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ABSTRACT

In this paper we embed the theory of cooperative differential
games within the theory of dynamic games and discuss a
number of results of them.
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1. THE GENERAL SETTING

Dynamic game theory brings together four features that are
key to many situations in economy, ecology, and elsewhere:
optimizing behavior, presence of multiple agents/players,
enduring consequences of decisions and robustness with re-
spect to variability in the environment.

To deal with problems bearing these four features the dy-
namic game theory methodology splits the modeling of the
problem into three parts.

One part is the modeling of the environment in which the
agents act. To obtain a mathematical model of the agents’
environment, usually, a set of differential or difference equa-
tions is specified. These equations are assumed to capture
the main (dynamical) features of the environment. A char-
acteristic property of this specification is that these dynamic
equations mostly contain a set of so-called "input” functions.
These input functions model the effect of the actions taken
by the agents on the environment during the course of the
game. In particular by viewing "nature” as a separate player
in the game who can choose an input functional that works
against the other player(s) one can model worst case sce-
nario’s and, consequently, analyze robustness of the "undis-
turbed” game solution.

A second part is the modeling of the agents’ objectives. Usu-
ally the agents’ objectives are formalized as cost/utility func-
tionals which have to be minimized. Since this minimization
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has to be performed subject to the specified dynamic model
of the environment, techniques developed in optimal control
theory play an important role in solving dynamic games. In
fact, from a historical perspective, the theory of dynamic
games arose from a merge of static game theory and opti-
mal control theory. However, this merge can not be done
without further reflection.

This is exactly what the third modeling part is about. To
understand this point it is good to summarize the rudiments
of static games. Most research in the field of static game the-
ory has been, and is being, concentrated on the normal form
of a game. In this form all possible sequences of decisions
of each player are set out against each other. So, e.g., for
a two-player game this results in a matrix structure. The
information agents have about the game is crucial for the
outcome of the decision making. In static games a distinc-
tion is made between complete and incomplete information
games. In a complete information game, agents know not
only their own payoffs, but also the payoffs and strategies of
all the other agents.

Characteristic for a static game is that it takes place in one
moment of time: all players make their choice once and si-
multaneous and, dependent on the choices made, each player
receives his payoff.

In such a formulation important issues like the order of play
in the decision process, information available to the play-
ers at the time of their decisions, and the evolution of the
game are suppressed, and this is the reason why this branch
of game theory is usually classified as ”static”. In case the
agent’s act in a dynamic environment these issues are, how-
ever, crucial and need to be properly specified before one
can infer what the outcome of the game will be. This spec-
ification is the third modeling part that characterizes the
dynamic game theory methodology.

One branch of dynamic games that are extensively analyzed
in literature are the static noncooperative games that are
played repeatedly.

In this paper we review results obtained for another spe-
cial class of dynamic games. We consider games where the
environment can be modeled by a set of differential equa-
tions, the so-called differential games (DG), see Figure 1.
Of course many other mathematical models exist to describe
systems which change over time (or sequentially). Well-
known models are, e.g., difference equations, partial differen-
tial equations, time-delay equations where either stochastic
uncertainty is added or not. All of these give rise to differ-
ent classes of dynamic games that have their own specific



features.

Current applications of differential games range from eco-
nomics, financial engineering, ecology, marketing to the mil-
itary. See e.g. [31], [7], [17], [30]. Furthermore, the proceed-
ings and the associated Annals of the International Sym-
posia on Dynamic Games and Applications document the
development of both theory and applications over the last
30 years.

Within this class of differential games we pay some specific
attention to the popular case that the objectives are mod-
eled as functionals containing just (affine) quadratic terms
and the differential equations are linear (readers interested
in more details on linear quadratic differential games are
referred to [9]). The popularity of these so-called linear-
quadratic differential games is on the one hand caused by
practical considerations. To some extent this kind of dif-
ferential games are analytically and numerically solvable. If
one leaves this track, one easily gets involved in the problem
of solving sets of nonlinear partial differential equations, and
only few of such equations can be solved analytically. Even
worse, when the number of state variables is more than two
in these equations, a numerical solution is in general hard
to obtain.

On the other hand this linear-quadratic problem setting nat-
urally appears if the agents’ objective is to minimize the
effect of a small perturbation of their nonlinear optimally
controlled environment. By solving a linear quadratic con-
trol problem, and using the by this problem implied optimal
actions, players can avoid most of the additional cost in-
curred by this perturbation (see [9] for a treatment of linear
quadratic differential games).

To realize his objective an agent can either cooperate with
one or more agents in the game or not. In case all agents
cooperate we speak about a cooperative game (C). In case
none of the agents cooperates with someone else the game is
called a noncooperative game (NC). The intermediate case
that groups of agents cooperate in coalitions against each
other in a noncooperative way is called a coalitional game
(CG), see Figure 2.

We will assume here that if agents cooperate that the agreed
solution is binding (so it can be enforced).

In some situations where agents cooperate it is possible that
agents can transfer (part of) their revenues/cost to another
agent. If this is the case the game is called a transferable
utility (TU) game. Otherwise it is called a non-transferable
utility (NTU) game, see Figure 3.

Another important issue that affects the outcome of the
game is the organization of the decision making process.
In case there is one agent who has a leading position in the
decision making process the game is called a Hierarchical
or Stackelberg game (after H. von Stackelberg [39]). So in
this case there is a vertical structure in the decision making
process. In case there does not exist such a dependency we
talk about a horizontal decision making structure.

To capture information aspects in a static game one uses the
so-called extensive form of the game. Basically this involves
a tree structure with several nodes and branches, providing
an explicit description of the order of play and the infor-
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Figure 1: Differential Games (DG).

mation available to each agent at the time of his decision.
In case at least one of the agents has an infinite number
of actions to choose from it is impossible to use the tree
structure to describe the game. In those cases the extensive
form involves the description of the evolution of the under-
lying decision process using a set of difference or differential
equations. That is, introducing u(k) := [u1 (k) -+ ,un(k)],
within a continuous time framework the extensive form is
given by

i(k) = fe(k z(k),u(k)), z(0) = zo;

yi(k) = hi(k,z(k),u(k)), i =1, ,N;

ni(k) = Ir(k,mi(k), yi(k), u(k), zi(k)), 0i(0) = nio;
ui(k) = 7i(k,mi(k)),

together with a cost functional J; : X x Uy X --- x Uy — IR
of agent i. Here z(k) € X represents the state of the game,
ui(k) € U; the actions taken by agent ¢, y;(k) the obser-
vations of agent 4, n;(k) the information available to agent
¢ and z;(k) information that gets available exogenously, all
at stage k. By considering different functions I(.) different
information structures can be modeled. Some well-known
information structures are the so-called open-loop and feed-
back (perfect state) information case. The open-loop infor-
mation structure models the case that all agents know all
future functions fx, hx and cost functions J; at stage k =0
together with the initial state xo. In this framework it is as-
sumed that the agents determine their actions at £k = 0 for
the whole planning horizon of the game. Next submit these
plans to some authority, who then enforces these plans as
binding commitments for the whole planning period. The
feedback information case assumes that separate from the
fact that all agents know all future functions fr, hx and
cost functions J; at stage k£ = 0 they also know at any stage
k the current state of the system x(k). Clearly, this infor-
mation structure fits much better reality in most cases.

2. CHOICE OF ACTIONS

From the previous section it will be clear that the actions
played by the agents in a dynamic game depend on the co-
ordination structure, organizational structure, information
structure and decision rule (or strategy) followed by the
agents. Assuming that every agent likes to minimize his cost
the problem as stated so far, however, is not well defined.
Depending on the coordination structure and organizational
structure different solution concepts can be considered.
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Figure 2: Classification Differential Games.
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If a static noncooperative game is played repeatedly, the no-
tion of mixed strategies is often used. In a mixed strategy
the agents choose their actions based on a probability dis-
tribution. The probability distribution chosen by the agents
is assumed to be such that their average value of the game
is optimized.

In a Stackelberg game (see e.g. [16]for a review of its use
in supply chain and marketing models) it is assumed that
the leader announces his decision ur,, which is subsequently
made known to the other player, the follower. With this
knowledge, the follower chooses his decision ur by minimiz-
ing his cost for this choice of ur. So, the optimal reaction
of the follower ur is a function of uy,. The leader takes this
optimal reaction function of the follower into account to de-
termine his action as the argument that minimizes his cost
Jr(ur,ur(ur)). Notice that in this solution concept it is as-
sumed that the leader has a complete knowledge about the
follower’s preferences and strategy. Other solution concepts
have been studied too, like e.g. the so-called inverse Stack-
elberg equilibrium, where the leader does not announce his
action ur, but his reaction function vz (ur). This concept
can be used to enforce a by the leader desired behavior of
the follower (see [28],[29]).

In a noncooperative game one of the most frequent used
solutions is the Nash equilibrium. As the name suggest this
is an equilibrium concept. It is assumed that ultimately
those actions will be played by the agents that have the
property that none of the agents can unilaterally improve
by playing a different action. One of the main references

that documents the theoretical developments on this issue
is the seminal book of [4]. Furthermore uncertainty can
be dealt with within this framework by assuming that the
player "nature” always selects a worst-case scenario (see e.g.
3], [22], [5] and [2]).

In a cooperative setting it seems reasonable to look for for
those combinations of control actions that have the prop-
erty that the resulting cost incurred by the different play-
ers cannot be improved for all players simultaneously by
choosing a different set of control actions. Formally, a set
of control actions w is called Pareto efficient if the set of
inequalities J;(u) < Ji(4, ¢ = 1,--- , N, where at least one
of the inequalities is strict, does not allow for any solution
u € U. The corresponding point (Ji(a,--- , JJn (%)) is called
a Pareto solution. Usually there is more than one Pareto
solution. The set of all Pareto solutions is called the Pareto
frontier. In particular this implies that this Pareto efficiency
concept in general does not suffice to conclude which action
is optimal for an agent in a cooperative setting.

In case the cost can not be transferred between the agents
the game is called a non-transferable utility game. In those
cases, the cost of the agents are fixed once the actions of
the agents are fixed. So, the question is then which point
is reasonable to select on the Pareto frontier. Bargaining
theory may help then to select a point on the Pareto frontier.

Bargaining theory has its origin in two papers by Nash [26]
and [27]. In these papers a bargaining problem is defined as a
situation in which two (or more) individuals or organizations
have to agree on the choice of one specific alternative from a
set of alternatives available to them, while having conflicting
interests over this set of alternatives. Nash proposes in [27]
two different approaches to the bargaining problem, namely
the axiomatic and the strategic approach. The axiomatic
approach lists a number of desirable properties the solution
must have, called the azioms. The strategic approach on the
other hand, sets out a particular bargaining procedure and
asks what outcomes would result from rational behavior by
the individual players.

So, bargaining theory deals with the situation in which play-
ers can realize -through cooperation- other (and better) out-
comes than the one which becomes effective when they do
not cooperate. This non-cooperative outcome is called the
threatpoint. The question is to which outcome the players
may possibly agree.

In Figure 4 a typical bargaining game is sketched. The el-
lipse marks out the set of possible outcomes, the feasible set
S, of the game. The point d is the threatpoint. The edge P
is the Pareto frontier.

Three well-known solutions are the Nash bargainig solution,
the Kalai-Smorodinsky solution and the Egalitarian solu-
tion. The Nash bargaining solution, selects the point of S at
which the product of utility gains from d is maximal. The
Kalai-Smorodinsky solution divides utility gains from the
threatpoint proportional to the player’s most optimistic ex-
pectations. For each agent, the most optimistic expectation
is defined as the lowest cost he can attain in the feasible set
subject to the constraint that no agent incurs a cost higher
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Figure 4: The bargaining game.

than his coordinate of the threatpoint. Finally, the Egalitar-
ian solution, represents the idea that gains should be equal
divided between the players. For more background and other
axiomatic bargaining solutions we refer to Thomson [40].

In transferable utility games it may happen that it is less
clear-cut how the gains of cooperation should be divided.
Consider, e.g., the case that agents are involved in a joint
project and the joint benefits of this cooperation have to be
shared. In those cases an agreement in the cooperative dy-
namic game, or solution of the cooperative dynamic game,
involves both an agreement on the allocation rule and an
agreement on the set of strategies/controls. Of course also
in this case the allocation rule should be individually ratio-
nal in the sense that no agent should be worse of than before
his decision to cooperate.

In differential games an important issue is then at what
point in time the "payments” occur. Is this at the begin-
ning of planning horizon of the game, at the end of the
planning horizon of the game, at some a priori determined
fixed points in time of the game or is every agent paid con-
tinuously during the length of the game. Particularly in the
last case it seems reasonable to demand from the allocation
rule that it is consistent over time. That is, the allocation
rule is such that the allocation at any point in time is op-
timal for the remaining part of the game along the optimal
state trajectory. So in particular at any point in time the
payment should be individually rational for every player.
An allocation rule that has this property is called subgame-
consistent. Of course in a dynamic cooperative game not
only the payment allocation rule is important but, like for
all dynamic games, also the time-consistency of the strate-
gies is important from a robustness point of view. A solution
is called subgame-consistent if the allocation rule is subgame-
consistent and the cooperative strategies are strongly time
consistent. [42] Yeung and Petrosyan give a rigorous frame-
work for the study of subgame-consistent solutions in co-
operative stochastic differential games (see also [43] for an
extension of this theory).

3. THE PARETO FRONTIER

As outlined above, in cooperative (differential) games a so-
lution is chosen on the Pareto frontier if all agents have their
own cost function and they decide to cooperate in order to
improve their performance. So the question is how one can
determine in those cases the Pareto frontier.

Assume that agent i, i = 1,--- , N, likes to minimize the
performance criterium:

T

Joim [ ata®.n (0, un @)de+ ha(T), (1)
to

w.r.t. u;, where x(t) is the solution of the differential equa-

tion

&(t) = f(tx(t), ua(t), - un(t)), z(to) = xo.  (2)

Without going into details we make, of course, the assump-
tion that the above integrals and differential equations are
well-defined in the sense that they have a (unique) solution
for every considered control function.

One way to find Pareto solutions is as follows.

LEMMA 3.1. (Weighting Method)
N

Let a; € (0,1), with z a; = 1. Assume @ € U is such that

i=1
N

4 € arg 1;1611141{; aiJi(u)}. (3)

Then 4 is Pareto efficient. O

The above Lemma, which is called the weighting method
in static nonlinear optimization problems (see e.g. [21]),
gives us an easy way to find Pareto efficient controls. It is,
however, unclear whether we obtain all Pareto efficient con-
trols in this way. In fact the above procedure may yield no
Pareto efficient controls, while an infinite number of Pareto
solutions exist. The next example illustrates this point.

ExamMpLE 3.2. Consider
&(t) = ui(t) — u2(t); 2(0) =0, (4)

together with the cost functions

1 1

J1 = / (u1(t) — u2(t))dt and Jo = / 22 () (uz(t) — i (t))dt.
0 0

Then, by construction, Jo = —3a°(1) = —%J; for all (u1, uz).
Obviously by choosing different values for the control func-
tions ui(.), every point in the (Ji,J2) plain satisfying J2 =
—J3? can be attained. Furthermore it is clear that every point
on this curve is Pareto optimal.
Next consider the minimization of J(a) := aJi(u1, u2)+(1—
a)J2(u1,u2) subject to (4), where o € (0,1). If we choose
u1(t) = 0 and uz2(t) = c straightforward calculations yield
that J(a) = —ac+ %63. So by choosing c arbitrarily neg-
ative J(a) can be made arbitrarily small, i.e. J(a) does not
have a minimum. a



In [11] a maximum principle is derived to find Pareto efficient
controls for problem (1,2) if the planning horizon T is finite.
We recall this result here below in Theorem 3.3. We use the
notation A := {& = (a1, -+ ,an) | @ > 0 and Zi\f:l o =
1} to denote the "unit-simplex”.

THEOREM 3.3. (Maximum Principle)

Assume (J1(a@),---,JIn(@)) is a Pareto solution for prob-
lem (1,2). Then, there erists an o € A, a costate func-
tion AT (t) : [0,T] — IR™ (which is continuous and piecewise
continuously differentiable) such that, with H(t,x,u,\) :=
vaﬂ a;gi(t,z,u) + Af(t, z,u), G satisfies

H(t,&(t),a(t), A1) < H(t, &(t),u(t), A(t)),
at each t € [0, T,

O aihi)
Oz ’

N
M0 = (D a2 a2y ) =

i=1

‘i(t) = f(t7:&(t)7a1(t)7 e

,an(t)), #(0) = xo.

The necessary conditions from Theorem 3.3 are closely re-
lated to the minimization of Zf\;l a;J; subject to (2). By

considering the Hamiltonian for this problem H := Zf\le a;gi+

Af, we obtain from the maximum principle the conditions
stated in Theorem 3.3. Unfortunately the maximum princi-
ple conditions just provide necessary conditions. So, in case
a solution satisfies all conditions from Theorem 3.3, we still
can not conclude that it will give us a Pareto solution.

On the other hand, as demonstrated in Example 3.2, the
weighting method in Lemma 3.1 may not have a solution.
This, although in this example the set of necessary condi-
tions has an infinite number of solutions which all provide a
Pareto solution.

In [11] also sufficient conditions are presented under which
one can conclude that a solution satisfying the maximum
principle conditions will be a Pareto solution.

It is also good to take notice of the fact that in some prob-
lems the interpretation of the weights to reflect the relative
importance of the objective functions may be misleading.
In, e.g., [11, Example 2.15] the Pareto frontier is derived for
a two-player game using Theorem 3.3. In particular it is
shown that the choice of a; = 1,5 =0, i # j, yield Pareto
solutions. On the other hand it is shown in that example
that as well the minimization of the cost of player one and
two has no solution. So the Pareto solution corresponding
with a1 = 1, a2 = 0 cannot be interpreted as being the so-
lution obtained by considering the minimization problem in
which the interests of player two are ignored. Furthermore
it is well-known (see e.g. [24] for the static multi-objective
case) that an evenly distributed set of parameters usually
does not produce an evenly distributed set of points in the
Pareto surface.

The infinite-planning horizon case is dealt with in [34] (see
also [35]). In that paper analogues of the results for the
finite-planning horizon case [11] are derived. Like in ordi-
nary optimal control problems the lack of a clear specifica-
tion of transversality conditions cause additional technical
problems. However, under some weak conditions, related

to a natural extension of finite horizon transversality condi-
tions, it is shown that like in the finite planning horizon case
the necessary conditions for Pareto optimality are the same
as those of a weighted sum optimal control problem. Fur-
thermore, conditions are presented under which the neces-
sary conditions are also sufficient to conclude that a solution
is Pareto optimal.

We conclude this section by considering the linear quadratic
differential game. That is, if

1
U2 t)
Qi Vi W _ _
where M; = | VI Ry, N; | is symmetric, [ ]}37173 ]]%Vl_ ]
W NI Ry o

is positive definite, (> 0), and z(¢) is the solution of the lin-
ear differential equation

z(t) = Az(t) + Biui(t) + Bauz(t) + c(t), x(0) = zo. (6)

Here x € IR™ is the state of the system ; u; € R™¢ is the set
of control variables of player i; Q; € IR™*", V; € R™"™"™,
W; € Rnxm27 Ry € Rmkxmk7 k= 1, 27 and N; € R™*™m2
The variable ¢(.) € Ly is some given function of time. No
definiteness assumptions are made w.r.t. matrix Q;. So, in
particular, the state objectives of the players might be either
conflicting or both negative valued. These kind of problems
often naturally occur, e.g. in economics, where players like
to maximize a utility function using costly controls. Since
Ry N;
N Ry
positive definite the problem is called regular.

This regular linear quadratic differential game is studied in
[10]. In that paper both necessary and sufficient conditions
are given under which the individual optimization problem,
i.e. the minimization of J; subject to (6) w.r.t. [ui ug], is
a convex optimal control problem. It is well-known that if
the cost functions are convex, that all Pareto solutions can
be obtained using the weighting method. This gives, e.g.,
rise to the next procedure to calculate all Pareto efficient
outcomes for the next game.

the matrices , ¢ = 1,2, are assumed to be

THEOREM 3.4. (Regular Convex LQ Game)
Consider the cooperative game (5,6) with T = oo, U =
LT, ., B:=[B1 Bs] and (A, B) stabilizable.

2,e,s87

For a € A let M(a) := aa M1 + aaMy =: [ VQT

<

where

Q=0Q1+a2Q2, V= [ar Vi + aaVa, aaWh + aWha],

R M }+a2[R12 No ]

and R =y { NT Ra NI R

Furthermore, let § := BR™*B”.

Assume that (7) below has a stabilizing solution X, for (a1, a2) =

(1,0) and X2 for (a1, as2) = (0,1), respectively.

ATX + XA—(XB+V)R'(BTX+V")+Q=0. (7)



Then the set of all cooperative Pareto solutions is given by

{(/i(u*(a)), J2(u*(«))) | @« € .A}. Here
uw*(t) = —R (B X, + V)z(t) — R™'B mi(t),
where m(t) := /00 eiACTl(t*S)Xsc(s)ds7

t
X, 1is the stabilizing solution of (7) and, with Ay == A —
BR™'WT — S§X,, the closed-loop system is @(t) = Aqx(t) —
Sm(t) + c(t), z(0) = xo. In case ¢(.) = 0 the correspond-
ing cost are Ji(xo,u”) = @y Mizo, where M; is the unique
solution of the Lyapunov equation

AZ;MZ + M; Ay =
I

Ayt . ~ ~
—[I, —(XSB+V)R ]Mz _Rfl(BTXS_FvT)

Notice, that in [23, Section 11.3], it is shown that if the
parameters appearing in an algebraic Riccati equation are,
e.g., differentiable functions of some parameter a (or, more
general, depend analytically on a parameter «), and the
maximal solution exists for all « in some open set V', then
this maximal solution of the Riccati equation will be a differ-
entiable function of this parameter o too on V' (c.q., depend
analytically on this parameter « too). Since in Theorem 3.4
the parameters depend linearly on « the Pareto frontier will
in this case be a smooth function of «.

4. COALITIONAL GAMES

The bargaining approach presented in the previous section
does not consider the formation of coalitions. In the presence
of non binding agreements, even if the players agree upon
a cooperative outcome, situations arise where the grand
coalition could break down. Classical coalitional games are
casted in characteristic function form. When the utilities are
transferable a characteristic function v(.) assigns to every
coalition a real number (worth), representing the total pay-
off of this coalition of players when they cooperate. Stated
differently, it denotes the power structure of the game i.e.,
the players in a coalition collectively demand a payoff v(S)
to stay in the grand coalition. In the bargaining problem the
coordinates of the threat point d; represent the payoff each
player receives by acting on their own. Similarly v(S) repre-
sents the collective payoff that a coalition S C NN can receive
when the left out players in the coalition N\S act against S.
In a non-transferable utility setting, however, two distinct
set valued characteristic functions have been proposed, see
[1], as the a and ( characteristic functions. The main dif-
ference originates from the functional rules used in deriving
them from the normal form game.

Under « notion, the characteristic function indicates those
payoffs that coalition S can secure for its members even if the
left out players in NV\S strive to act against S. Here, players
in S first announce their joint correlated strategy before the
joint correlated strategy of the players in N\S is chosen.
So, this is an assurable representation. Under 8 notion, the
characteristic function indicates those payoffs that the left
out players in N\S cannot prevent S from getting. Here,
players in S choose their joint correlated strategy after the
joint correlated strategy of the players in N\S is announced.
So, this is an unpreventable representation.

An imputation is a set of allocations which are individually
rational, i.e., every allocation is such that it guarantees the
involved player a payoff more than what he could achieve
on his own. A set of allocations is in the core when it is
coalitionally rational. That is, the core consists of those
imputations for which no coalition would be better off if
it would separate itself and get its coalitional worth. Or,
stated differently, a set of allocations belongs to the core
if there is no incentive to any coalition to break off from
the grand coalition. Clearly, the core is a subset of the
Pareto frontier. The core is obtained by solving a linear
programming problem. It can be empty. There are other
solution concepts based on axioms such as Shapley value
and nucleolus.

The cooperative solutions mentioned above are static con-
cepts. Introducing dynamics in a coalitional setting raises
new conceptual questions. It is not straightforward as to
how one can extend the classical definition of core in a dy-
namic setting since there exist many notions of a profitable
deviation. As a result, an unifying theory of dynamic coali-
tional games, at present, seems too ambitious. However,
intuitively, in this context one expects the definition of core
should capture those situations in which at each stage the
grand coalition is formed no coalition has a profitable devia-
tion, i.e., dynamic stability, taking into account the possibil-
ity of future profitable deviations of sub-coalitions. In an en-
vironment with non binding agreements only self-enforcing
allocations are deemed to be stable. The main difference
between static and dynamic setting is the credibility [33] of
a deviation. A deviation of a coalition S is credible, if there
is no incentive for a sub-coalition 7" C S to deviate from
S. The set of deviations and credible deviations coincide
for a static game but differ in a dynamic setting. Kranich
et al. [19] suggest new formulations of the core in dynamic
cooperative games using credible deviations. For instance,
if one makes an assumption that once a coalition deviates
players cannot return to cooperation later, results in a core
concept called strong sequential core. This allows for further
splitting of the deviating coalition in the future. They also
introduce a notion of weak sequential core which is a set of
allocations for the grand coalition from which no coalition
has ever a credible deviation. See, [13] for more details.

We review some work done towards extending the idea of
a core in a differential game setting. Haurie [14] constructs
an « characteristic function assuming the behavior of left
out players is modeled as unknown bounded disturbances.
Using this construction he introduces in [15] collectively ra-
tional Pareto optimal trajectories with an intent to extend
the concept of core to dynamic multi stage games. Anal-
ogously, a Pareto equilibrium is called collectively optimal
(C-optimal) when, at any stage, no coalition of a subset of
the decision-makers can assure each of its members a higher
gain than what he can get by full cooperation with all the
other decision-makers. It is shown that if the game evolves
on these trajectories any coalition does not have an incentive
to deviate from the grand coalition in the later stages.

Time consistency, as introduced by Petrosjan et al. [32],
in a dynamic cooperative game means that when the game
evolves along the cooperative trajectory generated by a so-
lution concept (which can be any solution concept such as



core, Shapley value and nucleolus) then no player has an
incentive to deviate from the actions prescribed by that so-
lution. The notion of strong sequential core introduced in
Kranich et. al [19] is the same as time consistency. Zaccour
[44] studies the computational aspects of characteristic func-
tions for linear state differential games. Evaluation of char-
acteristic function involves 2% — 2 equilibrium problems and
one optimization problem (for the grand coalition) which
is computationally expensive with large number of players.
Therefore, instead, they propose an approach by optimizing
the joint strategies of the coalition players while the left out
players use their Nash equilibrium strategies. This modifi-
cation involves solving one equilibrium problem and 2V — 2
optimization problems. Further, they characterize a class
of games where this modified approach provides the same
characteristic function values.

Assuming that players at each period/instant of time con-
sider alternatives 'cooperate’ and 'do not cooperate’, Klomp-
stra [20] studies a linear quadratic differential game. It is
shown that for a 3 player game, there exists time dependent
switching between different modes namely the grand coali-
tion, formation of sub-coalitions and total non cooperation.
Assuming similar behavior of players, i.e., to ’cooperate’ or
’”do not cooperate’ at each time instant, Germain et. al
[12] introduce a rational expectations core concept. They
use v characteristic function [6] where the left out players
act individually against the coalition instead of forming a
counter coalition. They show, using an environmental pol-
lution game, that if each period of time players show in-
terest in continued cooperation then, based on the rational
expectations criterion, there exists a transfer scheme that
induces core-theoretic cooperation at each period of time.
Recently, Jorgensen [18] studies a differential game of waste
management and proposes a transfer scheme that sustains
inter-temporal core-theoretic cooperation.

5. DECENTRALIZATION

In a cooperative setting, agents coordinate their strategies
and it is not always feasible to maintain communication to
implement their coordinated actions. Further, problems can
arise due to lack of stability in the cooperative agreement.
Threats and deterrence are some of the common stability
inducing mechanisms used to enforce cooperation like, for
instance, trigger strategies where a player using a trigger
strategy initially cooperates but punishes the opponent if
a certain level of defection (i.e., the trigger) is observed.
In the context of differential games, see section 6.2 of [7]
for more details on such strategies. In his seminal paper,
Rosen [36] introduces a concept of normalized equilibrium
that deals with a class of noncooperative games in which
the constraints as well as the payoffs may depend on the
strategies of all players. Using this approach Tidball et.al
[38] show in a static game that a cooperative solution can be
attained by a suitable choice of the normalized equilibrium.
Further, they show, in a dynamic context, that only by intro-
ducing a tax mechanism it is possible to attain cooperation
in a decentralized manner. Rosenthal [37] introduced a class
of games which admit pure strategy Nash equilibria, which
were latter studied in a more general setting by Monderer et
al. [25] as potential games. A strategic game is a potential
game if it admits a potential function. A potential function
is a real valued function, defined globally on the strategies

of the players, such that its local optimizers are precisely
the equilibria of game. So, these games enable the use of
optimization methods to find equilibria in a game instead of
fixed point techniques. If, the social objective of the game
game coincides with the potential function then we see that
the social optimum can be implemented in a noncooperative
manner. Dragone et al. [8] present some preliminary work
towards the extension of potential games in a differential
game setting and study games that arise in advertising.
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