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ABSTRACT
We address the transient analysis of networks of queues with expo-
nential service times. Such networks can easily have such a huge
state space that their exact transient analysis is unfeasible.

In this paper we propose an approximate transient analysis tech-
nique based on decomposing the queues of the network using a
compact and approximate representation of the departure process
of each queue. Namely, we apply time-inhomogeneous Markov ar-
rival processes (IMAP) to describe the stream of clients leaving the
queues. By doing so, the overall approximate model of the network
is a time-inhomogeneous continuous time Markov chain (ICTMC)
with significantly less number of states than there are in the original
Markov chain.

The proposed construction of the output IMAP of a queue is based
on its transient state probabilities. We illustrate the approach first
on a single M/M/1 queue and analyze the goodness of fitting of
the departure process by numerical examples. Then we extend the
approach to networks of queues and evaluate the precision of the
resulting technique on several simple numerical examples by com-
paring the exact and the approximate transient probabilities of the
queues.

Keywords
Queuing networks; Markovian arrival processes; transient analysis;
approximate analysis.

1. INTRODUCTION
Queuing networks (QN) are employed in many application areas
such as computer and telecommunications networks, manufactur-
ing systems, transport, logistics or even systems biology. Most of
the research regarding QNs has been pursued to study how the sys-
tem behaves on the long run, i.e., steady state solution techniques
have been seeked for. It is known, however, that steady state mea-
sures can be insufficient to describe even a single queue. In [19],
the author shows for GI/M/1 queues that systems with equal equi-
librium queue-length distribution can have very different second or-

der performance indices, such as, variance of the length of the busy
period. For what concerns QNs, [16] reveals that equilibrium traf-
fic streams in Jackson networks with loops are not Poisson which
means that, even if the steady state distribution is in product form,
it is not sufficient to characterize the traffic in the network. More-
over, a common trait of modern systems is that they are frequently
reconfigured (number of servers changes and new services are in-
troduced) and they operate in a non-stationary environment (there
are daily and seasonal oscillations and extraordinary events, like the
world cup). These frequent changes, together with the complexity
of the system, can be such that the system never reaches steady
state. Consequently, in order to assess the design of the system and
the decisions during operation, one must study also the transient
phase.

In this paper we deal with QNs in which both the arrival of the
clients and the service in the queues are time-homogeneous Markov
processes. Consequently, the overall behavior can be described by
a time-homogeneous continuous time Markov chains (CTMC). In
theory, transient analysis of CTMCs can be carried out efficiently,
for example, by randomization [18]. In practice, however, the num-
ber of states can be so huge that a general exact analysis technique
is not possible to apply. In some cases, even if the state space is
large, special characteristics can be exploited to carry out an ex-
act analysis. Such situations are limited in practice to networks of
infinite server queues [4, 14]. Consequently, we most often must
settle for an approximate solution. Among the approximate ap-
proaches we have moment closure techniques [15] which provide
approximate moments of the system and fluid approximations [6].
Methods based on aggregation can also be developed, see, for ex-
ample, [3]. There are fewer techniques that maintain the original
state space of the model and, as a consequence, allow to calculate
distributions and not only moments. In [7] an iterative method is
suggested to solve the time-dependent Kolmogorov equations of
the model but this approach suffers from the state space explosion
problem. Memory efficient approaches have been proposed based
on assuming that the transient probabilities are in a special form,
like product form [1], partial product form [20], or quasi product
form [2].

The method we propose in this paper is based on decomposing
the queues of the network and representing the departure process
of each queue by a time-inhomogeneous Markov arrival process
(IMAP). Markov arrival processes (MAP) were introduced in [17]
and several steady state solution techniques based on matrix ana-
lytic methods have been proposed to study single queues [12] or
networks of queues in an approximate manner [9–11]. Transient
analysis is tackled only in a few papers, see [8] as an example.



The paper is organized as follows. Section 2 describes the class
of QNs we consider. In Section 3 we introduce IMAPs. Section 4
provides the main idea of the paper: we propose to approximate
the departure process of an M/M/1 queue by IMAPs. In this sec-
tion we also evaluate the goodness of fitting of the departure pro-
cess by some numerical examples. In Section 5 the technique is
extended to QNs. Numerical examples are provided in Section 6
and conclusions and future work are drawn in Section 7.

2. CONSIDERED QN CLASS
We consider an open network of M queues. The maximum num-
ber of jobs at queue i is Li including the job under service with
Li ∈ N ∪ {∞}, i.e., each buffer is either finite or infinite. Clients
that arrive to a full buffer are lost. Service times are exponentially
distributed and the service rate of queue i when there are x clients
at the queue is denoted by μi(x). Routing probabilities are given
by rij with 0 ≤ i, j ≤ M where 0 refers to the outside world
and are such that every client can reach every queue and eventually
leaves the system. For sake of simplicity we assume rii = 0 but the
extension to rii �= 0 is straightforward. The overall arrival rate is
denoted by λ and the arrivals are directed to the queues according
to the probabilities r0i with 1 ≤ i ≤ M .

A state of the system is described by an M -dimensional vector
x = |x1, ..., xM | where xi denotes the number of jobs at station
i. The probability that the system is in state x at time t is denoted
by π(x, t).

The process is a time-homogeneous continuous time Markov chain
(CTMC) whose state transition intensities are

qx,x′ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

λr0i
if x′ = x+ ei ∧ xi < Li

μi(xi)rij
if x′ = x− ei + ej ∧ xj < Lj

μi(xi)
(
ri0 +

∑M
k=1 rikI(xk = Lk)

)

if x′ = x− ei

(1)

where ei denotes the M -dimensional vector whose single non-zero
entry is 1 in position i and I(•) denotes the indicator function.
In (1) the first option describes arrivals from outside, the second
option deals with transfers from one queue to another, and the third
option captures departures from the system and loss of costumers
because of full queues.

The transient probabilities satisfy a set of ordinary differential equa-
tions (ODE)

dπ(t)

dt
= π(t)Q (2)

where π(t) is the vector of the transient probabilities and Q is the
infinitesimal generator of the CTMC. Given also the initial condi-
tion of the process, π(0) = π0, the transient probabilities can be
obtained by randomization, see, e.g., [18]. Randomization can be
applied to models up to about 108 states which can be easily ex-
ceeded by QNs.

In this paper we propose a method to approximate π(t) based on
a time-inhomogeneous continuous time Markov chain (ICTMC)
whose state space is much smaller than that of the original model.
This means that in (2) the infinitesimal generator Q becomes time
dependent. More precisely, we will apply an infinitesimal gener-
ator that depends on the transient probabilities itself, i.e., we will

have differential equations of the form

dπ(t)

dt
= π(t)Q(π(t)) (3)

A model described by such system of differential equations can be
solved up to about 105 states.

3. TIME-INHOMOGENEOUS MAPS
A Markov arrival process (MAP), introduced in [17], is a counting
process that can be used to model the arrivals of jobs to a system. In
a MAP the arrivals are modulated by a background Markov chain.
A state transition in the background Markov chain generates an
arrival with a given probability. In addition, during a sojourn in
a state of the Markov chain, arrivals are generated according to a
Poisson process whose intensity is state dependent. In this paper we
consider continuous time MAPs and give only a brief introduction
to them. A detailed description and the characteristics of MAPs
can be found in [12].

An n-state MAP is usually defined by two n×n matrices: the first,
denoted by D0, describes the so-called hidden transitions, i.e., pro-
vides the rates of those transitions that do not bring an arrival; the
second, D1, describes the transitions with an arrival event. Further-
more, the diagonal entries of D1 give the intensities of the Poisson
processes that are associated with the states and the diagonal en-
tries of D0 are determined in such a way that D0 +D1 is a proper
CTMC infinitesimal generator.

Several arrival processes are special cases of MAPs. The Poisson
process is a one state MAP. The Markov modulated Poisson process
is a MAP whose D1 matrix is diagonal. A renewal process whose
inter-event times are of phase type is a MAP whose D1 matrix is
the dyadic product of two vectors.

The counting process associated with a MAP is an infinite state
CTMC whose infinitesimal generator is in the following block form

∣∣∣∣∣∣∣∣∣

D0 D1 0 0 . . .
0 D0 D1 0 . . .
0 0 D0 D1 . . .
...

...
. . .

. . .
. . .

∣∣∣∣∣∣∣∣∣

Describing traffic streams by MAPs is advantageous because if the
rest of the model is also Markov then the whole model is a Markov
chain and the solution techniques developed for Markov chains can
be applied [18]. Moreover, in the context of queuing systems many
efficient matrix analytic methods have been developed to study the
steady state behavior [12].

In this paper we use a natural extension of MAPs, namely, we apply
time-inhomogeneous MAPs (IMAP). Accordingly, the two matri-
ces that describe the process are not constant but time dependent,
i.e., we have D0(t) and D1(t). For every time point t the matri-
ces D0(t) and D1(t) must be proper MAP descriptors and the sum
D0(t) + D1(t) a proper infinitesimal generator matrix. It is clear
thus that an IMAP is modulated by a background ICTMC. As for
the infinitesimal generator of the associated counting process, it has



the same structure as before but with time dependent ingredients:
∣∣∣∣∣∣∣∣∣

D0(t) D1(t) 0 0 . . .
0 D0(t) D1(t) 0 . . .
0 0 D0(t) D1(t) . . .
...

...
. . .

. . .
. . .

∣∣∣∣∣∣∣∣∣

Very few papers in the literature address IMAPs. In [5] the time in-
homogeneous BMAP/G/∞ queue is considered. In [13] a conver-
gence result that relates IMAPs to Poisson processes is presented.
To the best of our knowledge our paper is the first one that proposes
to use IMAPs to the approximation of time homogeneous Markov
QNs with large state space.

4. APPROXIMATING M/M/1 OUTPUT BY
IMAPS

In this section we present a simple approach to approximate the out-
put process of an M/M/1 queue by an n-state IMAP. The approach
is state-based in the sense that it is characterized by a partitioning
of the states of the M/M/1 queue, i.e., each state of the approximat-
ing IMAP corresponds to one or more states of the original M/M/1
queue. The set of states of the M/M/1 queue to which state i of
the IMAP corresponds will be denoted by ci with 0 ≤ i ≤ n − 1
where we start indexing from 0 because state 0 of the IMAP will
often correspond to the empty queue. For example, if n = 2 and
c0 = {0} and c1 = {1, 2, 3, ...} then one state of the IMAP corre-
sponds to the empty queue while the other corresponds to the states
in which the server is busy. We assume that the arrival rate to the
queue is λ and the service rate is μ. The extension to state depen-
dent intensities is straightforward.

Denoting by π(i, t) the transient probabilities of the M/M/1 queue
with i = 0, 1, 2, ... and by π′(j, t) the transient probabilities of
the background ICTMC of the IMAP with 0 ≤ j ≤ n − 1, the
proposed approximation will be such that

π′(j, t) =
∑
i∈cj

π(i, t) (4)

i.e., the transient probability of a state of the IMAP is the sum of
the transient probabilities of the corresponding states in the M/M/1
model.

In order to define the proposed IMAP approximation it is conve-
nient to use the following conditional probabilities

ρi,j(t) =
π(j, t)∑

k∈ci
π(k, t)

with 0 ≤ i ≤ n− 1, j ∈ ci (5)

i.e., the probability of having j clients in the M/M/1 queue given
that the state is one of those contained in ci.

The n-state approximating IMAP is defined then as follows. A
non-diagonal entry of D0(t) in position (i, j) accumulates those
transitions of the M/M/1 queue that goes from a state in ci to a
state in cj and corresponds to an arrival to the queue (i.e., does not
generate a departure):

(D0(t))(i,j) = λ
∑
k∈ci

∑
l∈cj∧l=k+1

ρi,k(t)

with 0 ≤ i, j ≤ n− 1∧ i �= j. An entry of D1(t) in position (i, j)
accumulates those transitions of the M/M/1 queue that goes from a

λ

μ

μρ2,2(t)

λ λ λ

μ μ μ
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j=3

ρ2,j(t)

Figure 1: M/M/1 queue and a possible IMAP approximation
of its output. The M/M/1 queue is depicted by solid lines and
the IMAP by dashed ones. The thicker arcs represent those
transitions of the IMAP that generates an event.

state in ci to a state in cj and corresponds to a departure from the
queue:

(D1(t))(i,j) = μ
∑
k∈ci

∑
l∈cj∧l=k−1

ρi,k(t)

with 0 ≤ i, j ≤ n − 1. The diagonal entries are defined in such a
way that D0(t) +D1(t) is a proper infinitesimal generator, i.e.,

(D0(t))(i,i) = −
⎛
⎝∑

j,j �=i

(D0(t))(i,j) +
∑
j

(D1(t))(i,j)

⎞
⎠

By comparing the ODEs of the transient probabilities of the origi-
nal M/M/1 queue and those of the background ICTMC of the above
defined IMAP, it is easy to verify that the relation given in (5) holds.
By construction the IMAP captures also the mean exactly, i.e., the
mean number of arrivals generated by the IMAP in any time in-
terval [t1, t2] is equal to the mean number of departures from the
M/M/1 queue in the same interval. Moreover, since the output pro-
cess of the M/M/1 queue tends to a Poisson process, as time tends to
infinity the IMAP captures exactly the output process of the M/M/1
queue.

For example, if we have n = 3 and c0 = {0}, c1 = {1} and
c2 = {2, 3, 4, ...}, the above results in

D0(t) =

∣∣∣∣∣∣
−λ λ 0
0 −λ− μ λ
0 0 −μ

∣∣∣∣∣∣
and

D1(t) =

∣∣∣∣∣∣

0 0 0
μ 0 0

0 μ π(2,t)∑∞
i=2 π(i,t)

μ
∑∞

j=3
π(j,t)∑∞

i=2 π(i,t)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
0 0 0
μ 0 0
0 μ ρ2,2(t) μ

∑∞
j=3 ρ2,j(t)

∣∣∣∣∣∣
A visual representation of the relation of the M/M/1 queue and the
IMAP approximating its output is depicted in Figure 1.

In the rest of the section we provide numerical experiments to study
the goodness of fit of the M/M/1 output process by various IMAP
processes under various conditions. Since the mean is exact, we
concentrate on the variance and the third central moment of the
number of departures. More precisely, we plot

E
[
(E [X(t)]−X(t))2

]
t

and
E
[
(E [X(t)]−X(t))3

]
t
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Figure 2: Variance (first plot), relative error of variance (second), third central moment (third) and relative error of the third central
moment (fourth) with λ = 1, μ = 5 and initially empty system.
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Figure 3: Variance (first plot), relative error of variance (second), third central moment (third) and relative error of the third central
moment (fourth) with λ = 1, μ = 5 and with initially one client in the system.

where X(t) is the number of events up to time t. Thanks to the
division by t these quantities tend to a constant value as t tends to
infinity.

We consider first the case λ = 1, μ = 5 with system initially
empty. Different IMAP approximations will be used. The 1-state
approximation, which corresponds to a time-inhomogeneous Pois-
son process, is formally described by n = 1 and c0 = {0, 1, 2, ...}.
For an n-state IMAP we used the following partitioning of the
states of the M/M/1 queue: c0 = {0}, c1 = {1}, ..., cn−1 =
{n − 1, n, n + 1, ...}. The goodness of fit of the variance and the
third central moment is shown in Figure 2 where we plotted both
the absolute values and the associated relative errors. As second
example we consider the same system but with a client initially in
the queue. The goodness of fit is illustrated on Figure 3. In this case
more states are needed to capture the original departure process ac-
curately. Starting with even more clients in the queue (the results
are depicted for ten clients initially in the system in Figure 4) even
more states are needed to obtain satisfactory fitting. This is due to
the fact that the approximation is better when the initial states and
its neighboring states are represented one-to-one in the IMAP. Our
last numerical example in this section is with λ = 1, μ = 1.5 and
with system initially empty. The results are depicted in Figure 5.
In this case 10 states are needed to capture precisely the variance
of the number of departures and not even 10 states are enough to
capture completely the third moment. The reason is that the heavier
the load the queue receives the longer it takes for its output process
to smooth out.

In the following section we propose an approximate solution tech-
nique for QNs in which the departure of the clients from the queues
are approximated by IMAPs and the whole system is described in
the form given in (3).

5. APPROXIMATE ANALYSIS OF QNS BY
IMAP BASED DECOMPOSITION

We consider a QN as described in Section 2. The approximate tran-
sient solution we propose is based on approximating the departure

process of each queue by an IMAP. The number of states of the
IMAP approximating the output of queue i will be denoted by ni;
the matrices that describe the output IMAP of queue i by Di0(t)
and Di1(t). As before the states of the output IMAPs will be in-
dexed starting from 0. State j of the output IMAP of queue i will
correspond to have j clients in queue i if j < ni − 1 and it will
correspond to have j or more clients in the queue when j = ni−1.
A more general partitioning is also straightforward to implement
but it would lead to an excessively cumbersome notation. We will
also use the notation ki = ni − 1 in order to refer to the last state
of the ith output IMAP more easily.

The set of indices of those output IMAPs from which the ith queue
receives clients is di = {j|1 ≤ j ≤ M ∧ rji �= 0}. The input of
queue i is the superposition of the IMAPs with indices in di and the
arrival stream from the outside. Accordingly, the input of queue i
is described by an input IMAP with mi =

∏
j∈di

nj states. The
matrices that describe the input IMAP of queue i will be denoted by
Ei0(t) and Ei1(t). The states of the input IMAPs will be indexed
starting from 1. The entries of Ei0(t) and Ei1(t) are determined
based on the output IMAPs of the queues in di. The entries of
Ei1(t) contains the intensities of those events when a job leaves
one of the queues in di and is routed to queue i. The entries of
Ei0(t) contains instead the intensities of two kinds of events: first,
those events when a job leaves a queue in di but it is not routed
to queue i; second, those events that bring a client to one of the
queues in di and changes the state of its output IMAP.

The probability that queue i contains x clients and its input IMAP
is in state y at time t will be denoted by πi(x, y, t) with 1 ≤ i ≤
M, 0 ≤ x ≤ Li and 1 ≤ y ≤ mi. The quantity

∑mi
y=1 πi(x, y, t)

will be used to approximate the probability of having x clients in
queue i at time t. We define also the conditional probability

σi(a, b, t) =

∑mi
y=1 πi(a, y, t)∑Li

x=b

∑m1
y=1 πi(x, y, t)

with b ≤ a, i.e., the probability that there are a clients in queue i
given that the number of clients in queue i is at least b.
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Figure 4: Variance (first plot), relative error of variance (second), third central moment (third) and relative error of the third central
moment (fourth) with λ = 1, μ = 5 and with initially ten client in the system. The peaks in the last plot are due to the fact that the
third central moment changes sign twice.
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Figure 5: Variance (first plot), relative error of variance (second), third central moment (third) and relative error of the third central
moment (fourth) with λ = 1, μ = 1.5 and with initially empty system.

The intensities that describe the departures from queue i according
to its IMAP approximation are collected in matrices of size ni×ni

denoted by Di1(t). The (u, v) entry of Di1(t) is given by

(Di1(t))(u,v) = (6)

⎧⎪⎪⎨
⎪⎪⎩

μi(u) if 1 ≤ u < ki ∧ v = u− 1
μi(u)σi(u, u, t) if u = ki ∧ v = u− 1∑Li

j=k1+1 μi(j)σi(j, u, t) if u = ki ∧ v = u

0 otherwise

with 0 ≤ u, v ≤ ki.

Having the matrices Di1(t), 1 ≤ i ≤ M, the Ej1(t) matrix of
the input IMAP of queue j can be defined considering the routing
probabilities and by superposing the appropriate output IMAPs and
the arrivals from the outside. We have

Ej1(t) =

⎛
⎝⊕

i∈dj

Di1(t)ri,j

⎞
⎠⊕ (λr0,j) . (7)

where ⊕ denotes the Kronecker sum operator which provides su-
perposition of the arrival processes.

The off-diagonal entries of the matrices Di0(t), 1 ≤ i ≤ M pro-
vide the intensities of those transitions of the output IMAPs that
do not generate an event. These transition correspond to arrivals
to queue i. Thus, their intensities can be derived by considering
Ei1(t) of the arrival IMAP of queue i, the arrival from the outside
and the current state probabilities of queue i. We have

(Di0(t))(u,v) = (8)

⎧⎪⎪⎨
⎪⎪⎩

∑mi
y=1 πi(u,y,t)

∑mi
z=1(Ei1(t))y,z

∑mi
y=1 πi(u,y,t)

+ λr0i if 0 ≤ u < ki ∧
v = u+ 1

0 otherwise

with 0 ≤ u, v ≤ ki and u �= v. The diagonal entries of Di0(t) are
determined simply based on the fact that Di0(t) +Di1(t) must be
a proper CTMC infinitesimal generator.

Having the matrices Di0(t), 1 ≤ i ≤ M, the Ej0(t) matrix of the
input IMAP of queue j is given by

Ej0(t) =

⎛
⎝⊕

i∈dj

Di0(t) +Di1(t)(1− ri,j)

⎞
⎠⊕ (−λr0,j) . (9)

Based on the quantities defined above the approximate transient
analysis can be carried out as follows. Given the current transient
probabilities, the matrices Di1(t), 1 ≤ i ≤ M, are determined by
(6). Then (7) is applied to calculate the matrices Ei1(t). Having
the matrices Ei1(t), the matrices Di0(t) are given by (8). Finally,
the matrices Ei0(t) are obtained by (9). With Ei0(t) and Ei1(t) it
is straightforward to write the ODEs that describe the behavior of
the queues. The resulting set of ODEs is in the form given in (3).

6. NUMERICAL ILLUSTRATION
In this section we illustrate the proposed IMAP based decomposi-
tion technique. The first set of experiments considers two queues in
tandem and we show the error of the measures of the second queue
when an IMAP is used to approximate the departure process of
the first queue. The second considers a slightly more complicated
model representing a web-service. For all the tests, we provide in
figures a comparison between the approximated and the original
behavior of the system showing those measures that characterize
the goodness of the approach.

6.1 Tandem queue
We consider a model of two queues in which jobs arrive to the first
queue with intensity λ and receive service with intensity μ1 and
then go to the second queue where the service intensity is μ2. The
jobs that received service at the second queue leave the system.

We analyze the system with parameters λ = 1, μ1 = 5 and start
the first queue with 10 jobs initially which is the most troublesome
case among those studied in Section 4 (see Figure 4). The second
queue is started empty.
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Figure 6: Probability of having one customer and variance of
the number of customers at the second station as function of
time starting with 10 customers at station 1 with λ = 1, μ1 =
5, μ2 = 5.
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Figure 7: Probability of having one customer and variance of
the number of customers at the second station as function of
time starting with 10 customers at station 1 with λ = 1, μ1 =
5, μ2 = 2.5.

The first test is carried out with μ2 = 5. In Figure 6 we plot the
probability to have one customer at the second station (other state
probabilities are approximated better than this one) and the vari-
ance of the number of customers in the second station. We do not
show the mean number of costumers because it is captured pre-
cisely by all approximations. The results are in line with those
plotted in Figure 4: the approximation is satisfactory when at least
10 states are used to describe the output of the first queue and it
gets better with 12 states.

For the second test we have chosen μ2 = 2.5 and the results are
shown in Figure 7. In this case the approximation is somewhat
worse because the more loaded second queue reveals more the er-
rors of the output approximation of the first queue.

In case of both experiments we assumed that the maximum num-
ber of jobs at the stations is 50, i.e, L1 = L2 = 50. This means
that the original model has 51× 51 = 2601 states. The number of
states in the approximate models is 51 + 51 × n1 where n1 is the
number of states of the output IMAP of the first queue, i.e., with 1-
state approximation we have 102 states while with 12-state approx-
imation 663. Since both the approximate and the original process
have small state space the results have been obtained in terms of
seconds. The randomization of the CTMC required about 5 sec-
onds whereas the approximation required 30 seconds for the largest
IMAP.

6.2 A more complex model
Here we test the approximation on a more general network. The
model, depicted in Figure 8, is composed of four stations and de-
scribes, in an abstract way, the behavior of a web-server as the in-
teraction between two components: a router and a server. Stations
In and Out describe the two channels of the router that connect the

Out

In

Router

Web-service

CPU Disk

Server

rC,O

Figure 8: Queuing network representing a web-service.

server (the computer in charge to serve the requests) to a WLAN.
Station In models the stream from the outside to the server whereas
station Out models the reverse stream. The server itself is modeled
as the interaction between a station that corresponds to the CPU
and a station that represents the Disk of the Server.

The parameters of the model are the following. Requests arrive ac-
cording to a Poisson process with rate 0.35 to station In that serves
them with rate 1. Then the service requests go to station CPU with
probability one where the service rate is 1.5. After service at the
CPU , a request can be sent back to the router (station Out) or ar-
rives to the Disk with the same probability, i.e., rCPU,Out = 0.5.
The disk serves with rate 0.5. When a service at the disk ends the
request returns to the CPU with probability one. The service rate of
station Out is equal to 1. The waiting rooms of the stations contain
at the most 25 requests. Accordingly, the state space consists of
456976 states. We assume that 10 customers are present at station
In at the beginning.

We performed approximations in which the number of states of the
output IMAPs are equal for all stations and they are 1, 5, 10 or 12.
Consequently, the number of ODEs in the approximate models was
104, 936, 3149, 4394, respectively. This means that the state space
is about 100 times smaller than the original one in case of using 12-
state IMAPs. The time required to integrate the ODEs1 was in the
best scenario 1 second and in the worst 57 seconds. Randomization
of the original model took about 2 minutes. This relatively small
gain is due to the modest size of the original model and can be
much larger for more complex models.

Figure 9 and 10 depict the expected number, the variance, and the
probability to have one request at stations Out and CPU as func-
tion of time. Both figures show measures that are characterized by
the presence of a peak. This is consequence of the large number
of requests present in the system initially. In Figure 9 the mean
number of requests is precisely captured with all approximations.
In case of the variance, larger IMAPs are needed to have a pre-
cise approximation. Figure 10, which refers to the queue length of
the CPU , shows similar curves but with somewhat less accuracy
in case of IMAPs with low number of states. In both figures we
depicted the probability of having one request in the queue in or-
der to show that the probability of a state can also be captured in a
satisfactory manner.

In order to show that the proposed method can be applied also to
networks composed of load-dependent stations, we performed the
same test assuming that stations In and Out have four servers and

1The method has been implemented in JAVA using the odeToJava
tool.
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Figure 9: Expected number, variance of number of requests, probability of having one request at the Out station as function of time.
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Figure 10: Expected number, variance of number of requests, probability of having one request at the CPU station as function of
time.
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Figure 11: Expected number and variance of requests, and probability of having one request at the Out station as function of time
using a model composed of load-dependent stations.
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Figure 12: Expected number and variance of requests, and probability of having one request at the CPU station as function of time
using a model composed of load-dependent stations.



the station Disk has two. For all these stations the service rate of
each server is 0.25, meaning that the maximal service rate is equal
to the previous case.

Figure 11 and 12 depict the expected number and the variance of
requests, and the probability of having one request at stations Out
and CPU as function of time. Both figures illustrate that the sys-
tem behaves slightly differently: as for the CPU , we can observe
that the peaks are somewhat lower than before and, for what con-
cerns the Disk, we can notice that the peaks are less marked than in
the previous case when compared to the stationary behavior. Both
figures show that the quality of the approximation is almost insen-
sitive to the change.

7. CONCLUSIONS
In this paper we proposed a technique to approximate the transient
behavior of a queuing network. The technique relies on approxi-
mating the departure process of each queue by an IMAP. The de-
parture process approximation we applied is state-based, i.e., the
states of an output IMAP are related to the states of the correspond-
ing queue. By this description of the departure processes the whole
queuing network can be described by an ICTMC. The advantage is
that the number of states in this ICTMC is much less than the num-
ber of states in the original CTMC. The method was evaluated both
for what concerns the goodness of fitting of the departure process
of a single queue and on simple QNs.

In the future we aim to study non-state-based approximation of out-
put processes, i.e., the possibility of constructing IMAPs that match
some statistical properties of a traffic stream. We also plan to ex-
tend the method to a more general setting in which arrivals from the
outside are according to MAPs and the service process is described
by phase type distributions or MAPs.
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