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ABSTRACT
Input-sensitive profiling is a recent methodology for analyz-
ing how the performance of a routine scales as a function
of the workload size. As increasingly more detailed profiles
are collected by an input-sensitive profiler, the information
conveyed to a user can quickly become overwhelming. In
this paper, we present an interactive graphical tool called
aprof-plot for visualizing performance profiles. Exploit-
ing curve fitting techniques, aprof-plot can estimate the
asymptotic complexity of each routine, pointing the atten-
tion of the programmer to the most critical routines of an
application. A variety of routine-based charts can be auto-
matically generated by our tool, allowing the developer to
analyze the performance scalability of a routine. Several ex-
amples based on real-world applications are discussed, show-
ing how to conduct an effective performance investigation
using aprof-plot.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Measurement Techniques;
H.5.2 [User Interfaces]: Graphical user interfaces (GUI)

General Terms
Performance, Measurement, Visualization.

1. INTRODUCTION
Performance optimization is a critical step during software
development. Programmers make use of profilers to under-
stand the application runtime behavior and to spot perfor-
mance bugs. Traditional profilers help developers find out
how specific portions of code are responsible for resource
consumption, such as memory space and CPU time. Some
recent works have made a step further by addressing the
problem of designing and implementing performance pro-
filers that return, instead of a single number representing
the cost of a portion of code, a function that relates the
cost to the input size (see, e.g., [4,9,21]). These approaches
have been inspired by traditional asymptotic analysis of al-

gorithms, and make it possible to analyze – and sometimes
predict – the behavior of actual software implementations
run on deployed systems and realistic workloads.
This paper is based on the input-sensitive profiling method-
ology described in [4]: this approach is able to automatically
measure how the performance of individual routines scales
as a function of the input size, yielding clues to their growth
rate. From one or more runs of a program, an input-sensitive
profiler collects several performance measurements related
to the runtime behavior of an application and of its rou-
tines. These profile data are stored as text-based files and
can quickly become very large as increasingly more detailed
profiles are collected, making it really hard for a developer to
take benefit of this valuable information. To overcome this
problem, in this paper we present an interactive graphical
viewer for input-sensitive profiles, written in Java and called
aprof-plot. Several routine-based charts can be automati-
cally generated by our tool, allowing the developer to ana-
lyze the performance scalability of a routine and to obtain
useful insights on its workload. Exploiting curve fitting algo-
rithms, aprof-plot automatically estimates the asymptotic
complexity of each routine, pointing the attention of the
programmer to the most critical routines of an application.
Noise reduction techniques and other useful features support
the user towards a more effective performance investigation.
The tool is available at http://code.google.com/p/aprof/.

Related work. Performance profiling has been the subject
of extensive research since the early 70’s. For many years,
analysis of profile data has been performed using command
line tools [10], which provides limited user interaction. To-
day, the importance of visualization tools for evaluating pro-
gram performance has been widely recognized and the ma-
jority of integrated development environments (IDEs) offer
several interactive visualizers for inspecting the runtime be-
havior of an application. VisualVM [19] is a widespread
graphical tool, built on top of the NetBeans IDE platform,
for profiling the running time and memory usage of Java ap-
plications. Several recent works specifically help the user to
understand, find, and eventually fix memory-related prob-
lems in their programs. AllocRay [17] is an animated in-
teractive viewer for memory allocation events which shows
the changes of the memory over time using 2D memory map
plots. dymem [16] builds a directed acyclic graph depicting
group-based object ownership: a compact tree-based rep-
resentation of this graph can help a developer to identify
common memory problems.
KCachegrind [20] is a well-known data visualization tool for
profiles generated by callgrind [20] as well as other open



source profilers. Using KCachegrind, besides analyzing how
the running time has been spent during the execution of a
program, a developer can inspect the call graph and iden-
tify performance bugs due to poor cache utilization. To the
best of our knowledge, the lack of information about the
workload of a routine does not allow these tools to evaluate
how the performance of routines scale as a function of the
workload size.

Paper organization. The remainder of this paper is orga-
nized as follows. In Section 2 we summarize the main ideas
behind the input-sensitive profiling methodology. The de-
sign and the main features of our graphical tool are covered
in Section 3: after discussing the motivation and goals of
aprof-plot, several examples show how our tool can be ef-
fectively leveraged by programmers for performance analysis
purposes. Section 4 concludes the paper, outlining directions
for future work.

2. PROFILING METHODOLOGY
The main idea behind input-sensitive profiling is to aggre-
gate performance measurements for individual routine calls
by the size of the input on which each call operates. Dif-
ferently from the classical analysis of algorithms based on
theoretical cost models, where the input size of a procedure
is a parameter known a priori, a key challenge of an auto-
mated approach is the ability to automatically infer the size
of the data given as input to a function. This can be done
using the read memory size metric introduced in [4]:

Definition 1. The read memory size (rms) of the exe-
cution of a routine f is the number of distinct memory cells
first accessed by f , or by a descendant of f in the call tree,
with a read operation.

The intuition behind this metric is the following. Consider
the first time a memory location � is accessed by a routine
activation f : if this first access is a read operation, then �
contains an input value for f . Conversely, if � is first writ-
ten by f , then later read operations will not contribute to
increase the rms since the value stored in � was produced
by f itself.
Notice that the rms definition, which is based on tracing
low-level memory accesses made by the program, supports
memory dereferencing and pointers in a natural way. How-
ever, the rms metric ignores any communication between
threads and data received via system calls from the OS ker-
nel, failing to accurately characterize the behavior of rou-
tines executed in the context of modern concurrent and in-
teractive applications. A more recent work [6] has extended
the rms metric in order to include dynamic input sources
such as communication between threads and I/O. For the
sake of presentation, in this paper we refer to the original
metric, but any consideration can be naturally applied to
the latter extension.

Input-sensitive profile. Given a metric for estimating
the input size of a routine activation, an input-sensitive
profiler collects several performance measures in order to
evaluate the routine performance scalability. For each rou-
tine f , let Nf = {n1, n2, . . .} be the set of distinct in-
put sizes on which f is called during the execution of a
program. For each ni ∈ Nf , the profiler collects a tuple
〈ni, ci,maxi,mini, sumi, sqi〉, where:

benchmark no. routines profile size (MB)

403.gcc 2551 19.2
445.gobmk 1780 36.5
454.calculix 777 9.7
471.omnetpp 1125 2.1
bodytrack 617 3.1
canneal 631 0.8
facesim 776 0.5
ferret 906 16.4
vips 982 47
352.nab 361 3.4
367.imagick 685 0.3
376.kdtree 223 28

Table 1: Number of routines and profile sizes of sev-
eral benchmarks taken from SPEC CPU2006, PAR-
SEC 2.1, and SPEC OMP2012.

• ci is the number of times the routine is called on input
size ni;

• maxi and mini are the maximum and minimum costs
required by any execution of f on input size ni, re-
spectively;

• sumi and sqi are the sum of the costs required by the
executions of f on input size ni and the sum of the
costs’ squares, respectively.

In principle, the term cost may refer to any performance
metric, e.g., time, number of executed basic blocks, or cache
misses. Since the focus of the input-sensitive profiling method-
ology is on modeling scalability rather than on exact running
times, the results presented in this article are based on basic
block counts, which have several advantages for studying the
asymptotic behavior of a program, as explained in [9]. After
running an application under an input-sensitive profiler, the
programmer gets a text-based profile which contains a dump
of all performance tuples collected for any executed routine.

3. VISUAL MINING OF INPUT-SENSITIVE
PROFILES

As discussed in Section 2, several performance measure-
ments are automatically collected by an input-sensitive pro-
filer: although these data can be aggregated at runtime ac-
cording to several criteria, the resulting profiles may easily
become very large due to the high number of routines typ-
ically executed by real-world applications. Table 1 shows
some profile statistics related to several applications taken
from the SPEC CPU2006 suite [11], the Princeton Applica-
tion Repository for Shared-Memory Computers (PARSEC
2.1) [2], and the SPEC OMP2012 suite [15]. The profiles
have been obtained using the profiler aprof-0.2.1 [1] while
running these applications on their reference workloads. As
an example, the GNU Compiler Collection release included
in the SPEC suite (403.gcc) has executed more than 2500
distinct routines during our tests, resulting in 19.2 MB of
profile data. But even benchmarks with fewer routines lead
to huge profiles: for instance, 376.kdtree, with only 223
routines, has generated a 28 MB report.
Input-sensitive profiles are stored as text-based files. From
our experience, manual inspection of these files turns out to
be largely impractical for a common programmer even with
profiles of just few kilobytes. For this reason, we have devel-
oped an interactive visualizer written in Java, called aprof-



Figure 1: Main window of aprof-plot: list of profiled routines (bottom left), automatically generated charts
(top) and list of performance tuples (bottom right) of a selected routine.

plot. The goal of this graphical tool is twofold. From one
side, the user can inspect the scalability of a specific routine
by analyzing several routine-based performance charts. On
the other side, our tool attempts to focus the attention of the
programmer to the most critical routines, possibly pinpoint-
ing unexpected performance trends. Before discussing how
aprof-plot can support the user towards these two perfor-
mance analysis’ directions, we briefly provide an overview
of its design. The main interface is shown in Figure 1. Af-
ter selecting an input-sensitive profile, a list of routines is
presented (bottom left) to the user with several pieces of in-
formation for each routine: alongside the routine signature
and its executable binary, various cumulative performance
metrics summarize the impact on the overall application ex-
ecution (e.g., percentage of cost spent inside the routine,
number of calls, number of collected performance tuples).
Whenever the user selects from this list a specific routine,
on the top part of the interface several routine charts are
automatically generated. Each plot can be customized by
the user through different tools available in the chart ac-
tion bar. Finally, the performance tuples collected for the
selected routine are listed in the bottom right part of the
interface: this allows programmer to carefully inspect the
routine profile and to find out details of performance behav-
iors graphically represented by the routine charts.

3.1 Routine performance analysis
Performance as a function of workload size. Input-
sensitive profiling naturally allows the programmer to inves-
tigate how the running time of a routine scales as a function
of its workload size. This kind of analysis is actually critical
for any software: seemingly benign fragments of code may
be fast on some testing workloads, passing unnoticed with
traditional profilers, while all of a sudden they can become
major performance bottlenecks when deployed on larger in-

puts (see, e.g., examples in [5]). To this aim, aprof-plot
can automatically generate worst-case, average-case, and
best-case cost plots. Indeed, given the tuples 〈ni, ci,maxi,
mini, sumi, sqi〉 collected for a routine f (see Section 2),
the sets of points 〈ni,maxi〉 and 〈ni,mini〉 can be used to
estimate how the empirical worst-case and best-case costs
of a routine grow as a function of the input size. The aver-
age behavior is instead given by the set 〈ni, avgi〉, where the
average cost per invocation on input size ni is obtained by
computing avgi = sumi/ci. An example of these charts
is provided in Figure 2a and is based on routine heap-

sort_pairs of SPEC OMP2012 benchmark 352.nab: the
best-case, average-case, and worst-case trends appear to be
relatively similar and rather smooth.
To get more precise insights on asymptotic performance of
a routine, our tool allows the programmer to easily apply
a technique known as curve bounding. In particular, the
guess ratio rule (see [13] and [14]) estimates the trend of a
function f(n) by considering a guess function h(n) and an-
alyzing the trend of ratio f(n)/h(n): the ratio stabilizes to
a non negative constant if f ∈ O(h(n)), while it (eventu-
ally) increases if f �∈ O(h(n)). In our example we divided
the worst-case trend of Figure 2a by three different guess
functions: n, n log n, and n2. The three resulting curves are
shown in Figure 2b, Figure 2c, and Figure 2d, respectively.
The cost of routine heapsort_pairs increases when divided
by n, decreases when divided by n2, and stabilizes to a pos-
itive constant when divided by n log n. This confirms that
the trend is n log n, as expected from any bug-free imple-
mentation of the heapsort algorithm. An interactive popup
menu, available when displaying the curve bounding plot in
aprof-plot, allows the programmer to easily test several
user-defined guess functions.

Workload analysis. A natural question is which are the
typical workloads of a routine. Even more interesting is in-



(a) (b) (c) (d)

Figure 2: Cost plot and curve bounding plots related to routine heapsort_pairs of benchmark 352.nab [15].

(a) (b) (c) (d)

Figure 3: (a) Frequency plot of routine heapsort_pairs. Routine std::vector::push back: cost plot (b), fre-
quency plot (c), and amortized cost plot (d).

vestigating how the actual workload is impacting the routine
performance. Two orthogonal considerations can be made.
From one side, aprof-plot can give insights on the typical
workloads on which a routine is called during the execu-
tion of a program: as an example, Figure 3a depicts the
frequency distribution of the workload sizes observed for
routine heapsort_pairs: a peak around the rms value 200
provides a rough estimation about the typical size of arrays
sorted by this routine in this specific application. In gen-
eral, this information might be very useful not only for code
optimization, but also for algorithmic improvements, even
theoretical, in specific scenarios. For instance, if an applica-
tion always needs to sort arrays with less than 16 items, it
may be convenient to use a non-optimal sorting algorithm
with runtime n2 instead of an asymptotically optimal one
with runtime n log n. A case study of this flavour is dis-
cussed in [5].
On the other side, in many scenarios a routine may be gen-
erally cheap, but sporadically require a high cost. Consider
for instance an operation that appends an item at the end
of a resizable array such as std::vector’s push_back func-
tion of the C++ STL. If the array capacity is not exceeded,
then the operation takes constant time. Otherwise, the ar-
ray must be reallocated, typically requiring an expensive
copy of all items from the current array to a new larger
one. Expanding the array by a constant multiplicative fac-
tor at each reallocation (e.g., doubling the array), the ex-
pensive append calls can be guaranteed to be exponentially
less frequent than constant append calls [7]. This kind of
analysis, which measures the average time of a function
over a sequence of invocations, is called amortized analy-
sis [18]. The amortized cost metric given in [5] can be be
computed in terms of the profiling tuples introduced in Sec-
tion 2. Due to lack of space, we omit the definition of this
metric whose main idea is that the cost of expensive but
infrequent calls can be amortized over frequent but cheap
calls. Exploiting this intuition, more informative plots can

(a) (b)

Figure 4: Worst-case cost plots of 403.gcc’s routine
cse_basic_block: before (a) and after (b) applying
smoothing.

be generated by shaving off expensive peaks, leaving just the
points where most of the routine work is performed. For in-
stance, Figure 3 reports an example based on C++ STL rou-
tine std::vector::push_back. Even if the cost plot of this
routine presents a linear trend (Figure 3b), expensive calls
are rather infrequent (Figure 3c). A careful analysis of the
routine performance tuples reveals that less than 0.000025%
of the routine calls has executed more than 250 basic blocks.
The goal of the amortized cost plot is to automatically ex-
pose this kind of consideration: as shown by Figure 3d, calls
over rms values larger than 80 can be amortized (zeroed
points), leaving only inexpensive calls which actually char-
acterize most of the routine work.

3.2 Plot customization and noise reduction
aprof-plot supports different kinds of interaction, allowing
the programmer to perform a more effective performance in-
vestigation. Several useful features can be triggered by the
user in order to customize a routine chart. For instance, the
x and y axes of a plot can be set to logarithmic scales (see,
e.g., Figure 3c). Furthermore, since the interesting behavior
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Figure 5: (a) Routine list of PARSEC 2.1 benchmark ferret sorted by percentage of cost, showing preview
of cost plot, number of calls, and best-fit parameters. (b) Cost plot of routine cass_result_merge_lists with
regression trend obtained by least-squares fitting

of a routine may be confined to a specific area of a chart,
the user can zoom in and out from a specific set of points.
A common (and more important) issue when analyzing a
routine is due to noisy profile data. To this aim, we have
implemented two noise reduction techniques: point aggrega-
tion and smoothing. The first approach decreases the num-
ber of points, while the second one preserves the cardinality
of the original set. Given the set of N points (x, y) of a chart
sorted by the x values, point aggregation partitions this set
in groups of d points and then computes the arithmetic mean
within each group. Notice that d is a positive constant value
which can be customized by the user. Smoothing, instead,
calculates the centered moving average [12]:

∀k, w

2
≤ k ≤ N − w

2
: yk

′ =
1

w

k+w/2∑

i=k−w/2

yi

where w is the user-customizable size of the moving win-
dow. Figure 4b provides an example based on the routine
cse_basic_block of the SPEC benchmark 403.gcc: the
original noisy trend (Figure 4a) has been smoothed applying
a moving window w = 256.
Finally, we implemented in aprof-plot a source code brows-
ing feature that allows the programmer to analyze the code
while she is still looking at the routine charts. After choosing
the source directory of a C/C++ application, aprof-plot
can automatically open the appropriate source code file and
show the relevant piece of code inside a text-editor widget.
This makes it easier for programmers to find out why a cer-
tain piece of code exhibits some performance behaviors.

3.3 Spotting critical routines
In Section 3.1, we have discussed how aprof-plot can enable
a deep analysis of relevant aspects of a routine’s behavior.
However, since real-world applications may be composed by
thousands of routines, this kind of analysis could easily be-
come overwhelming for a developer. For this reason, aprof-
plot attempts at pointing the attention of the programmer
to the most critical routines of an application. In particular,
it helps developers prioritize their analysis by highlighting
routines which are likely to contain performance issues. By
sorting routines based on the percentage of cost, a devel-
oper can immediately understand how the running time has

been spent during the execution of the program. Several
filtering strategies can help to refine this list: uninteresting
routines, such as library functions, can be filtered out based
on the executable binary, while insignificant routines can be
hidden using different metric thresholds (e.g., by filtering
routines with small cost percentage or with a small number
of performance tuples). Exploiting these tools, the number
of routines which needs to be analyzed by a developer can
be significantly reduced. However, since the ultimate goal of
input-sensitive profiling is to detect the routines with high
asymptotic cost, we have implemented in aprof-plot an
automatic approach for estimating the asymptotic complex-
ity of a routine. Using regression analysis techniques [3],
our tool constructs for each routine a mathematical func-
tion that has the best fit to its data points. In particular,
we choose as a cost model the function b · nc + a, which
generalizes both the power law and the linear models (when
a = 0 and c = 1, respectively).
After estimating the fitting coefficients for any program rou-
tine, aprof-plot can sort routines based on their asymptotic
complexity (i.e., the c coefficient), allowing the developer to
possibly detect unexpected performance trends. Since this
kind of analysis crucially depends on the quality of the fit-
ting results, aprof-plot allows the user to filter routines
which have low fitting quality (e.g., R2 ≤ 0.92) or unrealis-
tic coefficient values (e.g., b < 0.001). The validity of this
approach has been empirically assessed in [5].
Figure 5a provides an excerpt taken from the routine list of
the PARSEC benchmark ferret. The original 906 routines
have been filtered according to the following criteria: more
than 10 performance tuples (|N | > 10), high fitting quality
(R2 > 0.92), and reasonable b coefficient value (b > 0.01).
After filtering, 75 routines remain and are sorted based on
the percentage of executed basic blocks (i.e., their cost):
among the top four routines (shown by Figure 5a), an inter-
esting example is provided by cass_result_merge_lists.
This routine has been called 3500 times, requiring 5.06%
of the total program cost, and aprof-plot has been able
to automatically estimate a quadratic asymptotic complex-
ity (c = 2.086). As discussed in [5], apart from specific
algorithmically-critical routines usually well known to the
programmer, most benign routines appear to have a sub-
quadratic trend and many common programming mistakes
tend to introduce quadratic inefficiencies, e.g., by invoking a



subroutine in a loop under the incorrect assumption that it
takes constant time. Since the fitting quality is rather high
(R2 = 0.99), routine cass_result_merge_lists is a good
candidate for further performance investigation. The worst-
case cost plot is given in Figure 5b: the regression curve
accurately predicts the actual cost trend. By inspecting the
source of this routine, we were able to conclude that its al-
gorithm is indeed Θ(n2) due to a doubly-nested loop used
for merging two input lists. Although this quadratic trend
is not given by any trivial programming mistake, we believe
that some algorithmic optimizations could be implemented
to improve the running time of this routine.
As shown by this example, the filtering and ranking strate-
gies implemented by aprof-plot can significantly support
the developer towards performance investigation of the most
critical routines, possibly revealing unexpected performance
issues.

4. CONCLUSIONS
In this paper we have presented an interactive visualization
framework for performance analysis of input-sensitive pro-
files. The key benefit of aprof-plot is to allow the program-
mer to investigate how the running time of a routine scales
as a function of the workload size. Exploiting techniques
such as curve fitting and bounding, our tool can focus the
attention of the programmer to the most critical routines of
an application, possibly pinpointing unexpected scalability
problems. Useful insights on the typical workload sizes can
help developers optimize their programs.
As a future direction, it would be interesting to improve
the support in aprof-plot for input-sensitive profiles with
calling-contexts annotations [8]. This further level of perfor-
mance characterization can help developers analyze routines
with context-dependent performance trends.
Another interesting improvement would be to implement ad-
hoc fitting algorithms, specifically tailored to curves related
to execution costs. In particular, we notice that a routine
may exhibit rather different performance trends based on
several runtime conditions and workload features. Since a
classical curve fitting algorithm is unable to detect multi-
ple trends, aplot-plot fails to automatically estimate the
asymptotic complexity of the routine, forcing the user to-
wards manual performance analysis.
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