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ABSTRACT

We studyMt/Mt/N/N+R queue and obtain stability bounds
for main characteristics of the respective queue-length pro-
cess.
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1. INTRODUCTION

Nonstationary Erlang loss queueing model has been stud-
ied in some recent papers, see [2,3,9]. Here we consider the
simplest generalization of this model, namely we study non-
stationary Markovian queue with N servers and R ≥ 0 wait-
ing rooms and obtain the stability bounds for some charac-
teristics of this queue. There is a number of investigations of
stability for nonstationary continuous-time Markov chains,
see for instance first results in [6], and more detail studies for
birth and death processes (BDPs) in [1,7]. Here we apply our
general approach and the idea of paper [5] and prove some
simple stability bounds for nonstationary Mt/Mt/N/N +R
queue.

Let X = X(t), t ≥ 0 be queue-length process for
Mt/Mt/N/N + R queue. This is a BDP on state space
EN+R = {0, 1 . . . , N+R} and birth and death rates λn(t) =
λ(t), µn(t) = min (n,N)µ(t) respectively. We suppose that
arrival and service intensities λ(t) and µ(t) are locally inte-
grable on [0,∞). Let pi(t) = Pr {X(t) = i} be state prob-
abilities of X(t), and p(t) = (p0(t), . . . , pN+R(t))T be the
respective column vector.

Then we can write the forward Kolmogorov system
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

dp0
dt

= −λ(t)p0 + µ(t)p1,
dpk
dt

= λ(t)pk−1 − (λ(t) + kµ(t)) pk+
(k + 1)µ(t)pk+1, 1 ≤ k ≤ N − 1,

dpk
dt

= λ(t)pk−1 − (λ(t) +Nµ(t)) pk+
Nµ(t)pk+1, N ≤ k < N +R,

dpN+R
dt

= λ(t)pN+R−1 −Nµ(t)pN+R

(1)

in the following form:

dp

dt
= A (t) p, t ≥ 0, (2)

where A(t) = {aij(t), t ≥ 0} is the transposed intensity ma-
trix of the process, and

aij(t) =


λ (t) , if j = i− 1,

min (i+ 1, N)µ (t) , if j = i+ 1,
− (λ (t) + min (i,N)µ (t)) , if j = i,

0, overwise.

(3)
We denote throughout the paper by ‖ • ‖ the l1-norm,

i.e. ‖x‖ =
∑
|xi|, for x = (x0, ..., xN+R)T and ‖B‖ =

maxj
∑
i |bij | for B = (bij)

N+R
i,j=0.

Let Ω = {x : x ≥ 0, ‖x‖ = 1} be a set of all stochastic
vectors.

Let Ek(t) = E {X(t) |X(0) = k } be the mean of the pro-
cess at the moment t under initial condition X(0) = k, and
Ep(t) be the mathematical expectation (the mean) at the
moment t under initial probability distribution p(0) = p.

Consider also a ”perturbed” queue-length process X̄ =
X̄(t), t ≥ 0 with general structure of intensity matrix Ā(t).

Namely, X̄(t) is not BDP in general. Put Â(t) = Ā(t)−A(t).
We assume that the perturbations are uniformly small, i.e.
‖Â(t)‖ ≤ ε for almost all t ≥ 0.

2. GENERAL STABILITY BOUNDS
LetX(t) be a general BDP with finite state space EN+R =
{0, 1 . . . , N +R}.

Let d1, ..., dN+R be positive numbers. Put

αk (t) = λk−1 (t) + µk (t)− dk+1
dk

λk (t)− dk−1
dk

µk−1 (t) ,

1 ≤ k ≤ N +R,
(4)

where d0 = dN+R+1 = 0.
Denote G =

∑N+R
i=1 di, d = min1≤i≤N+R di.
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Theorem 1. Let there exist a positive sequence {di} and
a positive number θ such that

αi(t) ≥ θ, i = 1, 2, . . . , N +R, t ≥ 0. (5)

Then the following stability bounds hold:

lim sup
t→∞

‖p(t)− p̄(t)‖ ≤
ε
(
1 + log 4G

d

)
θ

, (6)

and

lim sup
t→∞

∣∣Ep(t)− Ēp̄(t)
∣∣ ≤ (N +R) ε

(
1 + log 4G

d

)
θ

, (7)

for arbitrary initial probability distributions p(0) and p̄(0)
for X(t) and X̄(t) respectively.

Proof. Firstly we obtain the bounds on the rate of con-
vergence. The property

∑N+R
i=0 pi(t) = 1 for any t ≥ 0 allows

to put p0(t) = 1−
∑
i≥1 pi(t), then we obtain the following

system from (2)

dz(t)

dt
= B(t)z(t) + f(t), (8)

where z(t) = (p1(t), . . . , pN+R(t))T , f(t) = (λ0(t), 0, . . . , 0)T ,

and B = (bij)
N+R
i,j=1 =

−(λ0 + λ1 + µ1) (µ2 − λ0) −λ0 · · · −λ0
λ1 −(λ2 + µ2) µ3 · · · 0
0 λ2 −(λ3 + µ3) · · · 0

.

.

.

.

.

.

.

.

.
. . .

.

.

.
0 . . λN+R−1 −µN+R

.
(9)

Then we have

z(t) = V (t, s)z(s) +

∫ t

s

V (t, z)f(z) dz, (10)

where V (t, z) is a Cauchy matrix for equation (8).
Consider now the triangular matrix

D =


d1 d1 d1 · · · d1

0 d2 d2 · · · d2

0 0 d3 · · · d3

...
...

. . .
. . .

0 0 0 0 dN+R

 , (11)

and the respective norms ‖x‖1D = ‖Dx‖, and ‖B‖1D =
‖DBD−1‖.

We have DB(t)D−1 =



− (λ0 + µ1)
d1
d2
µ1 . . . 0

d2
d1
λ1 − (λ1 + µ2) . . . 0

0
d3
d2
λ2

. . . 0

.

.

. 0
. . . 0

. . .

. . .
dN+R−1
dN+R

µN+R−1

0 .
dN+R
dN+R−1

λN+R−1 −(λN+R−1 + µN+R)


(12)

and the following bound of the logarithmic norm γ (B(t)) in
1D−norm holds (see for instance [3, 4, 8, 9]):

γ (B)1D = max
i

(
di+1

di
λi(t) +

di−1

di
µi−1(t)−

(λi−1(t) + µi(t))) = max (−αi (t)) ≤ −θ, (13)

in accordance with (5). Therefore the following inequality
holds:

‖z∗(t)− z∗∗(t)‖1D ≤ e−θ(t−s)‖z∗(s)− z∗∗(s)‖1D, (14)

for any initial conditions z∗(s), z∗∗(s) and any s, t, 0 ≤ s ≤ t.

Then we obtain the following bound in ’natural’ norm:

‖p∗(t)− p∗∗(t)‖ ≤ 2‖z∗(t)− z∗∗(t)‖ =

2‖D−1D (z∗(t)− z∗∗(t)) ‖ ≤
4

d
‖z∗(t)− z∗∗(t)‖1D ≤

4

d
e−θ(t−s)‖z∗(s)− z∗∗(s)‖1D ≤ (15)

4G

d
e−θ(t−s)‖z∗(s)− z∗∗(s)‖ ≤

4G

d
e−θ(t−s)‖p∗(s)− p∗∗(s)‖ ≤ 8G

d
e−θ(t−s),

for any initial conditions p∗(s) , p∗∗(s) and any s, t, 0 ≤
s ≤ t.

Consider now the forward Kolmogorov system for per-
turbed process:

dp̄

dt
= Ā(t)p̄(t) (16)

Here we slightly modify the approach of paper [5]. Put

β(t, s) = sup‖v‖=1,
∑
vi=0 ‖U(t)v‖ =

1
2

maxi,j
∑
k |pik(t, s)− pjk(t, s)|, (17)

where U(t, s) is Cauchy matrix of equation (2), and pik(t, s) =
Pr {X(t) = k|X(s) = i}.

Then

‖p(t)− p̄(t)‖ ≤ β(t, s)‖p(s)− p̄(s)‖+

∫ t

s

‖Â(u)‖β(u, s)du.

(18)
Moreover, the following estimates hold:

β(t, s) ≤ 1, β(t, s) ≤ ce−b(t−s)

2
, 0 ≤ s ≤ t, (19)

where c = 8G
d

, b = θ.
Finally we have

‖p(t)− p̄(t)‖ ≤
‖p(s)− p̄(s)‖+ (t− s)ε, 0 < t < b−1 log c

2
,

b−1(log c
2

+ 1− ce−b(t−s))ε+ c
2
e−b(t−s)‖p(s)− p̄(s)‖,

t ≥ b−1 log c
2

(20)
for any initial conditions p(s) and p̄(s). Hence for s = 0
and t→∞ we obtain (6).

The second bound (7) follows from the inequality∣∣Ep(t)− Ēp̄(t)
∣∣ ≤∑

k

k|pk(t)−p̄k(t)| ≤ (N+R)‖p(t)−p̄(t)‖.

Corollary 1. Let λ(t) and µ(t) be 1-periodic. Let (in-
stead of (5)) there exist a positive sequence {di} and a pos-
itive number ϕ∗ such that

αi(t) ≥ ϕ(t), i = 1, 2, . . . , N +R, 0 ≤ t ≤ 1, (21)
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where ∫ 1

0

ϕ(t) dt = ϕ∗. (22)

Let

K = sup
|t−s|≤1

t∫
s

ϕ(τ) dτ <∞. (23)

Then we have the following stability bounds:

lim sup
t→∞

‖p(t)− p̄(t)‖ ≤
ε
(

1 + log 4GeK

d

)
ϕ∗

, (24)

and

lim sup
t→∞

∣∣Ep(t)− Ēp̄(t)
∣∣ ≤ (N +R) ε

(
1 + log 4GeK

d

)
ϕ∗

, (25)

for arbitrary initial probability distributions p(0) and p̄(0)
for X(t) and X̄(t) respectively.

Proof. The statement follows from inequality e−
∫ t
s ϕ(u) du ≤

eKe−ϕ
∗(t−s).

We can use another approach to bounding the rate of con-
vergence in ’natural’ norm, namely, in the final part of (16)
we have

‖z∗(s)− z∗∗(s)‖1D ≤ ‖p∗(s)− p∗∗(s)‖1D. (26)

Put s = 0, p∗(0) = π(0), p∗∗(0) = p(0) = e0, where π(t) is
1-periodic. Then we obtain ‖π(0)‖1D ≤ lim supt→∞ ‖π(t)‖1D
and

‖π(t)‖1D ≤ ‖V (t, 0)π(0)‖1D +

∥∥∥∥∫ t

0

V (t, τ)f(τ)dτ

∥∥∥∥
1D

≤

≤ eKe−ϕ
∗t‖π(0)‖1D +M1

∫ t

0

e−
∫ t
τ ϕ(u) dudτ (27)

≤ eKe−ϕ
∗t‖π(0)‖1D +M1e

K

∫ t

0

e−ϕ
∗(t−τ)dτ,

where e−
∫ t
0 ϕ(u)du ≤ eKe−ϕ

∗t and λ0(t) ≤M1 for almost all
t ≥ 0. Then

lim sup
t→∞

‖π(t)‖1D ≤
M1e

K

ϕ∗
. (28)

Therefore in (19) and (20) we have c = 4e2KM1
dϕ∗ , b = ϕ∗

and choosing p̄(0) = π̄(0), we obtain the following state-
ment.

Corollary 2. Let λ0(t) ≤ M1 for almost all t ≥ 0, and
let the assumptions of Corollary 1 be fulfilled. Then the fol-
lowing bounds hold:

lim sup
t→∞

‖p(t)− p̄(t)‖ ≤
ε
(

1 + log 2e2KM1
dϕ∗

)
ϕ∗

, (29)

and

lim sup
t→∞

∣∣Ep(t)− Ēp̄(t)
∣∣ ≤ ε(N +R)

(
1 + log 2e2KM1

dϕ∗

)
ϕ∗

.

(30)

Now we consider essentially another approach.
Denote

W = min
i≥1

di
i
, m = max

|i−j|=1

di
dj
. (31)

Theorem 2. Let the assumptions of Corollary 2 be ful-
filled. Then the following stability bound holds:

lim sup
t→∞

∣∣Ep(t)− Ēp(t)
∣∣ ≤ (32)

2eKεe(1+m)ε

Wϕ∗

(
(1 +m)

M1e
K

ϕ∗
+
d1

2

)
.

Proof. Rewrite system (8) in the following form:

dz

dt
= B̄(t)z(t) + f̄(t) + B̂(t)z(t) + f̂(t), (33)

where B̂(t) = B(t)− B̄(t), f̂(t) = f(t)− f̄(t).
Then in any norm the following bound holds:

‖z(t)− z̄(t)‖ ≤
∫ t

0

‖V̄ (t, τ)‖(‖B̂(τ)‖‖z(τ)‖+ ‖f̂(t)‖) dτ,

(34)
if the initial conditions z(0) = z̄(0) are the same.

We have

‖B̂(t)‖1D = ‖DB̂(t)D−1‖1 ≤
maxn

(
ε
2
(1 +

dn+1
dn

) + ε
2
(1 +

dn−1
dn

)
)
≤ (1 +m) ε.

(35)

Therefore

γ(B̄(t))1D ≤ γ(DB(t)D−1)1 + ‖B̂(t)‖1D ≤ −ϕ(t) + (1 +m) ε. (36)

On the other hand 1-periodicity of z(t) and π(t) implies
the inequality ‖z(t)‖1D ≤ ‖π(t)‖1D ≤ lim supt→∞ ‖π(t)‖1D,
and we can apply bound (28).

Moreover,

‖z‖1E =
∑
k≥1 k|pk| =

∑
k≥1

k
dk
dk|pk| ≤

W−1∑
k≥1 dk|pk| = W−1∑

k≥1 dk

∣∣∣∑i≥k pi −
∑
i≥k+1 pi

∣∣∣ ≤
W−1∑

k≥1 dk
(∣∣∣∑i≥k pi

∣∣∣+
∣∣∣∑i≥k+1 pi

∣∣∣) ≤
2
W

∑
k≥1 dk

∣∣∣∑i≥k pi

∣∣∣ ≤ 2
W
‖z‖1D.

(37)

Note that ‖f̂(t)‖1D = d1ε
2

.
Hence we have∣∣Ep(t)− Ēp(t)

∣∣ ≤ ‖z(t)− z̄(t)‖1E ≤
2
W
‖z(t)− z̄(t)‖1D ≤

≤ 2ε
W

(
(1 +m) M1e

K

ϕ∗ + d1
2

) ∫ t
0
e−

∫ t
τ (ϕ(u)−(1+m)ε) dudτ ≤

≤ 2eKεe(1+m)ε

Wϕ∗

(
(1 +m) M1e

K

ϕ∗ + d1
2

)
.

(38)

3. BOUNDS FOR THE QUEUE-LENGTH PRO-
CESS

Let nowX(t) be a queue-length process forMt/Mt/N/N+
R queue. Then we have

αk(t) = λ(t) + kµ(t)− dk+1

dk
λ(t)− dk−1

dk
(k − 1)µ(t),

436



if 1 ≤ k ≤ N , and

αk(t) = λ(t) +Nµ(t)− dk+1

dk
λ(t)− dk−1

dk
Nµ(t),

if N < k ≤ N +R.

First case, large service rate.

Let firstly there exist l > 1 such that

Nµ(t)− lλ(t) ≥ ω > 0, (39)

for almost all t ≥ 0. Put d1 = 1,
dk+1
dk

= 1, k ≤ N − 2, and

dk+1
dk

= l, k ≥ N − 1.

Then

αk (t) =


µ (t) , k < N − 1;

µ (t)− (l − 1)λ (t) , k = N − 1;(
1− 1

l

)
(Nµ (t)− lλ (t)) , N ≤ k ≤ N +R− 1;

Nµ (t)
(
1− 1

l

)
+ λ (t) , k = N +R.

(40)
Suppose l ≤ N

N−1
, hence

ϕ (t) = min
k
αk (t) =

(
1− 1

l

)
(Nµ (t)− lλ (t)) . (41)

Proposition 1. Let (39) be satisfied. Then stability es-
timates (6) and (7) hold, where θ = (1 − 1

l
)ω, d = 1 and

G = N − 1 +
∑R+1
i=1 li.

Proposition 2. Let arrival and service rates λ(t) and
µ(t) be 1-periodic. Let (instead of (39)) there exist ζ such
that ∫ 1

0

(Nµ (t)− lλ (t)) dt ≥ ζ > 0. (42)

Then bounds (24) and (25) hold, where ϕ∗ = (1− 1
l
)ζ, d =

1 and G = N − 1 +
∑R+1
i=1 li.

Suppose now l ≥ N
N−1

.

Proposition 3. Let arrival and service rates λ(t) and
µ(t) be 1-periodic, λ(t) ≤ M1 for almost all t ∈ [0, 1]. Let
there exist l > 1 such that

min
k
αk = µ (t) ,

∫ 1

0

µ (t) dt ≥ ψ > 0,K = sup
|t−s|≤1

∫ t

s

µ(τ)dτ.

(43)
Then the following bounds hold:

lim sup
t→∞

‖p(t)− p̄(t)‖ ≤
ε
(

1 + log 2e2KM1
ψ

)
ψ

, (44)

lim sup
t→∞

∣∣Ep(t)− Ēp(t)
∣∣ ≤ (45)

2ε(N − 1)eKe(1+l)ε

ψ

(
(1 + l)

M1e
K

ψ
+

1

2

)
.

Proof. Bound (44) follows from Corollary 2 for d = 1 and
ϕ∗ = ψ. Bound (45) follows from Theorem 2 for d = 1,
ϕ∗ = ψ, m = l and W = 1

N−1
.

Second case, large arrival rate.

Let firstly for some l < 1 the following inequality holds:

lλ(t)−Nµ(t) ≥ ω > 0 (46)

Put
dk+1
dk

= l, k ≥ 1. Then

αk (t) =


(

1
l
− 1
)

(lλ (t)− kµ (t)) + µ (t) , k ≤ N − 1;(
1
l
− 1
)

(lλ (t)−Nµ (t)) , N ≤ k ≤ N +R− 1;
λ (t)−N

(
1
l
− 1
)
µ (t) , k = N +R

(47)
and

ϕ (t) = min
k
αk (t) =

(
1

l
− 1

)
(lλ (t)−Nµ (t)) . (48)

Proposition 4. Let (46) be fulfilled. Then stability es-
timates (6) and (7) hold, where θ = ( 1

l
− 1)ω, d = lN+R

and G < N +R.

Proposition 5. Let now λ(t) and µ(t) be 1-periodic. Let
for some positive ζ∫ 1

0

(lλ (t)−Nµ (t)) dt ≥ ζ > 0. (49)

Then the following stability bounds hold:

lim sup
t→∞

‖p(t)− p̄(t)‖ ≤
ε
(

1 + log 4eK(N+R)

lN+R

)
(

1
l
− 1
)
ζ

, (50)

and

lim sup
t→∞

|Ep(t)− Ēp̄(t)| ≤
(N +R)ε

(
1 + log 4eK(N+R)

lN+R

)
(

1
l
− 1
)
ζ

.

(51)

4. EXAMPLES
Example 1. Let λ(t) = 9+sin 2πt, µ(t) = 1+cos 2πt, N =

100, R = 105, ε = 10−6.
The assumptions of Proposition 3 are fulfilled for l = 2.

Then M1 = 10, K = 1 + 1
π
, ψ = 1 and we have the

following stability bounds:

lim sup
t→∞

‖p(t)− p̄(t)‖ ≤ 6.632 · 10−6 (52)

and

lim sup
t→∞

|Ep(t)− Ēp̄(t)| ≤ 0.084. (53)

Hence we can apply the approach of [8] and find the limit

characteristics approximately with the same error ε as the
respective characteristics of truncated process with m = 146
and t ∈ [21.0, 22.0]. The corresponding graphs are shown in
Figures 1-2.
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Figure 1: Approximation of the limiting mean Ēp̄(t).

Figure 2: Approximation of the limit behavior of
J̄0(t) = Pr

(
X̄(t) = 0

)
.

Example 2. Let λ(t) = 250 + 200 sin 2πt, µ(t) = 1 +
cos 2πt, N = 100, R = 104, ε = 10−6.

Then the assumptions of Proposition 5 are satisfied for
l = 1

2
. We have

∫ 1

0
(lλ (t)−Nµ (t)) dt = 25, M1 = 450,

K = 100 + 101
π

, ψ = 1. Hence the following stability bounds
hold:

lim sup
t→∞

‖p(t)− p̄(t)‖ ≤ 2.807 · 10−4, (54)

lim sup
t→∞

|Ep(t)− Ēp̄(t)| ≤ 2.836. (55)

5. ACKNOWLEDGMENTS
The research has been partially supported by RFBR, grants

11-07-00112 and 11-01-12026.

6. REFERENCES

[1] D. B. Andreev at al. Ergodicity and stability of
nonstationary queueing systems. Th. Prob. Math.
Statist., 68: 1–10, 2004.

[2] E. A. Van Doorn and A. I. Zeifman. On the speed of
convergence to stationarity of the Erlang loss system.
Queueing Syst., 63: 241–252, 2009.

[3] E. A. Van Doorn, A. I. Zeifman, and T. L. Panfilova.
Bounds and asymptotics for the rate of convergence of
birth-death processes. Th. Prob. Appl., 54: 97–113,
2010.

[4] B. Granovsky and A. Zeifman. Nonstationary queues:
Estimation of the rate of convergence. Queueing Syst.,
46: 363–388, 2004.

[5] A. Yu. Mitrophanov. Stability and exponential
convergence of continuous-time Markov chains. J.
Appl. Prob., 40: 970–979, 2003.

[6] A. I. Zeifman. Stability for contionuous-time
nonhomogeneous Markov chains. Lect. Notes Math.,
1155: 401–414, 1985.

[7] A. Zeifman A. Stability of birth and death processes.
J. Math. Sci., 91: 3023–3031, 1998.

[8] A. Zeifman at al. Some universal limits for
nonhomogeneous birth and death processes. Queueing
Syst., 52: 139–151, 2006.

[9] A. I. Zeifman. On the nonstationary Erlang loss
model. Autom. Rem. Contr., 70: 2003–2012, 2009.

438


