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ABSTRACT
In wireless access network optimization, today’s main chal-
lenges reside in traffic offload and in the improvement of
both capacity and coverage networks. The mobile operators
are interested in solving their localized coverage and capac-
ity problems in areas where the macro network signal is not
able to serve the demand for mobile data. Thus, the ma-
jor issue for mobile operators is to find the best solution at
reasonable expanses. The femto cell seems to be the answer
to this problematic. In this work1, we focus on the problem
of sharing femto access between a same mobile operator’s
customers. A paradigm for bandwidth sharing management
added to a TBAS model for exchanging connectivity is pro-
posed for a fair sharing connectivity system ensuring QoS.
This paper focuses on an economic model based on FON
model and considers the sharing femto access problem as a
problem divided into to 2 levels: a game restricted to service
requesters customers (SRCs) and a second game restricted
to service providers customers (SPCs). We consider that
SRCs are static and have some similar and regular connec-
tion behavior. We also note that each SPC and each SRC
have a software embedded respectively on its femto access,
user equipment (UE) on which ADist algorithm is running
to learn the best strategy increasing its gain using only local
information.

We will try to answer the following questions for a game
with N SRCs and P SPCs: how many connections are nec-
essary for each SRC/SPC in order to learn the strategy max-
imizing its gain? Does exist an algorithm converging to a
stable state? If yes, does this state a Nash Equilibrium?

Keywords-component: game theory, sharing femto
access, TBAS, Nash Equilibrium, distributed learn-
ing algorithm, stable state.

1. INTRODUCTION
1This work is supported by the COMET project AWARE.
http://www.ftw.at/news/project-start-for-aware-ftw
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Today, one of the biggest issues for Mobile Operators is
to provide acceptable indoor coverage for wireless networks.
Among the several in-building solutions, the femto cell is the
one which is gaining significant interest. A femto cell is a
small cellular base station characterized by low transmission
power, limited access to a closed user group designed for res-
idential or small business use. But its expansive buying cost
is not motivating to purchase it. This solution could help op-
erators solve localized coverage problems and extend their
network. Indeed, in some areas where the macro network
signal is weak, a network of open femto cells access would
significantly improve the voice quality and data connectiv-
ity. This would be feasible if access points owners accept to
be part of a Club where each member is willing to open up
its access point to other members. This idea of sharing part
of its bandwidth started with FON2, a club where members
share their WiFi connection and inspired us to propose a
Club where members share their femto accesses with band-
width guarantees. A femto club member could share its
3G/LTE signal securely with other club members. Incen-
tives for an owner of an access point to be member of such
a club can be not only to share a part of the cost of the ac-
cess point but also to make advertisement or to share some
information through a specific social network associated to
the club. These incentives would logically lead the club to
manage by itself only such bandwidth exchange, but since
this technology uses licensed spectrum, the only model that
could for the moment be adopted for sharing femto access
is the one where the mobile operator is also participating.
This work presents the sharing femto access model. The
specifications for designing this model include an Eco system
sharing, a fair sharing and QoS guarantees. This work takes
into account these specifications and presents a paradigm
for bandwidth sharing management and a Token Based Ac-
counting System for exchanging connectivity. Sharing femto
access is a service proposed by the Mobile Operator to its
clients. These customers are divided into service providers
customers (SPCs) and service requesters customers (SRCs)
: SPCs are the owners of femto cells accesses for which they
have contracted with a Mobile operator denoted by MO.
SRCs are customers using a mobile terminal in an area cov-
ered by some SPCs access points and requesting to use these
access points. Note that a user can be both a SPC and

2FON is a for-profit company incorporated and registered
in the U.K. FON was created in Madrid, Spain, by Martin
Varsavsky, an Argentine/Spanish entrepreneur and founder
of many companies in the last 20 years.
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a SRC. Dynamic femto spectrum sharing is a challenging
problem for all the actors. Indeed the amount of requested
bandwidth by SRCs as well as the amount of bandwidth
shared by SPCs and pricing should be determined such that
the utility of all the agents is maximized. Since the inter-
ests of all the actors could be antagonist, especially between
many SRCs requesting a same SPC, we model our system
as a game to determine equilibria of such situations.

Related works.

The Token-based Accounting for P2P-Systems is pre-
sented in [10]. The scheme uses tokens as proof of resource
or service usage and tokens are issued using a decentralized
mechanism. The problem of sharing bandwidth and pricing
has been already addressed by Dusit Niyato et al [9], then
modeled as a game. The challenging problem in this con-
text is that bandwidth sharing requires a âĂIJpeacefulâĂİ
co-existence of both primary and secondary users.

The potential games introduced by Rosenthal [15] are
classical games having at least one pure Nash equilibrium.
These games have a potential function such that each of
its local optimums corresponds to a pure Nash equilibrium.
This property has been used for congestion game in general
(see [13] for a survey), with Resource Reuse in a wireless con-
text (see [7]) and for a real-time spectrum sharing problem
with QoS provisioning [17].

A decentralized learning algorithm of Nash equilibria in
multi-person stochastic games with incomplete information
has been presented by M.A.L. Thathachar et all. In the
considered game, the distribution of the random payoff is
unknown to the players and further none of the players know
the strategies or the actual moves of other players. It is
proved that all stable stationary points of the algorithm are
Nash equilibrium for the game [14]. The study presented in
this article will use this algorithm in the game restricted to
SRCs where each SRC will learn the strategy maximizing
its gain using only local information. We will check whether
if the stationary point the algorithm converges to is a pure
Nash equilibrium.

Our contribution..
Section 2 defines the specifications to be taken into ac-

count in the model of sharing femto access. The sharing
femto access is defined in Section 3 as a problem divided
into 2 levels: a Game restricted to SRCs and a Game re-
stricted to SPCs. Section 4 studies equilibrium existence in
the Game restricted to SRCs. Section 5 give details about
the algorithm of sharing femto access with its 2 levels and
gives some simulation results. Finally, Section 6 draws a
general conclusion and gives some perspectives.

2. GENERAL MODEL FOR SHARING FEMTO
ACCESS

In this section, we will describe the actors involved in the
model presented in its second part.

2.1 Actors Description
The different actors interacting in this model use the same

mobile resources and are of two types. First the owners of
femtocells accesses for which they have contracted with a
Mobile Operator (we talk about Service Provider Customers

or SPC). Secondly customer using a mobile terminal in an
area covered by some SPCs (we talk about Service Requested
Customers or SRC). Note that a user can be both a SPC
and a SRC. We consider here that SRC and SPC lead to
a social network accepting to share/use femto access and
should define their profiles. We now give some details on
SPC and SRC. We note that the names for categories Club
members were inspired from FON Model for sharing WiFi
connection.

2.1.1 SPC Actor

A SPC is a customer of the MO possessing a femto ac-
cess with indoor and possible outdoor coverage. The SPC
proposes to share an amount of its bandwidth with SRCs
for a price per bandwidth unit which depends on the type
of connection (described later). Note that some SPCs share
their access for economic reasons while some others share
access for further eventual needs.

• A SPC belonging to the first category is a SPC which
access point is well situated (near a restaurant, station
or a bar) and its signal has an outdoor well accessibil-
ity. Sharing access will allow him to generate some
gain. That would be a good motivation for SPCs to
pay for femtocell due to its expansive cost. We denote
by Bill the SPC belonging to this category. Usually,
this category of SPCs share a big part of bandwidth
to get more revenues. These revenues are shared with
the Mobile Operator.

• A SPC belonging to the second category represents
SPCs possessing femtocells for their own needs: this
could be because the 3G indoor signal is very bad or all
the householders have contract with the same mobile
operator and want to have some discount from their
mobile communications initiated at home. The SPCs
belonging to this category are generally mobile SPCs
having big QoS needs either at home or outdoor: they
want to share part of their bandwidth at home because
they would require some outdoor. We denote by Linus
the SPC belonging to this category. Usually, this cat-
egory of SPCs does not share a big part of bandwidth
because they may need it for their proper applications.
Regardless of their profiles, SPCs get free roaming at
other femto cells access points.

The SPC is characterized by its sensitivity to Gain de-
noted by µ ∈ [0, 1] and its sensitivity to its own connection
QoS denoted by Γ ∈ [0, 1]. These two parameters are dual:
µ+ Γ = 1.

The Gain sensitivity parameter indicates its sensitivity
degree to the price of the connection shared while the QoS
sensitivity parameter indicates the SPC’s tolerance degree
towards preemption risk (defined later). When µ > 1/2, we
say that the SPC is sensitive to gain. Otherwise, the SPC
is considered as sensitive to its access QoS.

2.1.2 SRC Actor

A SRC is a customer of the MO in need of good QoS
at reasonable price while moving. In the following, we will
define two categories of SRCs:
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• The first category represents SRCs getting free roam-
ing. To be part of this category, a SRC should be reg-
istered as a Bill or a Linus. In other words, this SRC
should also be a SPC: a customer accepting to share
part of its bandwidth (for free or against money) with
the club members.

• The second category of SRCs represents the MO’s cus-
tomers not having femto access at home. This could be
due to its expansive cost or because these SRCs have a
good 3G indoor signal. However, they need QoS out-
door at reasonable price. We will denote by Alien a
SRC belonging to this category of SRCs. In this case,
Aliens pay to get roaming; the Mo will receive all the
gain if the SPC is a Linus and will share the revenues
if the SPC is a Bill.

A SRC is characterized by a QoS sensitivity parameter
α and a price sensitivity parameter β. The SRC wants to
use a connection that would be provided by one SPC. The
QoS sensitivity parameter indicates the SRC’s tolerance de-
gree towards the QoS degradation of the connection while
the price sensitivity parameter indicates the SRC’s toler-
ance degree towards the cost of the connection. These two
parameters are dual: α+ β = 1.

The more one SRC is sensitive to QoS, the less its toler-
ance degree towards the QoS degradation will be. The more
one SRC is sensitive to price, the less he is able to pay for
the connection. When α > 1/2, the SRC is considered as
sensitive to QoS. Otherwise, the SRC is sensitive to price.

2.2 Specifications

A model with an Eco-System sharing.
The proposed model should ensure that no profit cases

between Club members would happen. Two factors could
lead to a such kind of situations: femto access point outdoor
accessibility and the amount of bandwidth shared by the
SPCs.

An example of a profit case is when a SPC uses while
roaming amounts of shared bandwidth much lesser than
what he shares with SRCs. Such a case could happen when
a SPC has a femto access point with well outdoor accessi-
bility (near a restaurant ,a station or a bar). But, each time
this SPC needs to get roaming, he only finds femto accesses
with very small parts of shared bandwidth. The proposed
model should be designed in a way to incent SPCs to let their
femto cell easily accessible from the street: SPCs should be
aware that they will have the right to consume other SPCs
bandwidth as much as they consume its bandwidth. So, the
more a SPC shares bandwidth, the more he would be able
to receive further services in its future moving. Thus, band-
width shared should be enough to cover its further needs in
term of QoS.

A fair model for sharing bandwidth.
The proposed model should ensure some fairness between

SRCs.

• The first form of fairness is Billing fairness. SRCs
should pay just for the amount of bandwidth used.

• The second form of fairness is access fairness. Indeed,
all the SRCs should have initially the same right of al-
located bandwidth for their moves. Then, depending

Type of Sub-type Abbrv Token Token
Tokens of Tokens Provider Receiver

Own Tokens Free FOT MO Bill/Linus
Paying POT MO Alien

Foreign Tokens Free FFT Bill/Linus Bill/Linus
Paying PFT Alien Bill/Linus

Table 1: Different types of tokens

on the amount of bandwidth shared and their acces-
sibility, they will have more or less access rights than
other SRCs.

Since both of the two categories of SPCs (Bills and Aliens)
share access, so both will have free roaming. The only differ-
ence is that the first category(Bills) gets some revenues for
that while the second category (Aliens) do not. A solution
should be proposed to ensure some kind of fairness between
the two categories of SPCs.

A paradigm for bandwidth sharing management
with QoS guarantees..

On one hand, the paradigm for bandwidth sharing should
guarantee a certain access speed and a data transmission
speed. On another hand, some connections (that would be
more expansive than others) should be guaranteed to SRCs:
this means that these connections will never be canceled by
their owners.

2.3 Proposed Model
The purpose here is to propose a model of sharing ac-

cess resources between SPCs and SRCs giving QoS guaran-
tees and economic added value. This model is a distributed
mechanism mainly managed by the members of the club
(SRCs and SPCs) and not by the mobile operator. The
operator only provides the network services supporting the
mechanism. As it is studied in some social networks, secu-
rity aspects are mainly insured by the identification of all
the members of the club.

TBAS model for exchanging connectivity.
Token Based Accounting System (TBAS) [10] for a peer to

peer network is a model of exchanging services between peers
that avoids profit cases. This model involves two actors: a
service requestor and a service provider.

Each service requestor (or SRC) has its own tokens pro-
vided by a central entity (called the banker) and that he may
spend for services provided. In the case of sharing femto
access, the banker could be the MO. Whenever a service re-
questor (SRC) needs a connection, that could be provided by
a service provider (SPC), he sends some of its own tokens to
the Service provider. The service provider will receive these
tokens as foreign ones that, for cryptographic reasons, could
not be used for its own needs (as they were its own tokens).
These foreign tokens will be sent to the banker to exchange
them against new own ones or against money.

Figure 1 highlights the TBAS process in Peer to Peer
(P2P) network and its application to sharing femto access
model. 4 types of tokens are considered and described in
Table 1.

With this model, we notice that:

• Aliens pay exactly for what they consume in terms of
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Figure 1: Application of TBAS in P2P network to
sharing femto access model

bandwidth.

• Linuses exchange all the foreign tokens against new
own ones. So the more they give connection to other
members, the more they are allowed to use other mem-
bers connections.

• Bills exchange only the free foreign tokens (received
by by other Bills/Linuses) against new own ones. The
paying foreign tokens (received by Aliens) are ex-
changed against money. So, if a Bill is visited only
by Aliens, he will not be allowed to use more than the
amount of bandwidth corresponding to the own tokens
provided by the banker initially.

• Linuses who share connection for free to support com-
munity spirit will have more free roaming than Bills
who receive some gain instead of that. Some fairness
could thus be achieved between Linuses and Aliens.

• No profit cases could be possible since the bandwidth
shared is controlled thanks to tokens.

To summarize, TBAS applied to the problem of shar-
ing femto access is a model representing many advantages
among which profit case avoidance, unfair situations avoid-
ance, better network coverage and capacity for the MO and
thus more generated revenues.

A paradigm for bandwidth sharing management
with QoS guarantees.

the following paradigm proposes a solution to QoS issues.
Our work considers several SPCs and several SRCs. We
will denote by X a given SPC. We assume that the SPC’s
resource reserved for sharing is an amount of bandwidth
denoted by BS(X). Then, we will consider that each SRC
Y requests connection from X. Actually, the bandwidth
BS(X) of SPC X is divided into two parts:

BS(X) = BSG(X) +BSY (X)

• BSG(X) is the part of bandwidth in which SRCs com-
munications can never be preempted. It is kind of a
guaranteed QoS allocated to SRCs.

Figure 2: Bandwidth sharing process and billing
process

• BSY (X) is the part of bandwidth in which SRCs com-
municatiosn can be preempted. This preemption is
due to the fact that the SPC has priority on this part
of bandwidth. Thus, a communication allocated in
BSY (X) is characterized by a risk of preemption.

Figure 2 introduces the sharing bandwidth process and
the billing process in both cases of a Green and a Yellow
connection allocation: let’s consider a SRC Y who needs an
amount of bandwidth equal to bw. bw will be allocated to
Y only if it is free. If X will need bw, he will not be able to
use it if the connection he allocated to Y is green. However,
he will be able to preempt the connection allocated to Y if
it is a yellow one.

Token Based Accounting Protocol is used to exchange ser-
vices between SRCs and SPCs against tokens (representing
money). The billing process depends on whether the SRC
has used a green connection or a yellow one.

In the case of a Green connection, the SRC will spend
N1 tokens corresponding to the used bandwidth bw. In the
case of a Yellow connection, the SRC will spend N2 (N2 <
N1) tokens if the connection succeed. Indeed, the yellow
connection is cheaper than the green one due to the risk of
preemption. If the yellow connection given to the SRC has
failed, this connection will be free.

The paradigm for bandwidth sharing management added
to the TBAS model for exchanging connectivity constitutes
a general model for a fair sharing connectivity ensuring QoS.

Interaction between SPCs actors and SRCs actors.

In general context, SRCs will request for some amount of
bandwidth from SPCs depending of their profiles. Each SPC
will treat the SRCs requests for a fixed bandwidth split.

1. For SRCs, the utility depends on their requests, the
other SRCs requests as well as the SPC’s decision
(bandwidth allocated and type of connection) for a
fixed SPC’s bandwidth split. So, the SRC’s utility de-
pends mainly on its competition with other SRCs to
receive some bandwidth from the same SPC.

2. For SPCs, the utility depends on their bandwidth split
for fixed SRCs requests.
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3. GAME PRESENTATION
Sharing femto access could be seen as a problem divided

into two levels: a first level modeled as a game restricted
to SRCs and a second level modeled as a game restricted to
SPCs. The first level considers fixed SPCs strategies while
the second one considers fixed SRCs strategies. This could
be motivated by the fact that learning methods are reliable
only when the surrounding environment is invariant.

Game restricted to SRCs.

The game restricted to SRCs where N SRCs are the play-
ers is the first level of sharing femto access problem. It
considers the competition between SRCs and assumes that
all SPCs bandwidth splits are fixed. We do not consider
the mobility of SRCs. However, we assume that SRCs have
some regular and similar connection behavior: each SRC re-
quests some SPCs connections in nearly same time slots with
almost invariant needs in terms of QoS. This means that re-
questing the SPCs femto access becomes almost routine for
SRCs. This could be seen as repeated games.

Along requested connections, each SRC will learn, thanks
to an algorithm running in a software embedded in its user
equipment, the best strategy to be played to maximize its
gain.

The game restricted to SRCs is defined as follows: given
fixed SPCs bandwidth splits (into green part and yellow
part), what would be the best strategy to be played by SRCs
in order to have a stable situation where the strategy of each
SRC player is optimal for him considering the other SRCs
strategies. This situation corresponds to a pure Nash equi-
librium in game theory. Recall that a pure Nash equilibrium
of a game is a situation where, for each player, there is no
unilateral strategy deviation that increases its utility [12].

Game restricted to SPCs.

The game restricted to SPCs where P SPCs are the play-
ers is the second level of sharing femto access problem. It
considers the competition between SPCs and assumes that
all SRCs bandwidth requests are fixed.

Along allocated connections, each SPC will learn, thanks
to an algorithm in its femto access, the best strategy to be
played to maximize its gain.

The game restricted to SPCs is defined as follows: given
fixed SRCs bandwidth requests, what would be the best
strategy to be played by SRCs in order to have a stable
situation where the strategy of each SPC player is optimal
for him considering the other SPCs strategies.

3.1 Game restricted to SRCs
As mentioned in the previous section, the game restricted

to SRCs assumes that SPCs bandwidth splits are fixed. Let’s
consider SPCj a fixed SPC. Let Bj

S be the total bandwidth

SPCj is agree to share and let Ψj
S be the proportion of Bj

SG

regarding Bj
S .

3.1.1 SRCs QoS needs

Each SRC’s QoS needs depend on the type of application
he requests. Requesting for femto access is equivalent to
request an amount of bandwidth. Fixing this amount of

bandwidth depends on the following parameters: the type
of application (real time, elastic), the QoS parameter that
the applications requires (delay, time transfer file, . . . ), the
type of connection (Green or Yellow) and the SRC’s profile
(QoS sensitive SRC or price sensitive SRC).

Our work takes into account the File Transfer Application.
QoS is defined as the time transfer file that we will denote
by t. The SRC’s QoS satisfaction is related to t. For each
SRC, the time transfer file should be between T1 and T2 and
is defined as follows:

• Case t = T1: BWMax corresponds to the required
bandwidth to download a file in t = T1. If a SPC
provides an amount of bandwidth equal to BWMax,
then the SRC’s QoS satisfaction is at the top.

• Case t = T2: BWMin corresponds to the required
bandwidth to download a file in t = T2. If a SPC
provides an amount of bandwidth equal to BWMin,
then the SRC’s QoS satisfaction is minimal.

Each SRC will request for a minimum amount of bandwidth
and a maximum amount of bandwidth in Green and Yellow
depending on its profile and on its user equipment Signal-
Strength towards the SPC’s femto cell.

All the SRCs requests can not be accepted. In fact, since
SPCs bandwidths are limited and since several SRCs could
request for the same SPC’s connection at the same time,
one possible response that a SRC could receive is a deny
one. Requesting for a Minimum and a Maximum amount
of bandwidth will decrease the chances to receive such a re-
sponse. Besides, requesting a bandwidth interval generalizes
the fact of requesting a fixed amount of bandwidth. In this
way, a SRC could receive an amount of bandwidth which
may be different from its optimal request but would avoid
him to have no payoff.

The minimum and the maximum amount of bandwidth
are fixed depending on the SRC’s profile. Note that the pa-
rameters caracterizing a SRC’s profile are real in [0, 1]. We
aim at translating these parameters into intervals of band-
width requests which are actually integers. So, we introduce
a parameter ε representing the discretization of the band-
width resquested. Let SSRCibe the set of possible strategies
of SRCi. In the following, we focus on the request of a SRC
denoted by SRCi according to its profile.

1. We consider the case where SRCi has its QoS sensi-
tivity parameter αi greater than 1/2. SRCi fixes a
revenue threshold under which he denies any proposed
connection (high QoS degradation). This threshold de-
noted by Rev Thi corresponds to a minimum amount
of bandwidth to be requested. This parameter depends
on the QoS sensitivity αi of the SRC. Rev Thi = αi−κ
where κ ∈ [0, 1] is the allowed variation from the QoS
degradation tolerance fixed according to the SRC’s
profile (more specifically αi).

SSRCi = {Rev Thi, Rev Thi+ε,Rev Thi+2ε, . . . , 1}.

2. We consider the case where SRCi has its QoS sen-
sitivity parameter αi less than 1/2. This implies
that its price sensitivity parameter βi is greater than

258



1/2. SRCi fixes a cost threshold denoted by Cost Thi

above which he denies any proposed connection (the
cost is beyond what he is able to pay). This thresh-
old corresponds to a maximum amount of bandwidth
to be requested. This parameter depends on the
QoS sensitivity of the SRC and is defined as follows:
Cost Thi = αi + κ.

SSRCi =
{Cost Thi, Cost Thi − ε, Cost Thi − 2ε, . . . , 0}.

The definition of SSRCi presented above takes only into
account intrinsic information. In fact, the strategies are
fixed following the parameters characterizing the SRC’s pro-
file (α, β). Now, to formalize a request that could be more
easily interpreted by the SPC, for each element si of SSRCi ,
we define an interval of bandwidth to be requested from the
SPCs. Since two types of connection are proposed by SPCs,
we will propose the two following solutions for bandwidth
request:

1. Each SRC sends to all the SPCs the same interval
of bandwidth to be requested corresponding only to
Green connection request. Indeed, since no preemp-
tion exists for this type of connection, the interval of
Green bandwidth requested does not depend on SPCs.
Once a SPC receives the interval of green bandwidth
requested by a given SRC, he will translate this in-
terval of bandwith into an interval of bandwidth that
the SRC needs in Yellow, using the probability of pre-
emption of its yellow connection. On one hand, the
advantage of this solution is that the bandwidth re-
quest is formulated once and sent to all the SPCs. On
another hand, the drawback of this solution is that the
SPC could cheat while computing the interval of the
amount of bandwidth needed by the SRC in Yellow
and thus propose an amount of bandwidth which in
reality does not correspond with SRC’s needs. In this
solution, for each element si in SSRCi , we define a sin-
gle interval of bandwidth to be requested to all SPCs.
This represents a couple of integers :(gi = [mG

i ,M
G
i ]).

2. Each SRC requests from each SPC to send him the
information of the risk of preemption taken in the case
of yellow allocated connection. In this solution, the
SRC computes by himself the interval of bandwidth
to be requested in Yellow which differs from one SPC
to another following the preemption risk characteriz-
ing its yellow connection. We denote by SPCj a given
SPC. Let δj be the probability of preemption of its
yellow connection. On one hand, this solution is more
reliable than the previous one since SRCs are sure not
to receive an amount of bandwidth which is not in the
interval of bandwidth needed. The drawback of this
solution is that it makes the bandwidth request pro-
cess more complicated. In fact, this solution supposes
that SRCs have the knowledge of some extrinsic in-
formation. Besides, the SRC’s bandwidth request is
specific to each SPC regarding its yellow connection
probability of preemption. Another drawback of this
solution is that SPCs could lie about the information
sent concerning the probability of preemption to incent

SRCs to request more bandwidth in yellow. In this so-
lution, for each element si in SSRCi , we define two
intervals of bandwidth to be requested for each SPC.
This represents a set of couple of couple integers:

{(g1
i = [mG1

i ,MG1
i ], y1

i = [mY1
i ,MY1

i ]);

(g2
i = [mG2

i ,MG2
i ], y2

i = [mY2
i ,MY2

i ]); . . . ;

(gPi = [mGP
i ,MGP

i ], yPi = [mYP
i ,MYP

i ])}

The parameters m
Xj

i ,M
Xj

i represent respectively the
minimum and the maximum amount of bandwidth to be re-
quested from the SPCj in X connection where X ∈ {G,Y }.
They are defined as follows :

1. Case where SRCi has its QoS sensitivity parameter αi

greater than 1/2:

(a) m
Gj

i = BWmax
si

and m
Yj

i = BWmax
si

× (1− δj)

(b) M
Gj

i = BWmax and M
Yj

i = BWmax

2. Case where SRCi has its QoS sensitivity parameter αi

less than 1/2.

(a) M
Gj

i = BWmax
si

and M
Yj

i = BWmax
si

× (1− δj)

(b) m
Gj

i = BWmin and m
Yj

i = BWmin

3.1.2 SPCs bandwidth allocation

Each SRC sends a bandwidth request to SPCs using ei-
ther the first solution or the second solution presented in
the previous subsection. Once all the SRCs requests re-
ceived, each SPC decides the way its bandwidth is allocated
to SRCs. The request of each SRCi is represented by one
element in SSRCi . According to a set Π of SRCs requets
Π =< s1, s2, . . . , sN > where si corresponds to the request
of SRCi, for any i, 1 ≤ i ≤ N , each SPCj gives an answer
to each SRCi represented by a triple (Gj

i , Y
j
i , bw

j
i ) defined

as follows:

• bwj
i represents the amount of bandwidth proposed by

SPCj to SRCi.

• Gj
i = 1 (resp. Y j

i = 1) means that SRCi has received
a Green (resp. Yellow) connection proposition from
SPCj . Note that the case where Gj

i = 1 and Y j
i = 1

is not possible.

• If Gj
i = 0 and if Y j

i = 0, then SRCi has received no
connection proposition from SPCj .

Let configj(Π) be the set of all answers (one answer per
SRC) of SPCj to Π. In other words,

configj(Π) =< (Gj
1, Y

j
1 , bw

j
1), (Gj

2, Y
j
2 , bw

j
2), . . . , (Gj

N , Y
j
N , bw

j
N ) >

The answers respect the two following properties.

1. SPCj gives SRCi an amount of bandwidth equal to
bwj

i where bwj
i is in the interval requested. More for-

mally, if (Gj
i = 1) then bwj

i ∈ g
j
i or if (Y j

i = 1) then

bwj
i ∈ y

j
i .

259



2. SPCj provides bandwidth to SRCs in the limits of its
bandwidth availability in Green and Yellow. Thus:∑N

i=0 G
j
i × bw

j
i < Ψj

SB
j
S and∑N

i=0 Y
j
i × bw

j
i < (1−Ψj

S)Bj
S .

Moreover, SPCj allocates its bandwidth in a way maxi-
mizing this outcome function:

USPC(configj(Π)) =
∑
i

Prop(bwj
i )(µj−Γj)

(
Gj

i + Y j
i (1− δj)

)
(1)

Note that SPCj ’s outcome function considers only its own
profile described in Section 2.1.1. Given a SRC strategy set,
each SPC proposes to allocate to each SRC a connection in
Green and Yellow such as its outcome function is maximized.

3.1.3 Formalization of Game restricted to SRCs.

Game theory models the interactions between players
competing for a common resource. In our system, the for-
mulation of this noncooperative game G = 〈N , S, U〉 can be
described as follows:

• The set of players is N . Each player is a SRC. There
are N SRCs.

N = {SRC1, SRCi, .., SRCN}

• The space of pure strategies S formed by the Cartesian
product of each set of pure strategies

S = SSRC1 × SSRCi × ...× SSRCN

Note that for each SRCi, the set SSRCi is defined in
Section 3.1.1. A pure strategy si for which corresponds
the SRC’s request.

• A set of utility functions U that quantifies the SRCs
outcomes from each SPC.

U = {(U1
1 , U

2
1 , ..., U

P
1 ), (U1

i , U
2
i , ..., U

P
i ), ..., (U1

N , U
2
N , ..., U

P
N )}

According to a set Π of SRCs requets Π =< s1, s2, . . . , sN >
where si corresponds to the strategy of SRCi, for any
i, 1 ≤ i ≤ N , each SRC’s utility regarding each SPC
is determined through the SPC’s allocation proposi-
tion. Since several allocation decisions could maximize
a SPC’s outcome function given by Equation (1), the
SRC’s utility regarding a SPC corresponds to the mean
of all these allocation decisions. Let solj(Π) be the set
of configj(Π) that maximizes SPCj ’s outcome func-
tion with M = |solj(Π)|.
The utility U j

i (Π) of SRCi (normalized ∈ [0, 1]) from
solj(Π) is expressed as follows:

U j
i (Π) =

∑
c∈solj(Π)

gainj
i (c)

M
. (2)

The gain of SRCi from SPCj ’s allocation decision c
in sol(Π)j is expressed as follows:

gainj
i (c) = Revji (c)− Costji (c)

Where c represents a triple (Gj
i , Y

j
i , bw

j
i ) to SRCi.

– Revji (c) ∈ [0, 1] represents the SRC’s QoS satis-
faction from connection c provided by SPCj and
is expressed as follows:

Revji (c) = Rev(bwj
i )Gj

iαi+Rev(bwj
i )Y j

i (1−δj)αi

where Rev(bwj
i ) ∈ [0, 1]

– Costji (c) ∈ [0, 1] represents the cost of connection
c provided by SPCj and is expressed as follows:

Costji (c) = Cost(bwj
i )Gj

iβi+Cost(bw
j
i )Y j

i (1−δj)βi

where Cost(bwj
i ) ∈ [0, 1]

SRCi selects the SPC following one of these two pro-
posed solutions:

1. In the first solution, SRCi selects the SPCj where

j = Argj{Max(U j
i (Π))}; j = {1, ..., P}

The drawback of this solution is that the con-
nection proposition(s) (solj(Π)) the SPCj sends
to each SRCi are computed considering that
all the SRCs requests and thus could discour-
age some SRCs to take SPCj ’s connection: due
to high competition, some SRCs will not choose
SPCj ’s connection. Since several SPCs are exist-
ing, SRCs have thus several possibilities for con-
nection acceptance. So, SPCj ’s proposition could
be much more interesting to each SRCi if some
other SRCs do not to accept SPCj ’s connection.

2. The second solution takes into account the point
presented in the first solution. Instead of sending
only one per SRC taking into consideration all
SRCs requests, SPCj sends P connection propo-
sitions. Each connection proposition considers a
number l of competing SRCs with 1 ≤ l ≤ P .
In this solution, SRCi will choose the SPCj for
which its mean utility over all the connection
propositions is the highest.

3.2 Game restricted to SPCs
The Game restricted to SPCs is triggered when the game

restricted to SRCs stops. It assumes that SRCs requests are
fixed as well as their SPCs attachement decisions.

The game restricted to SPCs is described as follows: for a
fixed SRCs request denoted by Π∗ as well as their SPCs at-
tachement decisions, the aim of each SPCj is to determine
the optimal Ψj

S for which its utility from solj(Π∗) is max-
imum, taking into consideration only the SRCs who have
accepted its connection proposition. So, ΨSj represents the
strategy of each SPCj .

SPC’s strategy is denoted by sj ∈ [0, 1]. Let’s denote by
SSPCj the set of possible strategies of the SPCj .

SSPCj =< 0, .....,Ψj
S − ε,Ψ

j
S ,Ψ

j
S + ε, ...., 1 > .
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4. EQUILIBRIUM IN GAME RESTRICTED
TO SRCS.

Since each SRCi has a finite set of strategies, this game
has a mixed Nash equilibrium [12]. In the following, we
study the existence of a pure Nash equilibrium in the Game
restricted to SRCs using the properties of potential games.
The definition of potential game could be found in [15].

Theorem 1. Each instance of the game restricted to
SRCs with only type of connections requests, admits at least
one pure Nash equilibrium.

The proof of this theorem is detailed in [11].

Sketch of proof.
For the case where all SPCs propose one type of con-

nection, in [11], an algorithm is given to compute a pure
Nash equilibrium. The algorithm is based on building some
alliances so that, the allocations of SPCs bandwidth is opti-
mal. Let C be an arbitrary pure profile. We denote by F (C)
the total free bandwidth among all SPCs. We will show
that the Best Response Dynamic in this game converges to
a pure Nash equilibrium. The Best Response dynamic algo-
rithm corresponds to compute a sequence of profiles. Let C
be an arbitrary profile. If no player has incentive to change
its strategy in C, then C is a pure Nash equilibrium and
this algorithm stops. If at least one player has incentive to
change its strategy in C, then this player changes its strat-
egy by choosing its best response and there is a new profile
C′. Now, the algorithm applies the same process for C′ and
so on. If some players have incentive to change their strat-
egy, then F (C) > F (C′). Thus the Best Response Dynamic
algorithm will end up since at each step the free bandwidth
is reduced. Note that function F correspond to a potential
function and that this game is a potential game.

4.1 Distributed Algorithm

Considered Algorithm 1.

1. At every time step, each player (SRC) chooses an ac-
tion according to his current Action Probability Vector
(APV). Thus, the ith player selects strategy s = ai(k)
at instant k with probability qi,s(k).

2. Each player obtains a payoff based on the set of all
actions. We note the reward to player i at time k:
gaini(k).

3. Each player updates his APV according to the rule:

qi(k+1) = qi(k)+b×gaini(k)×(eai(k)−qi(k)), i = 1, ..., n,
(3)

where 0 < b < 1 is a parameter and eai(k) is a unit

vector of dimension m with ai(k)th component unity.

It is easy to see that decisions made by players are com-
pletely decentralized, at each time step, player i only needs
gaini and qi, respectively his payoff and strategy, to update
his APV. Notice, that componentwise, Equation (3) can be
rewritten:

qi,s(k+1) =

{
qi,s(k) −b(gaini(k))qi,s(k) if ai 6= s
qi,s(k) +b(gaini(k))(1− qi,s(k)) if ai = s

(4)

Let K be the space of mixed profiles. Let Q[k] =
(q1(k), . . . , qN (k)) ∈ K denote the state of the player team
at instant k. Our interest is in the asymptotic behavior of
Q[k] and its convergence to a Nash Equilibrium. Clearly,
under the learning algorithm specified by Equation (3),
{Q[k], k ≥ 0} is a Markov process. Observe that this dy-
namic can also be put in the form

Q[k + 1] = Q[k] + b ·G(Q[k], a[k], gain[k]), (5)

where a[k] = (a1(k), ..., aN (k)) denotes the actions selected
by the player team at k and gain[k] = (gain1(k), ..., gainN (k))
their resulting payoffs, for some function G(., ., .) represent-
ing the updating specified by equation (3), that does not
depend on b. Consider the piecewise-constant interpolation
of Q[k], Qb(.), defined by

Qb(t) = Q[k], t ∈ [kb, (k + 1)b], (6)

where b is the parameter used in (3). Qb(.) belongs to the
space of all functions from R into K. These functions are
right continuous and have left hand limits. Now consider
the sequence {Qb(.) : b > 0}. We are interested in the limit
Q(.) of this sequence as b → 0. The following is proved in
[3]:

Proposition 1 ([3]). The sequence of interpolated pro-
cesses {Qb(.)} converges weakly, as b→ 0, to Q(.), which is
the (unique) solution of Cauchy problem

dQ

dt
= φ(Q), Q(0) = Q0 (7)

where Q0 = Qb(0) = Q[0], and φ : K → K is given by

φ(Q) = E[G(Q[k], a[k], gain[k])|Q[k] = Q],

where G is the function in Equation (5).

Recall that a family of random variable (Yt)t∈R weakly
converges to a random variable Y , if E[h(Xt)] converges
to E[h(Y )] for each bounded and continuous function h.
This is equivalent to convergence in distributions. The proof
of Proposition 1 in [3], that works for general (even with
stochastic payoffs) games, is based on constructions from [8],
in turn based on [1], i.e. on weak-convergence methods, non-
constructive in several aspects, and does not provide error
bounds. Using (4), we can rewrite E[G(Q[k], a[k], gain[k])]
in the general case as follows E[G(Q[k], a[k], gain[k])]i,s

= qi,s(1− qi,s)E[gaini|Q(k), ai = s])
−
∑

s′ 6=s qi,s′qi,sE[gaini|Q(k), ai = s′]

= qi,s[
∑

s′ 6=s qi,s′E[gaini|Q(k), ai = s]

−
∑

s′ 6=s qi,s′E[gaini|Q(k), ai = s′]

= qi,s
∑

s′(E[gaini|Q(k), ai = s]− qi,s′E[ri|Q(k), ai = s′]),
(8)

using the fact that 1 − qi,s =
∑

s′ 6=s qi,s′ . Let hi,s be the
expectation of the payoff for i if player i plays pure strategy
s, and players j 6= i play (mixed) strategy qj . Formally,

hi,s(q1, · · · , qi−1, qi+1, · · · , qn) = E[gain for i |Q(k), ai = s].

Let hi(Q) the mean value of hi,s, in the sense that

hi(Q) =
∑
s′

qi,s′hi,s′(Q).

We obtain from (8),

E[G(Q[k], a[k], c[k])]i,s = qi,s(hi,s − hi(Q)). (9)
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dqi,s
dt

= qi,s(hi,s − hi(Q)). (10)

This is a replicator equation, that is to say a well-known
and studied dynamics in evolutionary game theory [18, 6]. In
this context, hi,s is interpreted as player i’s fitness for a given
game, and hi(Q) is the mean value of the expected fitness in
the above sense. In particular, solutions are known to satisfy
the following theorem (sometimes called Evolutionary Game
Theory Folk Theorem) [18, 3].

Theorem 2 (see e.g. [18, 3]). The following are true
for the solutions of the replicator equation (10):

• All corners of space K are stationary points.

• All Nash equilibria are stationary points.

• All strict Nash equilibria are asymptotically stable.

• All stable stationary points are Nash equilibria.

From this theorem, we can conclude that the dynamics
(10), and hence the learning algorithm when b goes to 0,
will never converge to a point in K which is not a Nash
equilibrium. However, for general games, there is no con-
vergence in the general case [3]. We will now show that
for ours games, there is always convergence. It will then
follow that the learning algorithm we are considering here
converges towards Nash equilibria, i.e. solves the learning
problem for our games .

Theorem 3. In the game where all SPCs propose green
connections, the learning algorithm, for any initial condition
in K (except borders), always converges to a Nash Equilib-
rium.

Proof. Let Q be an arbitrary mixed profile. We denode
F (Q) be the average total free bandwidth among all SPCs
if SRCs play according to Q. We claim that F (.) is a Lya-
punov function of the dynamics, i.e. that F is monotone
along trajectories.

Indeed,

dF (Q(t))
dt

=
∑

i,s
∂F

∂qi,s

dqi,s
dt

=
∑

i,s
∂F

∂qi,s
(Q)qi,s

∑
s′ qi,s′ [hi,s(Q)− hi,s′(Q)]

= −
∑

i,s hi,s(Q)qi,s
∑

s′ qi,s′ [hi,s(Q)− hi,s′(Q)]

= −
∑

i

∑
s

∑
s′ qi,sqi,s′ [hi,s(Q)2 − hi,s(Q)hi,s′(Q)]

= −
∑

i

∑
s

∑
s′>s qi,sqi,s′ [hi,s(Q)− hi,s′(Q)]2

≤ 0
(11)

Thus F is decreasing along the trajectories of the ODE and,
due to the nature of the ODE (10), for initial conditions in
K will be confined to K.

Hence from the Lyapunov Stability theorem (see e.g. [5]
page 194), asymptotically all trajectories will be in the set

K′ = {Q∗ ∈ K : dF (Q∗)
dt

= 0}.
Now, from (11), we know that dF (Q∗)

dt
= 0 implies

qi,sqi,s′ [hi,s(Q) − hi,s′(Q)] = 0 for all i, s, s′, hence that Q∗

is a stationary point of the dynamics.
Since from Theorem 2, all stationary points that are not

Nash equilibria are unstable, the theorem follows.

5. SHARING FEMTO ACCESS PROBLEM:
ALGORITHM AND SIMULATIONS

Figure 3: Algorithm principle of the sharing femto
access problem

In Section 3, we have seen that the sharing femto access
problem is divided into two levels: Level 1 representing the
game restricted to SRCs and level 2 representing the game
restricted to SPCs. The algorithm principle of sharing femto
access problem with its two levels is detailed in Figure 3.
Then we will present some simulations results.

5.1 Algorithm principle

1. Each SPC fixes its bandwidth split.

ΨS = {Ψ1
S ,Ψ

2
S , . . . ,Ψ

P
S }

2. Each SRC sends to all SPCs a request using a specific
distributed algorithm denoted by Adist.

3. Each SPC defines its connection allocation sol(Π).

4. Each SPC sends its connection allocation proposition
to all SRCs.

5. Each SRC computes its utility following sol(Π).

6. Each SRC sends to each SPC a positive or a negative
response to its proposition.

7. When the Algorithm ADist converges, a signal is sent
to SPCs to trigger the game restricted to SPCs.

8. Each SPC computes its optimal bandwidth split Ψj∗

S

considering the fixed Π∗ and the SRCs who accepted
its connection proposition.

The whole algorithm stops when Ψ∗S is the same in two con-
secutive iterations of the whole algorithm.

5.2 Simulations
In this section, we will present one simulation with N

SRCs and 1 SPC: each SRCi is characterized by αi (the
QoS sensitivity parameter of SRCi) and is requesting for
the SPC’s connection characterized by µ to download a file.

We will only focus on the cases of a same category SRCs
and more specifically QoS sensitive SRCs and a gain sensi-
tive SPC. The N SRCs want to download a file of 1Mbyte.
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Figure 4: Variation of SRCs expected gain

We will consider T2 = 300sec, µ = 1, δ = 0.1, ε = 0.1,
κ = 0.1, ΨS = 0.5 and BS = 20Mb/s. Since a femto
access could support only 8 communications, we will run
simulations where 2 ≤ N ≤ 8 keeping the same input pre-
sented above. We consider the following strategy notation
si = (Rev Thi)

5.2.1 Scenario with 4 SRCs and 1 SPC

For this scenario, we will as a first step analytically com-
pute the game restricted to SRCs Nash equilibriums. To do
so, we will consider the same steps from 2 to 5 presented in
Figure 3 except that the SRC strategy profile is not gener-
ated with Algorithm Adist: we will consider all the possible
SRC strategy profiles and thus fill the SRCs payoff matrix
with utilities corresponding to each SRC strategy profile.
The SRCs payoff matrix highlights 6 pure Nash equilibri-
ums and are the following:

Π∗ = {(0.9, 0.9, 1, 1), (0.9, 1, 0.9, 1), (0.9, 1, 1, 0.9), (1, 0.9, 0.9, 1),

(1, 0.9, 1, 0.9), (1, 1, 0.9, 0.9)}.

Now, we will run the Algorithm Adist. First, we will verify
whether if it converges and then we will check whether if
the point of convergence ,if any, is one among the pure Nash
equilibriums detected analytically. To do so, we will consider
b = 0.1 and 700 iterations. In Figure 4 and 5, each point
represents the mean over 5 iterations of respectively SRCs
expected gain value and SRCs strategy probability.
Adist converges after 450 Iterations. Figure 4 shows that

the SRCs expected gain stabilize as follows:
Expected gain(SRC1)=Expected gain(SRC2)=0.45 and

Expected gain(SRC3)=Expected gain(SRC4)=0.5.
In Figure 5, we remark that the convergence point (point

where each SRC has a pure strategy) Π∗ = (0.9, 0.9, 1, 1)
matches with one of the pure Nash equilibriums computed
analytically.

After 450 Iterations, the Algorithm Adist converges. As a
consequence the game restricted to SRCs stops and a signal
is sent to the SPC to trigger the game restricted to SPCs.
Since only once SPC is existing, so the game restricted to
SPCs turns into an optimality problem where the SPC aims
at finding its optimal bandwidth split maximizing its gain.

Now, we will focus on the economic aspects of this sce-
nario. We will consider that the SPC is a Bill and that all

Figure 5: Variation of SRCs strategies probabilities

SRCs are Aliens. We consider that a SRC should pay 1
Token per bandwidth unit denoted by bwu and that a SPC
gains 1 unit price denoted by priceu per Token received by a
SRC. We remind that BWMax is the amount of bandwidth
for which the utility of the SRC is at the top (equal to 1).
If SRCi receives BWMax from the SPC, he will spend a
number of tokens denoted by TTop

i such as TTop
i = BWMax

bwu
.

At the convergence point of the Algorithm ADist, each
SRCi will spend a number of tokens denoted by TSpent

i such

as TSpent
i = TTop

i .ExpectedGain(SRCi).
The number of tokens that the SPC will receive by SRCs

is denoted by T receipt such as T receipt =
∑N

i=1 T
Spent
i

On one hand, each SRCi is an Alien, so TSpent
i corre-

spond to POTs(Paying Own Tokens). On another hand,
the SPC is a Bill, so T receipt correspond to PFTs(Paying
Foreign Tokens).

Let’s denote by p(p ∈ [0, 1]) the percentage of the whole
SPC’s gain the MO will get. Thus, the gain generated
by the SPC after exchanging its received tokens against
money is denoted by GainSPC such that GainSPC = (1 −
p).T receipt.priceu.

The whole algorithm representing the sharing femto ac-
cess problem and detailed in section 5.1 converges for this
scenario after exactely 2 consecutive iterations of the SPC’s
optimality problem.

For a number of SRCs varying from 2 to 8 and P = 1, we
have checked by simulations that pure Nash equilibrium in
the game restricted to SRCs is reachable.

The table 2 summarizes the number of iterations necessary
for Adist to converge for N varying from 2 to 8 and P = 1.
This result is true for SRCs with only two strategies.

Number of SRCs 2 3 4 5 6 7 8
Number of iterations 150 300 450 780 800 810 830

Table 2: Number of iterations for Adist convergence

5.3 Simulation results
Simulations results have shown that the game restricted

to SRCs using a distributed learning algorithm converges to
a pure Nash equilibrium. We have checked that this result
is available for a number of SRCs varying from 2 to 8 for
SRCs with exactly 2 strategies or more than 2 strategies.
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The distributed algorithm converges in a finite number of
iterations. The distributed learning algorithm running in
SRCs user equipments gives at convergence the minimum
and the maximum amount of bandwidth to be requested by
each SRC in Green and Yellow. The algorithm running in
SPCs femto access gives the optimal bandwidth split to be
fixed by each SPC in order to maximize its gain.

6. CONCLUSION AND PERSPECTIVES
In this article, we investigate the problem of sharing femto

access taking a file transfer application as example. We have
proved using potential games properties that the game re-
stricted to SRCs is a potential game and thus admits at
least one pure Nash equilibrium considering a game with N
SRCs and P SPCs proposing only one type of connection.
The simulations presented focus on examples with one SPC
where SRCs objectives conflict: SRCs belonging to the same
category of QoS sensitive SRCs. The Distributed Learning
Algorithm always converges to a pure Nash equilibrium.

As a perspective, we will also focus on the convergence
time of the algorithm ADist applied in a game with several
SRCs and several SPCs and also on the optimzation of this
time of convergence.
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