilmaxe(log b+θ1rA(θ1))(t−s)

·
∑

s≤u1≤···≤un−1≤t+d

1

≤ bde
∑n

i=1 θilmaxKn .

Here we let K =
(1+ d

n)
1+ d

n

(d
n)

d
n

and used log b + θ1rA(θ1) < 0

as the stability condition. Taking t → ∞ proves the result.
We used the same argument as in [6] for the last step of
computation. Finally, the order of growth of the ε-quantiles
for 0 < ε < 1 follows directly as O(n).

4. NUMERICAL EVALUATION
To evaluate the analytical results, we use the following nu-
merical example settings. First, we let the packet sizes
be discrete uniformly distributed i.i.d. r.v.’s, l ∼ U [a, b].

Thus, we know Ml(θ) = eaθ−e(b+1)θ

(b−a+1)(1−eθ)
. Let a = 1, b = 16

for illustration. Clearly, lmax = 16. Next, we use the
Bernoulli process as the scaling process - X ∼ B(p), where
p represents the data through probability, so that we know
R(θ) = 1

θ
log(1 − p + pMl(θ)). Further we assume that all

servers are work-conserving with constant bit rate Ci. Next,
we first compare the delay bounds from Section 3.1 with
those from Section 3.2 (→ Theorem 1) and also validate
them against simulation results. Then we evaluate our main
result from Theorem 1 changing the scaling parameters.

For the first comparison we assume that the arrivals are a
compound process instead of being packetized by a packe-
tizer before being served. Note, our results in Theorem 1 also
imply this case, since the MGF bound of the arrival process
that the theorem requires can be given directly. Without
loss of applicability in real-world, we assume A(t) is a com-
pound Poisson process, so that rA(θ) =

1
θ
λ(Ml(θ)−1). The

average rate of the Poisson process N(t) is normalized to one

1 3 5 7 9
0

20

40

60

80

Number of Scalings

D
e
la

y

Theorem 1
Normalization
Simulation

Figure 5: Delay bounds with Theorem 1, “normal-
ized” flow, and simulation.

data unit (bit) per one time unit, i.e., λ = 1. The number of
the scaling elements varies from 1 to 9, which means maxi-
mal 10 servers. We assume the utilization of the first server
is 0.8, so C1 = 1.25. To choose C2, . . . , C10, we refer to
Eq. (8). Avoiding that some server becomes the bottleneck,
we can let all the terms in Eq. (8) be equal, i.e., θiCi =
θi−1Ci−1, 2 ≤ i ≤ n, where θi’s are implied in Lemma 3.
This is actually a criterion to assign the service capacities
along the path a flow traverses. It must not be so strict,
or in other words, the service capacities in practice may
already be set before we know the other network settings.
So here, for simplicity, we just statically set the capacities as
C2 . . . C10 = [1.15, 1.05, 0.95, 0.85, 0.80, 0.75, 0.70, 0.65, 0.60].
The quantile ε is set to 10−3. We use Omnet++ to do the
simulations. We measure 106 packet delays at the destina-
tion node and use the empirical quantile from these for the
simulation results. This will increase the result accuracy so
that we ignore the confidence intervals.

Figure 5 shows the bounds on the 10−3-quantiles of the de-
lay. The plot shows the O(n) order of growth. We observe
that the results from Theorem 1 are much closer to the simu-
lation results than the results from analyzing the normalized
flow. The mathematical reason is that, although with both
methods we used the maximum packet size lmax, in The-
orem 1 we used the form of [Ci · t − lmax]+, while for the
normalization we used the form of Ci/lmax · t. Obviously,
the loss in precision caused by the division is higher than
for subtraction. The gap to the simulation results implies
that the tightness still can be improved. Yet, as this work
is the first attempt to model the variable length packet flow
transformation, we focused on the expression of such a net-
work scenario and provided the first insights calculate delay
bounds in this setting. The key to improve on the tightness
will be to make smarter usage of the packet length distribu-
tion, than just resorting to lmax. On the other hand, as you
can also see in [11, 3], it can circumvent several technical
difficulties, otherwise we would have to consider the inher-
ent correlations among arrivals, services and packet scaling
elements, which is, however, as we discussed in previous sec-
tions or in [12, 8], very difficult even in the single node case
without flow transformations. Furthermore, the usage of
Boole’s inequality could be improved by the construction of
a martingale as in [13]. Yet, again this is, so far only possible
for the single node case. So, we leave this for future work.

1 3 5 7 9
0

100

200

300

400

500

Number of Scalings

D
e
la

y

Theorem 1 (p=0.3)
Simulation (p=0.3)
Theorem 1 (p=0.75)
Simulation (p=0.75)

Figure 6: Delay bounds with Theorem 1 and the
simulation.

For the second comparison we slightly change the arrival de-
scription. Frequently we only know the statistical properties
of the bit flow and that the bits are packetized. The result
from Theorem 1 can also deal with this. So we use a bit flow
followed by a packetizer as the arrival for the server. Assume
that the original arrival flow of bits is a Poisson process

Poi(λ). Then we know rA(θ)(s, t) ≤
λ(eθ−1)

θ
(t − s) + lmax.

The other numerical settings we use the same as before.

Figure 6 shows the bounds on the 10−3-quantiles of the delay
under varying scaling parameters. We can see that Theo-
rem 1 increases with the through probability p. That means
if more of the flow is kept during the transformation, the
higher the burstiness at the next server node will become.
Interestingly, the gap between those curves from the theo-
rem is larger than that of the simulation results. The reason
is that we use lmax/C as the extra latency for each packet
after being served by the packetized server, while actually
most packets have a much smaller latency increase. This
treatment enlarges the sensitivity of the results, because the
more the flow passes through, the more tightness we lose.

5. CONCLUSION
In this paper, we extended network calculus to model net-
works with variable length packet flow transformations. The
main contribution is the definition of a scaling element that
works on the packet level (rather than the bit level). This
facilitates a commutation of the service element with the
scaling element on the packet level, and thus preserves the
convolution-form expression of this kind of networks. Based
on this we derived the end-to-end delay bounds. We also
discussed another method, which is a direct extension of a
previous model by normalizing the bit flow and the bit-wise
service with the packet sizes, as if the flow was treated as
a flow with identical data units and the service rate was in
packets/s. We evaluated both methods and validated them
against simulations. We found that the method based on the
new packet scaling element is much closer to the simulation
results than the other one. However, we also point out that
improving the tightness is still a challenge for future work.
We hope to achieve this by finding a more precise expression
for the dynamic server of the packetized service.

6. REFERENCES

[1] S. Chakraborty, S. Kuenzli, L. Thiele, A. Herkersdorf,
and P. Sagmeister. Performance evaluation of network
processor architectures: Combining simulation with
analytical estimation. Computer Networks,
42(5):641–665, April 2003.

[2] C.-S. Chang. Stability, queue length and delay of
deterministic and stochastic queueing networks. IEEE
Transactions on Automatic Control, 39(5):913–931,
May 1994.

[3] C.-S. Chang. Performance Guarantees in
Communication Networks. Springer-Verlag, 2000.

[4] F. Ciucu, J. Schmitt, and H. Wang. On expressing
networks with flow transformation in
convolution-form. In Proceedings of IEEE INFOCOM,
pages 1979–1987, April 2011.

[5] R. L. Cruz. A calculus for network delay, Part I and
II. IEEE Transactions on Information Theory,
37(1):114–141, January 1991.

[6] M. Fidler. An end-to-end probabilistic network
calculus with moment generating functions. In
Proceedings of IEEE IWQoS, pages 261–270, June
2006.

[7] M. Fidler and J. Schmitt. On the way to a distributed
systems calculus: An end-to-end network calculus
with data scaling. In Proceedings of ACM
SIGMETRICS/Performance, pages 287–298, 2006.

[8] Y. Jiang. Stochastic service curve and delay bound
analysis: A single node case. In Proceedings of the
25th International Teletraffic Congress (ITC 25),
September 2013.

[9] Y. Jiang and Y. Liu. Stochastic Network Calculus.
Springer-Verlag, 2008.

[10] H. Kim and J. C. Hou. Network calculus based
simulation: theorems, implementation, and evaluation.
In Proceedings of IEEE INFOCOM, March 2004.

[11] J.-Y. Le Boudec and P. Thiran. Network Calculus A
Theory of Deterministic Queuing Systems for the
Internet. Number 2050 in Lecture Notes in Computer
Science. Springer-Verlag, 2001.

[12] J. Liebeherr, A. Burchard, and F. Ciucu. Delay
bounds in communication networks with heavy-tailed
and self-similar traffic. IEEE Transactions on
Information Theory, 58(2):1010–1024, February 2012.

[13] F. Poloczek and F. Ciucu. Scheduling analysis with
martingales. Performance Evaluation, 79:56–72,
September 2014.

[14] J. Schmitt and U. Roedig. Sensor network calculus - a
framework for worst case analysis. In Proceedings of
IEEE DCOSS, pages 141–154, June 2005.

[15] T. Skeie, S. Johannessen, and O. Holmeide. Timeliness
of real-time IP communication in switched industrial
ethernet networks. IEEE Transactions on Industrial
Informatics, 2(1):25–39, February 2006.

[16] H. Wang, F. Ciucu, and J. Schmitt. A leftover service
curve approach to analyze demultiplexing in queueing
networks. In Proceedings of VALUETOOLS, pages
168–177, October 2012.

[17] H. Wang and J. Schmitt. Delay bounds calculus for
variable length packet transmissions under flow
transformations. Technical Report 390/14, University
of Kaiserslautern, Germany, November 2014.

