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ABSTRACT
In this paper we consider a multi-channel random-access
carrier-sense multiple access (CSMA) line network with n
saturated links, where each link can be active on at most
one of the C available channels at any time. Using the prod-
uct form solution of such a network, we develop fast algo-
rithms to compute the per-link throughputs and use these
to study the spatial fairness in such a network. We consider
both standard CSMA networks and CSMA networks with
so-called channel repacking.

Recently it was shown that fairness in a single channel
CSMA line network can be achieved by means of a sim-
ple formula for the activation rates, which depends solely on
the number of interfering neighbors. In this paper we show
that this formula still achieves fairness in the multi-channel
setting under heavy and low traffic, but no such simple for-
mula seems to exist in general. On the other hand, numer-
ical experiments show that the fairness index when using
the simple single channel formula in the multi-channel set-
ting is very close to one, meaning this simple formula also
eliminates most of the spatial unfairness in a multi-channel
network.

Keywords
CSMA, multi-channel, fairness, mac

1. INTRODUCTION
Random-access carrier-sense multiple access (CSMA) net-
works have received considerable attention over the past few
decades and various stochastic models have been developed
and studied in great detail, e.g., [5, 9, 8, 16, 17], we refer to
[6, 15] for a detailed literature overview. Most of these stud-
ies have focused on the channel throughput, stability, packet
delay and/or fairness (between different links) in case of a
single channel CSMA network. Studies on multi-channel
CSMA networks are far less abundant and include [3, 12],
where [3] focuses on throughput optimality and stability and

[12] on computing the throughput in large circular and line
networks where all the links make use of equal activation
rates.

Spatial unfairness in single channel CSMA networks is fairly
well understood [8, 18] as links at the border of the network
have a restricted neighborhood and thus a higher probability
to access the channel. In large line networks these border
effects do not propagate inside the network as opposed to
more general network topologies. Recently it was shown that
spatial unfairness in line networks of limited size can also
be eliminated by adapting the activation rates (i.e., mean
backoff times) using a simple formula [18]. More specifically,
all links achieve the same long run average throughput if the
activation rate of link i is of the form α(1 + α)γ(i)−γ(1), for
any α, where γ(i) is the number of interfering neighbors of
link i. Further, these activation rates are the only ones that
achieve fairness due to [17].

In this paper we study spatial fairness of multi-channel
CSMA line networks (of moderate size). We consider a sim-
ilar network model as in [12], which differs from [2] in the
sense that we limit ourselves to line networks, assume that
all links have access to all the channels, that interference is
the same on each channel, that links can only be active on a
single channel at a time and that channels are selected uni-
formly at random when the backoff timer expires. While we
can relax some of these assumptions, this might considerably
increase the time complexity of the algorithms developed to
compute the per-link throughputs.

The following contributions are made in this paper. First,
we develop fast algorithms to compute the per-link through-
puts, where the time complexity grows linear in the num-
ber of links, by exploiting the product form solution of the
network. Second, we prove that the simple formula α(1 +

α)γ(i)−γ(1) to achieve fairness in a single channel network
still guarantees fairness in the multi-channel setting under
heavy and low traffic, that is, if α is either very small or
large. Third, by considering a special case, we show that
a simple formula to achieve spatial fairness in the multi-
channel setting which depends only on the number of inter-
fering neighbors does not exist. Finally, by making use of the
fast algorithms developed to compute the per-link through-
put, we show that while the simple formula α(1+α)γ(i)−γ(1)

does not eliminate all spatial unfairness in the multi-channel
setting, it does eliminate most of the unfairness as the Jain’s
fairness index [11] is typically very close to one.



Apart from the standard multi-channel CSMA model we
also consider a multi-channel CSMA network with channel
repacking. Channel repacking basically means that a chan-
nel is assigned to a link whenever its backoff timer expires
and there is either a channel available or one can be made
available by reassigning some of the channels already in use.
While this is hard to achieve in practice, especially on a gen-
eral network topology, we mainly study this variant as we
felt that a simple formula to achieve fairness is more likely to
exist in this case. The results however indicate that this is
not the case and all the findings listed above for the standard
CSMA network also apply to the network with repacking.

2. MODEL DESCRIPTION
Consider a CSMA line network consisting of C channels, n
links and an interference range of β, meaning a link cannot
be simultaneously active with one of its β left or right neigh-
bors on the same channel. Assume a link can only be active
on one channel at a time and packet lengths follow an expo-
nential distribution (with mean 1). It is worth noting that
the results presented in this paper remain valid for more
general packet length distributions, i.e., phase-type distri-
butions, due to the underlying loss network (see for instance
[5, 16, 3] for more details). Backoff timers are assumed to
follow an exponential distribution, the average of which is
specified further on. Links are assumed to be saturated at
all times, that is, each link has at least one packet ready for
transmission at any time. We consider two systems: with
and without channel repacking.

In case of channel repacking we assume that each link main-
tains a single backoff timer and is assigned a channel when
the timer expires provided that a channel is available or one
can be made available by reassigning some of the already
assigned channels.

Without channel repacking we still maintain a single backoff
timer per link, but when it expires a channel is selected
uniformly at random among the C channels and is assigned
in case it is not being used by any of the interfering links.
As we assume exponential backoff times, this is equivalent
to maintaining C timers, one for each channel.

To emphasize the difference between both systems, assume
C = 2, β = 1, link 1 is using channel 1 and link 3 is using
channel 2. In this case link 2 can become active with channel
repacking (as user 1 simply needs to switch channels), while
it cannot without channel repacking.

Due to the exponential nature of the packet lengths and
backoff times it is easy to see that the evolution of both
systems can be captured by a continuous-time Markov chain.
More specifically, for the system with repacking all feasible
states are given by Ω̄n the set of all binary strings of length
n such that there are at most C ones in any sequence of
β+1 consecutive bits. Note that due to repacking it suffices
to keep track of the links that are active, meaning there is
no need to keep track of the channel ids. Let w̄i = 1 if link
i is active on some channel and set w̄i = 0 otherwise.

If we denote νi as the activation rate of link i, we obtain a
loss network and the steady state probability π̄(w̄) of being

in state w̄ = (w̄1, . . . , w̄n) ∈ Ω̄n can be expressed as

π̄(w̄) = Z̄−1
ν

n∏
i=1

νw̄i
i , (1)

where Z̄ν =
∑

w̄∈Ω̄n

∏n
i=1 ν

w̄i
i is the normalizing constant

and ν = (ν1, . . . , νn). When β < C, all the links can be
active simultaneously in case of repacking and Ω̄n is simply
the set of all binary strings of length n. Hence, without loss
of generality we may assume that β ≥ C in case of repacking.

Without repacking we clearly do need to keep track of the
ids of the channels in use as they may affect whether or a
link can become active (as in the example before). Thus the
set of all feasible states is given by Ωn, the set of all strings
of length n over the alphabet {0, 1, . . . , C} such that any
sequence of β+1 consecutive symbols does not contain more
than one c > 0. Let Cνi be the parameter of the exponential
distribution of the backoff timer of link i. It is easy to see
and well known [3, 12] that this system corresponds to a loss
network and the steady state probability π(w) of being in
state w = (w1, . . . , wn) ∈ Ωn can be expressed as

π(w) = Z−1
ν

n∏
i=1

ν
1[wi>0]
i , (2)

where Zν =
∑

w∈Ωn

∏n
i=1 ν

1[wi>0]
i is the normalizing con-

stant, ν = (ν1, . . . , νn) and 1[A] = 1 if A is true and 1[A] = 0
otherwise.

Throughout the paper we add a bar to a variable or symbol
whenever it is related to the system with repacking, unless
it concerns a common parameter such as C, β, etc.

3. MATRIX EXPRESSIONS FOR THE NOR-
MALIZING CONSTANT

In this section we derive a matrix expression for the con-
stants Zν and Z̄ν . Using these expressions we can com-
pute the normalizing constant of the system with repacking
in O(n

(
β+1
C

)
) time and of the system without repacking in

O(nmin(2β , (β + 1)C)) time.

3.1 With Channel Repacking
Theorem 1. The normalizing constant Z̄ν can be written

as

Z̄ν =

(
n∏

i=1

(1 + νi)

)
P̄n(C, β + 1, ν),

where P̄n(C, β+1, ν) is the probability that we have at most
C successes in any β + 1 consecutive Bernoulli trials when
performing a total of n independent Bernoulli trials where
the i-th trial has success probability pi = νi/(1 + νi).

Proof. The result is immediate by noting Z̄ν can be
written as

Z̄ν =

∑
w̄∈Ω̄n

∏n
i=1

(
νi

1+νi

)1[w̄i=1] (
1− νi

1+νi

)1[w̄i=0]

∏n
i=1

1
1+νi

.



Probabilities of the type P̄n(C, β + 1, ν) have been studied
previously in the area of reliability theory [7], in fact the
result in Theorem 2, where β = C, is equivalent to the
method presented in [10] for the so-called consecutive-k-out-
of-n:F system. We will generalize this method to any β ≥ C
which implies that the our proposed method is also useful to
analyze the reliability of a consecutive-k-out-of-m-from-n:F
system.

Theorem 2. When β = C, we can express P̄n(β, β+1, ν)
as

P̄n(β, β + 1, ν) = e∗1

(
n∏

i=1

M̄β,β+1(νi)

)
e,

where e∗1 is first row of the size β + 1 identity matrix, e is a
column vector of ones and

M̄β,β+1(νi) =
1

1 + νi

⎡
⎢⎢⎢⎣

1 νi
...

. . .

1 νi
1 0 . . . 0

⎤
⎥⎥⎥⎦ ,

for i = 1, . . . , n.

Proof. When β = C we can have at most β successes
in a row. To obtain an expression for P̄n(β, β + 1, ν) we
construct a time-inhomogeneous Markov chain with β + 1
transient, labeled 0 to β, and one absorbing state. We start
in state 0 and the i-th transition corresponds to performing
the i-th Bernoulli trail. The β+1 transient states keep track
of the number consecutive successes, meaning a success in-
creases the state by 1, while a failure resets the state to 0.
If a success occurs in state β, meaning we have more than
β successes in a row, we move to the absorbing state. The
probability P̄n(β, β+1, ν) can be expressed as the probabil-
ity of being in a transient state at time n.

This theorem allows us to compute Z̄ν in O(nβ) time when
β = C.

In order to generalize the previous idea, we introduce the
matrices M̄C,β+1(νi) of size

∑C
k=0

(
β−C+k

k

)
. The rows and

columns of M̄C,β+1(νi) are labeled by the strings w̄ ∈ Ω̄C,β

with

Ω̄C,β = ∪C
k=0{w̄ ∈ {0, 1}β−C+k|

∑
i

w̄i = k}.

Note the length of w̄ ∈ Ω̄C,β is limited by β. Let l(w̄)
be the length of w̄ and z(w̄) the position of the first zero
(which exists for β > C), e.g., l((1, 1, 0, 1, 0, 1)) = 6 and
z((1, 1, 0, 1, 0, 1)) = 3, then

(1 + νi)
(
M̄C,β+1(νi)

)
w̄,w̄′

=

⎧⎪⎨
⎪⎩
1 w̄′ = (w̄z(w̄)+1, . . . , w̄l(w̄), 0),

νi l(w̄) < β, w̄′ = (w̄1, . . . , w̄l(w̄), 1),

0 otherwise.

Theorem 3. When β > C ≥ 1, we can express P̄n(C, β+

1, ν) as

P̄n(C, β + 1, ν) = e∗1

(
n∏

i=1

M̄C,β+1(νi)

)
e,

where e∗1 is first row of the identity matrix, e is a column
vector of ones. Further, the matrices M̄C,β+1(νi) are of size(
β+1
C

)
.

Proof. We rely on a time-inhomogeneous Markov chain
as before and label the transient states by the strings in
Ω̄C,β . The binary string w̄ ∈ Ω̄C,β reflects the outcome of
all the previous trials that occurred after the (β+1−C)-last
failure. A new success is only allowed if the (β+1−C)-last
failure occurred strictly less than β trials ago and simply
adds a 1 to the state. If a failure occurs we can forget about
the outcome of all the trials up until and including the first
0 in w̄, while adding a 0.

It is easy to see that |Ω̄C,β | =
(
β+1
C

)
as

C∑
k=0

(
β − C + k

k

)
=

C∑
k=0

(
β − k

C − k

)
=

(
β + 1

C

)
,

where the latter equality follows from repeatedly applying(
n+1
k

)
=

(
n
k

)
+

(
n

k−1

)
.

Note, each row of M̄C,β+1(νi) contains at most 2 nonzero
entries, meaning multiplying M̄C,β+1(νi) with a column vec-
tor requires at most 2|Ω̄C,β | floating point operations, which
means the time complexity to compute Z̄ν is bounded by
O(n

(
β+1
C

)
).

Remark. When νi = σ, for i = 1, . . . , n, it is also possible
to express Z̄n as

Z̄n =

n∑
j=0

B̄n(β + 1, C, j)σj , (3)

where B̄n(m,C, j) denotes the number of binary strings of
length n with exactly j ones such that no m consecutive
bits contain more than C ones. When β = C, we are thus
interested in the number of binary strings of length n with
at most C consecutive ones. As shown in [1, Theorem 3.3],
Bn(C + 1, C, j) can be expressed as

B̄n(C + 1, C, j) =

(
n− j + 1

j

)
C

,

where
(
n
i

)
s
is the generalized binomial coefficient defined by

the recursion: (
n+ 1

i

)
s

=

s−1∑
k=0

(
n

i− k

)
s

,

and
(
n
0

)
s
= 1. Note, when s = 1 these are the usual binomial

coefficients, while for s > 1 they can be expressed in terms
of the usual ones [4, p.19] by(

n

i

)
s

=

�i/s�∑
k=0

(−1)k
(
n

k

)(
n+ i− sk − 1

n− 1

)
.



For β > C counting these strings is equivalent to solving
the so-called generalized birthday problem. Rather involved
closed form expressions for B̄n(m,C, j) were derived in [14]
when j/2 < C and in [13, Theorem 1] for the general case.
The latter however are expressed as a large sum of determi-
nants and therefore does not result in an efficient manner to
compute B̄n(m,C, j).

3.2 Without Channel Repacking
Consider a (C+1)-sided coin with outcomes 0, 1, . . . , C and
assume that the probability of having outcome c, for c ∈
{1, . . . , C}, equals p, while the outcome 0 has the remaining
probability 1 − Cp, for some p ∈ (0, 1/C). Let Sβ be the
set of all binary strings of length β that contain at most
C ones. To define the set of matrices MC,β+1(νi) of size

|Sβ | =
∑min(C,β)

k=0

(
β
k

) ≤ 2β , we label the rows and columns
of MC,β+1(νi) by the strings in Sβ . For z ∈ Sβ , let n(z)
be the value of the binary number represented by z, e.g.,
n((0, 1, 0, 1)) = 5, and define

(1+Cνi) (MC,β+1(νi))z,z′ =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 n(z) < 2β−1, n(z′) = 2n(z),
1 n(z) ≥ 2β−1, n(z′) = 2n(z)− 2β ,

νi(C − k)
∑β

i=1 zi = k, n(z) < 2β−1,
n(z′) = 2n(z) + 1,

νi(C − k)
∑β

i=1 zi = k, n(z) ≥ 2β−1,
n(z′) = 2n(z)− 2β + 1,

0 otherwise.

(4)

The normalization constant Zν can be expressed as follows
using the matrices MC,β+1(νi):

Theorem 4. The normalizing constant Zν can be written
as

Zν =

(
n∏

i=1

(1 + Cνi)

)
Pn(C, β + 1, ν),

and

Pn(C, β + 1, ν) = e∗1

(
n∏

i=1

MC,β+1(νi)

)
e,

where e∗1 is first row of the size |Sβ | identity matrix, e is a
column vector of ones.

Proof. The proof is similar to the proof of Theorem 1
by noting that Pn(C, β + 1, ν) is the probability that when
flipping n coins with C+1 sides, where p = νi/(1+Cνi) for
coin i, no sequence of β + 1 consecutive flips results in two
or more identical outcomes equal to some c > 0.

To express Pn(C, β+1, ν) we construct a time-inhomogeneous
Markov chain (as in the proof of Theorem 3) with |Sβ | tran-
sient, labeled z ∈ Sβ , and one absorbing state. We start in
state (0, . . . , 0) and the i-th transition corresponds to per-
forming the i-th (C+1)-sided coin flip. The transient states
keep track of the position of the outcomes c > 0 in the last
β coin flips. If we are in transient state z and the outcome
of coin flip i is 0, we simply shift z to the left, drop the
leading bit and add a zero to the right. If the outcome is
c > 0 and

∑β
i=1 zi = k there is a probability (C−k)/C that

the outcome differs from the k outcomes with c > 0 in the

last β coin flips. If the outcome differs, we shift z to the left,
drop the leading bit and add a one to the right, otherwise we
jump to the absorbing state. The probability Pn(C, β+1, ν)
can be expressed as the probability of being in a transient
state at time n.

Note, each row of MC,β+1(νi) contains at most 2 nonzero
entries, meaning multiplying MC,β+1(νi) with a column vec-
tor requires at most 2|Sβ | floating point operations, which
means the time complexity to compute Zν is bounded by
O(nmin(2β , (β + 1)C)) as

∑β
k=0

(
β
k

)
= 2β and

∑C
k=0

(
β
k

) ≤
(β + 1)C .

4. COMPUTING LINK THROUGHPUTS
In case of channel repacking, denote the long-run average
throughput of link j as θ̄j(ν). It corresponds to the long-
run fraction of time that link j is active on some channel.
To express θ̄j(ν) define the matrices N̄C,β+1(νi) as

(1 + νi)
(
N̄C,β+1(νi)

)
w,w′

=

{
νi l(w) < β,w′ = (w1, . . . , wl(w), 1),

0 otherwise,

i.e., they are obtained by setting all the entries of M̄C,β+1(νi)
that correspond to a failure to zero.

Theorem 5. The throughput θ̄j(ν) of node j can be com-
puted as

θ̄j(ν) =
P̄

(j)
n (C, β + 1, ν)

P̄n(C, β + 1, ν)
,

where

P̄ (j)
n (C, β + 1, ν) =

e∗1

(
j−1∏
i=1

M̄C,β+1(νi)

)
N̄C,β+1(νj)

(
C∏

i=j+1

M̄C,β+1(νi)

)
e.

Proof. Using the expression for the steady state we get

θ̄j(ν) = Z̄−1
ν

∑
w̄∈Ω

n∏
i=1

νw̄i
i 1[w̄j = 1].

The result now follows from Theorem 1 and by noting that

P̄
(j)
n (C, β + 1, ν) represents the probability that we have at

most C successes in any β + 1 consecutive Bernoulli trials
when performing a total of n independent Bernoulli trials
where the i-th trial has success probability pi = νi/(1 + νi)
and the j-th trial is successful.

By first computing the vectors e∗1
∏j−1

i=1 M̄C,β+1(νi) as well

as the vectors
∏C

i=j+1 M̄C,β+1(νi)e, for j = 1, . . . , n, we can

compute the vector of throughputs θ̄(ν) = (θ̄1(ν), . . . , θ̄n(ν))
in O(n

(
β+1
C

)
) time.

For the system without channel repacking we can proceed
in exactly the same way to compute the vector θ(ν) =



(θ1(ν), . . . , θn(ν)) of channel throughputs, by defining the
matrices NC,β+1(νi) as

(1+Cνi) (NC,β+1(νi))z,z′ =⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

νi(C − k)
∑β

i=1 zi = k, n(z) < 2β−1,
n(z′) = 2n(z) + 1,

νi(C − k)
∑β

i=1 zi = k, n(z) ≥ 2β−1,
n(z′) = 2n(z)− 2β + 1,

0 otherwise.

(5)

i.e., they are obtained by setting all the entries ofMC,β+1(νi)
that correspond to outcome 0 to zero.

Remark. In [12] the authors also propose the use of a matrix
product to compute the throughput θj(ν) of link j, but they
focus on large networks with equal activation rates. Further,
the matrices used are considerably larger than the ones used
in our approach. For instance, for C = 3 and β = 2 matrices
of size 13 are used, while in our case size

∑2
k=0

(
2
k

)
= 4

suffices.

5. FAIRNESS
Let γ(i) be the number of links that interfere with link i. The
main result in [18] showed that in case of a single channel,
i.e., C = 1, fairness can be achieved in a line network con-
sisting of n links if νi = α(1 + α)γ(i)−γ(1), for i = 1, . . . , n,
for any choice of α. The following section indicates that
this choice of νi still guarantees fairness in case of multiple
channels, i.e., C ≥ 1, under heavy and low traffic with and
without repacking.

5.1 Heavy and low traffic
We start by considering the case where the number of chan-
nels C is at most β + 1.

Theorem 6. Let n > β ≥ 1, C ≤ β + 1 and set νi =
α(1 + α)γ(i)−γ(1), then

lim
α→∞

θj(ν) = lim
α→∞

θ̄j(ν) =
C

β + 1
,

for j = 1, . . . , n

Proof. We restrict ourselves to the system without chan-
nel repacking. The argument for the system with repacking
proceeds similarly. When α becomes large νi ≈ αγ(i)−γ(1)+1

and the product form in (2) implies that the Markov chain
spends most of its time in the states w that maximize

val(w)
def
=

n∑
i=1

(γ(i)− γ(1) + 1)1[wi > 0].

We will argue that there are C!
(
β+1
C

)
states w for which

val(w) is maximized and that each j ∈ {1, . . . , n} is active in
exactly C!

(
β

C−1

)
of these states. This results in a throughput

of
(

β
C−1

)
/
(
β+1
C

)
= C/(β + 1) for each link.

Define the following subset of Ωn of size C!
(
β+1
C

)
:

Mn =

{w ∈ Ωn|
β+1∑
i=1

1[wi > 0] = C,wj = wj−(β+1), j > β + 1}.

Note for w ∈ Mn any set of β + 1 consecutive elements
contains C distinct positive elements. Further, wj > 0 in
exactly C!

(
β

C−1

)
states w ∈ Mn, as there are

(
β

C−1

)
ways

to select the remaining C − 1 positive elements in the first
β + 1 positions. To complete the proof we now show that
val(w) = (n− β)C for w ∈ Mn and val(w) < (n− β)C for
w �∈ Mn.

For n = β + 1 it is clear that val(w) = C for w ∈ Mn

as γ(i) = β for all i ∈ {1, . . . , n} and val(w) is therefore
equal to the number of ones in w. If we add a link to a
line network of n links, we see that γ(n − β + 1), . . . , γ(n)
increase by one, while γ(i) remains identical for i ≤ n − β
and γ(n+1) = γ(1). Further, any state w can have at most
C positive elements in the last β + 1 positions, thus

val(w1, . . . , wn+1) ≤ val(w1, . . . , wn) + C.

Hence, val(w) ≤ (n − β)C for all w ∈ Ωn. When w ∈ Mn

the last β + 1 positions of w = (w1, . . . , wn) contain exactly
C positive elements and wn+1 = wn−β , thus each time we
add an element to w ∈ Ωn such that wn+1 = wn−β , its
value increases by C. This implies that val(w) = (n − β)C
for w ∈ Mn.

Assume w �∈ Mn and w contains less than C positive el-
ements in the first β + 1 positions. In this case val(w) <
(n − β)C as val(w1, . . . , wβ+1) < C and adding a single
element can only increase the value by C. If w does con-
tain exactly C positive elements in the first β + 1 positions,
let j be smallest index such that wj �= wj−(β+1). In this
case we must have wj = 0 and wj−(β+1) > 0, as we oth-
erwise get C + 1 positive elements in (wj−β , . . . , wj) and
thus a repetition of the same positive value within a set of
β + 1 consecutive values. Thus, when adding wj , the value
of (w1, . . . , wj−1) increases by C − 1 instead of C, which
implies that val(w) must be less than (n− β)C.

When C ≥ β +1 the throughput θj(ν) approaches one even
for νi = α as α tends to infinity, as Ωn contains states where
all the links are active on some channel and these will dom-
inate as α becomes large.

It is easy to see that setting νi = α(1 + α)γ(i)−γ(1) also
guarantees fairness in low traffic conditions (i.e., as α goes
to zero) as there is no need to have multiple channels in this
case.

5.2 Intermediate traffic
For intermediate rates, setting νi = α(1 + α)γ(i)−γ(1) does
not guarantee fairness except when C = 1 as will become
clear from the following two propositions.

Proposition 1. Let β = n − 2 and let φ = ν2 = . . . =
νn−1, then fairness is achieved in a system with repacking



if and only if

ν1 = νn =

1

2

(√
(1− φS̄2(φ)/S̄1(φ))2 + 4φ− [1− φS̄2(φ)/S̄1(φ)]

)
,

(6)

with S̄k(y) =
∑C−k

i=0

(
n−3
i

)
yi for k ≥ C and S̄k(y) = 0 for

k > C.

Proof. Clearly ν1 = νn due to the symmetry of the sys-
tem, while φ = ν2 = . . . = νn−1 implies that Z̄−1

ν θ̄1(ν) =
Z̄−1

ν θ̄i(ν), for i = 2, . . . , n− 1, can be written as

ν1(1 + ν1)

C−1∑
i=0

(
n− 2

i

)
φi =

φ

(
(1 + ν1)

2
C−2∑
i=0

(
n− 3

i

)
φi +

(
n− 3

C − 1

)
φC−1

)
,

as link 1 can be simultaneously active with link n and at
most C − 1 intermediate links and if an intermediate link i
is active with at most C−2 other intermediate links both link
1 and n can be active, while they must both be silent if there
are C − 1 other active intermediate links. In other words,
ν1 is the positive solution of a quadratic equation and (7)

follows by noting that
∑C−1

i=0

(
n−2
i

)
φi − φ

∑C−2
i=0

(
n−3
i

)
φi =∑C−1

i=0

(
n−3
i

)
φi.

Proposition 2. Let β = n − 2 and let φ = ν2 = . . . =
νn−1, then fairness is achieved in a system without repack-
ing if and only if

ν1 = νn =√
(1 + φS2(φ)/S1(φ))2 + 4φ− [1− φS2(φ)/S1(φ)]

2(1 + S2(φ)/S1(φ))
, (7)

with Sk(y) =
∑C−k

i=0
C!

(C−k−i)!

(
n−3
i

)
yi for k ≥ C and Sk(y) =

0 for k > C.

Proof. Clearly ν1 = νn due to the symmetry of the sys-
tem, while φ = ν2 = . . . = νn−1 implies that Z−1

ν θ1(ν) =
Z−1

ν θi(ν), for i = 2, . . . , n− 1, can be written as

ν1(1 + ν1)C

C−1∑
i=0

i!

(
C − 1

i

)(
n− 2

i

)
φi+

ν2
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as link 1 can be simultaneously active with link n and at
most C−1 or C−2 intermediate links depending on whether
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Figure 1: With repacking: ratio of ν2 and ν1 to
achieve fairness as a function of ν1 when β = n − 2.
For C > 1 channel this ratio is no longer a linear
function of ν1 and depends on n.

link 1 and n use the same or a different channel. If a inter-
mediate link i is active with at most C−2 other intermediate
links both link 1 and n can be active (either on the same or
a different channel), while they must both be silent if there
are C − 1 other active intermediate links. In other words,
ν1 is the positive solution of a quadratic equation and (7)
follows by noting that

C−k∑
i=0

C!

(C − k − i)!

(
n− 2

i

)
φi−

φ

C−k−1∑
i=0

C!

(C − k − 1− i)!

(
n− 3

i

)
φi =

C−k∑
i=0

C!

(C − k − i)!

(
n− 3

i

)
φi,

due to Pascal’s triangle identity.

When C = 1, the both results reduce to ν1 = (
√
1 + 4φ −

1)/2, meaning φ = ν1(1 + ν1) and ν2/ν1 grows linearly as a
function of ν1. Figures 1 and 2 indicate that when C > 1 the
ratio ν2/ν1 needed to achieve fairness is no longer a linear
function of ν1 and this ratio depends on the network size n.
The results do seem to indicate that if n 	 C the fair ratio
is close to (1 + ν1), which is the fair ratio for C = 1.
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Figure 2: Without repacking: ratio of ν2 and ν1 to
achieve fairness as a function of ν1 when β = n − 2.
For C > 1 channel this ratio is no longer a linear
function of ν1 and depends on n.

6. NUMERICAL RESULTS
In this section we investigate the impact of having multiple
channels on the fairness in the network. We limit ourselves
to the system without channel repacking as this is the most
relevant from a practical point of view and numerical exper-
iments not shown here confirm that the main conclusions
for the system with repacking are in fact similar. To express
the fairness of the system we make use of Jain’s well-known
fairness index [11], which is computed as

J (θ(ν)) =

(∑n
j=1 θj(ν)

)2

n
∑n

j=1 θj(ν)
2
.

We start by considering the case where all the links make use
of the same activation rate, that is, νi = α for i = 1, . . . , n.

Figure 3 depicts the fairness index in a line network consist-
ing of n = 40 links as a function of the activation rate α
for different combinations of C and β. This figure demon-
strates that fairness improves as the number of channels C
increases with β fixed, while increasing β with C fixed in-
creases unfairness. This is quite expected as decreasing C or
increasing β implies that a link is more severely influenced
by the activity of its neighboring links. We also note that
the unfairness is quite severe as the index is well below one
(unless C is close to β) and worsens as links become more
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Figure 3: Without repacking: fairness index as a
function of the activation rate νi = α with n = 40
and either C or β fixed.

aggressive, i.e., α increases.

We now repeat the same experiment, but instead of using
equal rates we set the activation rate νi = α(1+α)γ(i)−γ(1),
which guarantees fairness in low and heavy traffic as proven
in Theorem 6 and fairness in all cases when C = 1 due to
[18].

Figure 4 depicts the fairness index in a line network con-
sisting of n = 40 links as a function of the parameter α.
The first thing to note is that the index is now very close to
one (above 0.995), meaning while these activation rates only
guarantee fairness in the single channel setup, the unfairness
is very limited in the multi-channel setup. We further note
that as opposed to the equal rate case, fairness slightly de-
creases with the number of available channels C in most
cases. Further, when C is fixed, having more or less inter-
ference, that is, increasing β, may result in either an increase
or a decrease in fairness depending on the value of α.

Figure 5 further demonstrates that setting νi equal to α(1+

α)γ(i)−γ(1) results in a drastic improvement of the network
fairness compared to using fixed activation rates. The fair-
ness index in this particular case increases from 0.8583 to
0.9998. Note that the choice νi = 0.5(1.5)6 ≈ 5.7 corre-
sponds to the rate of the links in the middle of the network
when νi = α(1 + α)γ(i)−γ(1) and α = 0.5.
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