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ABSTRACT
Because of their importance in many applications, questions
of path planning and reachability analysis for nonlinear dy-
namical systems have been studied extensively in the control
theory. Here we focus on the cases when the controlled sys-
tems are constrained to evolve in a certain known set (e.g
avoidance of obstacles). We study general framework based
on an optimal control approach and on solving Hamilton-
Jacobi (HJ) equations. This approach provides a very effi-
cient tool for treating many cases encountered in real appli-
cations and can be extended to general situations including
moving targets and/or obstacles problems, dynamical sys-
tems under uncertainties, or differential games. The rele-
vance of the method will be shown on some numerical ex-
amples (motion planning with obstacle avoidance).

Categories and Subject Descriptors
G.1 [Mathematics of Computing]: Numerical analysis;
G.4 [Mathematics of Computing]: Mathematical soft-
ware; H.4 [Information Systems Applications]: Miscel-
laneous

General Terms
Optimal control theory, numerical analysis, scientific com-
puting

Keywords
Minimal time problem, moving targets, time-dependant state
constraints, motion planning, obstacle avoidance, Hamilton-
Jacobi-Bellman equations, level set method, reachablity anal-
ysis

1. INTRODUCTION
Consider a dynamic system whose state y(t) ∈ Rd obeys a
system of differential equations:

ẏ(s) = f(y(s), s, α(s)), for a.e. s ∈ [0, t], (1a)

y(0) = x, (1b)

where f is a given function. The vector α(s) ∈ Rm is the
control input of the dynamic system. For t ≥ 0, we assume
that α ∈ At := {α : (0, t)→ A, measurable} is a measurable
function, with A is a nonempty compact subset of Rm. The
trajectory starting at initial state x ∈ Rn associated with a
control policy α ∈ At, is defined as the solution y = yαx of
(9).

We are interested in path planning and reachable sets (or
capture basins) analysis for dynamic systems, by using an
optimal control approach based on solving equations of HJ
type. This approach provides a general framework for treat-
ing many cases encountered in applications: safety of ground
transportation, air traffic management, flight control, and
many other applications.

The reachability analysis may be stated in two equivalent
ways, depending on the applications:

Reachable sets. For a given initial set X ⊂ (K0), deter-
mine the set of states that the system may reach before a
given, fixed time T > 0:

ReachfX,K(T ) :=
n
y ∈ Rd, ∃α ∈ At, ∃x ∈ X, (2)

∃θ ∈ [0, T ] | yθx(s) = y
o

Capture basin. Determine the set of initial states from
which the set Ct is reachable before t < T .

CapfC,K(T ) :=
n
x ∈ Rd, ∃α ∈ At | yαx (t) ∈ Ct,

o

The figure 1 shows an example of a reachable set and cap-
ture basin. It is important to emphasis that a state x is
in the capture basin if at least one trajectory starting at x
reach the target set C. The figure 1 (b) shows some possi-
ble trajectories starting from different points of the capture
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(a) Reachable set (b) Capture basin

Figure 1: Reachable set and capture basin

bassin. Note that it is easy to see that the capture basin is
the backwardly reachable set starting from the target C.

Determining reachable sets or prohibited zones is important
for many applications. Knowledge of these sets allows a
qualitative analysis of the system before designing quantita-
tive solutions to different problems (e.g path planning). This
qualitative analysis can for example show the feasibility of
a mission, or isolate hazardous areas to avoid. The simplest
example of a navigation problem is a ground vehicle that
has the objective of reaching a target in a given, finite time.
The state of the system is characterized by the state vector
(x, y, θ) where (x, y) are the 2D-coordinates of the center of
mass of the vehicle in a given reference frame, and θ is the
angle between the velocity vector and the x-axis. The state
space is R×R× [0, 2π]n and the motion of the vehicle obeys
the following : 8<: x′ = u cos(θ)

y′ = u sin(θ)
θ′ = ω

(3)

where the first control input u ∈ [umin, umax] is the velocity
modulus and the second control input ω ∈ [ωmin, ωmax] is
the angular speed. We may assume that the target set is a
cylinder of radius R > 0 centered at (0, 0):

C = B(0, R)× [0, 2π]

If the vehicle must reach the target in a finite time less than
T > 0, we may firstly determine all initial positions from
where this mission is possible. To do so we may compute
the corresponding capture basin. If the initial position of
the vehicle lies inside the capture basin, we may want to
determine what trajectory to choose to reach the target,
based on a given criterion. Problems of exhibiting minimal
time trajectories are therefore connected to this reachability
problem.

Direct characterization of reachability concepts is one of the
topics addressed by viability theory [1]. An indirect ap-
proach to reachability questions consists on using optimal
control theory. In this case, the reachable sets can be char-
acterized as level-sets of the value function of an appropriate
optimal control problem. Using the dynamic programming
principle, the value function can be characterized as the solu-

tion of a Hamilton-Jacobi equation. Here, we study such an
optimal control approach for a very general setting includ-
ing problems with uncertainties, differential games, moving
target problems.

The main advantage of the approach developed here is that
the resulting partial differential equations can be solved by
several efficient and fast numerical methods developed in
the last decades. The approach does not require any con-
trollability assumption. Moreover, our optimisation-based
method allows reconstruction of the optimal control law, for
any initial position given in the capture basin. On robots,
this control law may be used as a guidance policy.

1.1 State-constrained control systems
In real control applications, such as in robotics for instance,
the motion of the vehicle may be limited due to environment
constraints or obstacles. We formalise this by introducing à
subset K ⊂ Rn which represents the set of admissible states.
We require that the state of the considered dynamical system
verify y(t) ∈ K, ∀t ≥ 0. In this case we define the reachable
sets and capture basins in the following manner.

Reachable set for a state-constrained system. For an initial
set X ⊂ (K0), determine the set of states that the system
may reach before a given, fixed time T > 0:

ReachfX,K(T ) :=
n
y ∈ Rd, ∃α ∈ At, ∃x ∈ X, (4)

∃θ ∈ [0, T ] | yθx(θ) = y and yαx (τ) ∈ K, ∀τ ∈ [0, θ]
o

Capture basin for a state-constrained system. Determine the
set of initial states from which the set C is reachable before
time sT .

CapfC,K(T ) :=
n
x ∈ Rd, ∃α ∈ At, (5)

yαx (t) ∈ C, and yαx (θ) ∈ K, ∀θ ∈ [0, t]
o

We illustrate this concept with the figure 2. Here the evolu-
tion of the system is constrained by the set K. In some cases
the reachability analysis allows to find some forbidden zones
around the obstacles (in blue on the figure below). These
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Figure 2: Example of a capture basin with con-
straints and obstacles

areas represent the initial states for which it is not possible
to find any admissible evolution: all trajectories starting in
such a zone leave the set K.

Problems related to navigation. No matter what the specific
context, the capture basin may be determined when a ve-
hicle has to reach a target in a limited or unlimited time.
The system dynamics and the controls are determined by
the nature of the vehicle (car, robot, surface ship, ...); the
constraint sets are determined by the environment of the
vehicle (obstacles, control limits, ...). Other forms of con-
straints can be considered in applications related to naviga-
tion. We can assume for example that in the environment of
the vehicle one ou several observers are present, located at
known positions. One can then search for paths minimizing
the time spent outside the areas of visibility of observers (or,
conversely, in those areas).

Safety related problems. This class of problems is related
to collision avoidance, and includes air traffic Control, with
the subset of ”Sense and Avoid” problems. In this case, the
reachable sets are crucial elements of trajectory control poli-
cies. Indeed these sets describe all possible relative positions
of an aircraft and an intruder at a given instant, therefore
they allow forecast of all possible collisions. Avoidance ma-
neuvers may only be safely determined based on this data.

Finally let us point out that in our approach (based on op-
timal control theory), the reachability analysis and the path
planning can be studied for general controlled systems, in-
cluding systems lacking controllability properties. On the
other hand, let us also mention that in our setting, mixed
constraints (state-control) can be also considered.

1.2 Nonlinear controlled systems under uncer-
tainties

In numbers of applications, it is crucial to be able to take
environment uncertainty into account. For instance some
obstacles may move in an unknown manner, and even do
so in an agressive fashion against the vehicle, so as to pre-
clude it to reach the target. One of a popular approach is to
study this problem in the framework of differential games,
where the vehicle’s controls are actions of one player. The
control player plays against environment uncertainties, con-
sidered as a second player with an opposite goal : preclude
the opponent from reaching the target. In this case we need

to determine a guaranteed capture basin defining all initial
positions from which the target can be reached, no matter
what the environment is able to play against the vehicle.
this set is defined as follows. The dynamic system in this
cas is of the form

ẏ(s) = f(y(s), s, α(s), β(s)), for a.e. s ∈ [0, t], (6a)

y(0) = x, (6b)

where α(s) is the control input of the first player and β(s)
is the control input of the second player. The guarantee
capture basin for the first player is the following set:

CapfC,K(t) :=
n
x ∈ Rd, ∃a ∈ Γt, ∀β ∈ Bt, (7)“

ya[β],β
x (t) ∈ Ct, and ya[β],β

x (θ) ∈ K, ∀θ ∈ [0, t]
”o

To show how guaranteed capture basins are used in safety
related problems, we shall now present a simplified version
of the collision avoidance problem for UAVs. In order to do
so, we choose a local reference frame centered at the center
of mass of the aircraft, and such that the x-axis is parallel to
the velocity. The relative coordinates of an intruder in this
reference frame are subjected to the following differential
system :

F :

8<: x′(t) = −Vd + Va cos(ψ(t)) + ω(t)y(t),
y′(t) = Va sin(ψ(t))− ω(t)x(t),
ψ′(t) = v(t)− ω(t).

(8)

Here Va and Vd are modulus of the velocity of the intruder
and the UAV respectively. It is assumed that both aircraft
are flying at constant speed. The UAV is is supposed to
be controllable, through the single control input of rotation
rate, ω ∈ [ωmin, ωmax]. We assume also that the intruder
can change his behavior in a unexpected manner: he can
change his route with the rotation rate v ∈ [vmin, vmax].
The collision zone around the UAV is defined as :

C = B2(0, R)× [0, 2π]

where B2(0, R) ⊂ R2 is a ball in the (x, y) plan with radius
R and centered at 0. Any intrusion in this zone is considered
as collision. We can consider this problem in the differential
game framework. The first player il the UAV. His goal is to
avoid the set C. The second player is the intruder and his
goal is to reach the set C. From the UAV’s point of view, it
can be useful to determine the risk zone containing all the
initial relative positions of two aircrafts such that the UAV
can’t guarantee the avoidance of the collision. This zone is
precisely the guarantee capture basin for the second player,
the intruder.

2. GENERAL PROBLEM POSITION
In what follows we consider a very general problem formula-
tion that includes both differential game and control prob-
lem cases, state constraints, obstacles (eventually moving
with known trajectories).

Let A and B be two nonempty compact subset of Rm and Rp
respectively. For t ≥ 0, let At := {α : (0, t)→ A, measurable}
and Bt := {α : (0, t) → B, measurable}. We consider a dy-
namics f : Rd × [0,+∞[×A× B → Rd such that

(H1) f is Lipschitz continuous and with linear growth with
respect to its first argument.
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For every x ∈ Rd and (α, β) ∈ At × Bt, we consider the
trajectory y = yα,βx defined as the (absolutely continuous)
solution of

ẏ(s) = f(y(s), s, α(s), β(s)), for a.e. s ∈ [0, t], (9a)

y(0) = x. (9b)

Let (Kt)t≥0 and (Ct)t≥0 be two families of closed sets of Rd.
The first one represents the set of ”constraints”, while the
second one, the ”target” sets.

We consider a game involving two players, starting at time
t = 0. The first player wants to steer the system (initially
at point x) to the target Ct in some minimal time t ≥ 0,
and by staying in Kt (and using her input α), while the
second player tries to steer the system away from Ct or from
Kt (with her input β). More precisely we will say that the
trajectory is ”admissible on [0, t]” if it satisfies the constraints
on the time interval [0, t]:

yα,βx (θ) ∈ Kθ, ∀θ ∈ [0, t].

We define the set of non-anticipative strategies for the first
player, as follows:

Γt :=


a : Bt → At, ∀(β, β̃) ∈ Bt and ∀s ∈ [0, t],“
β(θ) = β̃(θ) a.e. θ ∈ [0, s]

”
⇒“

a[β](θ) = a[β̃](θ) a.e. θ ∈ [0, s]
” ff

.

Then we are interested to characterize the following capture
basin for the first player:

CapfC,K(t) :=
n
x ∈ Rd, ∃a ∈ Γt, ∀β ∈ Bt, (10)“

ya[β],β
x (t) ∈ Ct, and ya[β],β

x (θ) ∈ Kθ, ∀θ ∈ [0, t]
”o

Thus x ∈ CapfC,K(t) means that there exists a non antici-
pative strategy a ∈ Γt such that for any adverse strategy

β ∈ Bt, we have y
a[β],β
x (t) ∈ Ct (we reach the target Ct at

time t).

This setting includes the case of a fixed target Ct ≡ C or of a
fixed constraint Kt ≡ K. It also contains the particular case
of a one-player game (it suffices to take B = {b0} a fixed
value, Bt = {β} a fixed constant function and then any
α ∈ At represents an admissible non-anticipative strategy).

We are also interested in computing the minimal time func-
tion T (x) defined by

T (x) := inf


t ≥ 0, ∃a ∈ Γt,∀b ∈ Bt,

ya[β],β
x (t) ∈ Ct and

ya[β],β
x (θ) ∈ Kθ, ∀θ ∈ [0, t]

ff
Since we have T (x) = inf{t ≥ 0, x ∈ CapfC,K(t)}, it is

sufficient to characterize the sets CapfC,K(t).

It is well known that the set CapfC,K(t) is linked to a con-
trol problem. We consider the associated optimal control
problem:

u(x, t) := inf
a∈Γ

max
β∈Bt


ϑ0(ya[β],β

x (t), t), (11)

β s.t. y
a[β],β
x admissible on [0, t]

ff
(12)

(with value u(x, t) = +∞ if for any strategy a there is no
admissible trajectory).

One can show (with some additional assumptions later ) that
the capture basin is related to the negative region of u(., t) :

CapfC,K(t) = {x ∈ Rd, u(x, t) ≤ 0}. (13)

The characterization of u by means of an HJB equation is
not easy because of the state constraints, unless some strong
assumptions are satisfied. Our aim in this paper is to give a
simple way to characterize the capture basin.

For the unconstrained case, several works have been devoted
to the characterization of the value function u as a continu-
ous viscosity solution of a Hamilton-Jacobi equation, see [13,
2]. In presence of state constraints (and when Kt ≡ K and
is different from Rd), the continuity of this value function
is no longer satisfied, unless the dynamics satisfy a special
controllability assumption on the boundary of the state con-
straints. This assumption called “inward pointing qualifica-
tion (IPQ)” condition was first introduced by [20]. It asks
that at each point of K there exists a field of the system
pointing inward K. Clearly this condition ensures the via-
bility of K (from any initial condition in K, there exists an
admissible trajectory which could stay for ever in K). Un-
der the (IPQ) condition, the value function u is the unique
continuous constrained viscosity solution of a HJB equation
with a suitable new boundary condition.

Unfortunately, in many control problems, the (IPQ) con-
dition is not satisfied and the value function u could be
discontinuous. In this framework, Frankowska introduced
in [14] another controllability assumption, called “outward
pointing condition.” Under this assumption it is still pos-
sible to characterize the value function as the unique lower
semi-continuous (l.s.c. for short) solution of an HJB equa-
tion.

In absence of any controllability assumption, the function
u is discontinuous and its characterization becomes more
complicate, see for instance [21, 7] and the references therein.
We refer also to [11, 12] for a characterization based on
viability theory.

Several papers in the literature deal with the link between
reachability and HJB equations. In the case when K = Rd,
we refer to [17] and the references therein. The case when
K is an open set in Rd is investigated in [16]. We also refer
to [15] for a short discussion linking the reachability sets
under state constraints to HJB equations. The treatment in
this reference assumed a C1 value function.

In a recent work [8], the case Kt ≡ K, Ct ≡ C and with no
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time dependency in the dynamics, has been investigated. It
was shown that the capture basin CapfC,K can be character-
ized by means of a control problem whose value function is
continuous (even Lipschitz continuous). Let us recall here
the main idea. For simplicity we consider also the one-player
game (f(x, t, a, b) ≡ f(x, a)). We first consider continuous
functions g : Rd → R and ϑ0 : Rd → R such that

g(x) ≤ 0⇐⇒ x ∈ K and ϑ0(x) ≤ 0⇐⇒ x ∈ C.

Then we introduce the new control problem:

ϑ(x, t) := inf
α∈At


max

`
ϑ0(yαx (t)), max

θ∈[0,t]
g(yαx (θ))

´ff
.

It is proved in [8] that the value function ϑ is the unique
continuous viscosity solution of the equation:

min
“
∂tϑ(x, t) +H(x,Dxϑ(x, t)), ϑ(x, t)− g(x))

”
= 0,

for t ∈ [0,+∞[, x ∈ Rd, (14a)

ϑ(x, 0) = max(ϑ0(x), g(x)), (14b)

where H(x, p) := maxa∈A
`
− f(x, a) · p

´
, and furthermore

we have

CapfC,K(t) = {x, ϑ(x, t) ≤ 0}.

The main feature of (14) is to use a modelization with a
supremum cost, in order to handle easily the state con-
straints and to determine the corresponding capture basins.
This idea generalizes the known level-set approach usually
used for unconstrained problems. Moreover, the continu-
ous setting opens a large class of numerical schemes to be
used for such problems (such as Semi-Lagrangian or finite
differences schemes). We refer to [8] for numerical results
and comparison of various approaches for state-constrained
problems.

We shall now consider the general problem of moving (or
time-dependent) targets as well as moving obstacles.

N otations. Throughout the paper | · | is a given norm on Rd
(for d ≥ 1). For any closed set K ⊂ Rd and any x ∈ K,
we denote by d(x,K) the distance from x to K: d(x,K) :=
inf{|x − y|, y ∈ K}. We shall also denote by dK(x) the
signed distance function to K, i.e., with dK(x) := d(x,K)
for x /∈ K, and dK(x) := −d(x,Rd\K) for x ∈ K.

3. MAIN RESULTS
We assume that

(H3) the set-valued applications θ  Kθ and θ  Cθ are
upper semi-continuous.

We recall that if (Qt)t≥0 denotes a family of subsets of Rd+1,
then the set valued map t  Qt is said to be ”upper semi-
continuous” if

∀ε > 0, ∃α > 0, ∀θ ∈ [t− α, t+ α], Qθ ⊂ Qt + εB(0, 1).

Remark 1. For every t ≥ 0, the set CapfC,K(t) contains
the initial positions which can be steered to the target (ex-
actly) at time t. Of course, we can also define the ”backward

reachable set”, which is the set of points from which one can
reach the target Ct before time t. This set is also a capture
basin for the dynamics f̃ where

f̃(x, t, (a, λ), b) := λf(x, t, a, b), λ ∈ [0, 1]

(see [17, 8]).

We start by embedding the position y(t) and time t into a
”space time” space. To do so, we set for every z = (y, t) ∈
Rd × R, the set-valued map F : Rd+1 × [0,+∞)×A× B ;

Rd+1 such that :

F (z, a, b) :=
˘
f(y, t, a, b)

¯
×
˘

1
¯
,

and we remark that F satisfies similar Lipschitz continuity
and linearity assumptions as in (H1) and (H2). For a given
ξ ∈ Rd × R and (α, β) ∈ At × Bt, we can then consider

z = zα,βξ , the absolutely continuous solution of

ż(s) = F (z(s), α(s), β(s)), a.e. s ∈ [0, t], z(0) = ξ.

(we shall simply denote z = zξ if there is no ambiguity). Any
solution zξ(s) = (y(s), η(s)) of the previous system satisfies
equivalently, if ξ = (x, t0),(

ẏ(s) = f(y(s), t0 + s, α(s), β(s)), s ≥ 0, y(0) = x,

η(s) = t0 + s, s ≥ 0

Moreover, let also introduce two subsets of Rd+1:

C :=
[
t≥0

Ct × {t} and K :=
[
t≥0

Kt × {t}.

We have the following elementary result :

Lemma 1. Under (H3), the sets C and K are closed sub-
sets of Rd+1.

Hence there exists Lipschitz continuous functions ϑ0 : Rd+1 →
R and g : Rd+1 → R such that

ϑ0(ξ) ≤ 0⇔ ξ ∈ C. (15)

and

g(ξ) ≤ 0⇔ ξ ∈ K (16)

(for instance we may choose ϑ0(ξ) := dC(ξ) and g(ξ) :=
dK(ξ)). In particular, for any t < 0 we have ϑ0((x, t)) > 0
and g((x, t)) > 0.

We can then define a capture basin associated to the new
dynamics F :

CapFC,K(τ) :=


x ∈ Rd+1, ∃a ∈ Γτ , ∀β ∈ Bτ , (17)„

z
a[β],β
ξ (τ) ∈ C, and z

a[β],β
ξ (θ) ∈ K, ∀θ ∈ [0, τ ]

«ff

Notice that in the case ξ = (x, 0), we have zξ(t) = (yx(t), t)
where yx is a trajectory for the dynamics f . Hence

yx(t) ∈ Ct ⇔ zξ(t) ∈ C,

and in the same way,

yx(θ) ∈ Kθ ⇔ zξ(θ) ∈ K.
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Therefore we can easily deduce the following result:

Proposition 1. For all t ≥ 0, we have

x ∈ CapfC,K(t) ⇔ (x, 0) ∈ CapFC,K(t). (18)

Since CapFC,K(s) has a fixed state constraint C and fixed
target K and an autonomous dynamics F , we can use the
results of [8].

We consider the control problem, for ξ ∈ Rd+1 and τ ≥ 0:

ϑ(ξ, τ) :=

min
a∈Γτ

max
β∈Bτ


max

„
ϑ0(z

a[β],β
ξ (τ)), max

θ∈[0,τ ]
g(z

a[β],β
ξ (θ))

«ff
(19)

where we recall that the Lipschitz function g is related to
the obstacle K by (16) (we note that for t < 0 and τ ≥ 0,
we have ϑ(x, t, τ) > 0).

It is the use of the supremum norm that will enable us to
deal with the controllability problem, because now (19) has
no“explicit”state constraint. In fact, in this new setting, the
term maxθ∈[0,τ ] g(zξ(θ)) plays a role of a penalization that
a trajectory zξ would pay if it violates the state-constraints.
Theorem 2 will show the advantage of considering (19), be-
cause ϑ will be characterized as the unique continuous solu-
tion of an HJB equation.

Theorem 1. Assume (H1)-(H3). Let ϑ0 (resp. g) be
Lipschitz continuous functions satisfying (15) (resp. (16)).
Let ϑ be the value function defined by (19). For every τ ≥ 0,
we have:

CapFC,K(τ) =


ξ ∈ Rd+1, ϑ(ξ, τ) ≤ 0

ff
.

In particular, we have,

CapfC,K(τ) =


x ∈ Rd, ϑ(x, 0, τ) ≤ 0

ff
.

Now, the function ϑ can be characterized as the unique so-
lution of a Hamilton-Jacobi equation. More precisely, con-
sidering the Hamiltonian

HF (ξ, P ) := max
a∈A

min
b∈B

`
− F (ξ, a, b) · P

´
, (20)

by using [4] (see also [18, 8]), we have

Theorem 2. Assume (H1), and that ϑ0 and g are Lips-
chitz continuous. Then ϑ is the unique continuous viscosity
solution of the variational inequation (or ”obstacle” problem)

min(∂τϑ+HF (ξ, Dξϑ), ϑ− g(ξ)) = 0,

τ > 0, ξ ∈ Rd+1, (21a)

ϑ(ξ, 0) = max(ϑ0(ξ), g(ξ)), ξ ∈ Rd+1. (21b)

For sake of completeness the notion of viscosity solution is
recalled in the appendix (see Definition 1).

Application. We are thus able to compute capture basin
using regular functions. There are numerous schemes that
can approximate the value function ϑ of the previous HJB
or HJI equations. This gives a way to compute the set
CapFC,K(t). Then in view of Theorem 1 we can find the points

x that belong to CapfC,K(t).

Remark 2. From a theoretical point of view, the choice
of g is not important, and g can be any Lipschitz function
satisfying (16). Of course, the value function ϑ is dependent
on g, while the set {ξ ∈ Rd+1, ϑ(ξ, t) ≤ 0} does not depend
on g.

There are other informations in the function ϑ. For instance,
let yα,βx,t denotes the solution of the differential equation (9a)
and such that y(t) = x (instead of y(0) = x). For s ≥ t, we
define

CapfC,K(t; s) :=
n
x ∈ Rd, ∃a ∈ Γ, ∀β ∈ B, (22)“

ya[β],β
x (s) ∈ Cs, and ya[β],β

x (θ) ∈ Kθ, ∀θ ∈ [t, s]
”o

Then we have

Proposition 2. For any τ ≥ 0,

CapfC,K(t; t+ τ) = {x ∈ Rd, ϑ(x, t, τ) ≤ 0}.

Indeed this comes from the fact that yα,βx (s) = yᾱ,β̄x,t (s + t)

(where ᾱ(s) := α(s− t) and β̄(s) := β(s− t)), and thus for
ξ = (x, t) we can deduce that

zξ(τ) ∈ C ⇔ yx,t(τ) ∈ Cτ

and

zξ(θ) ∈ K ⇔ yx,t(θ) ∈ Kθ.

In other words, ϑ(x, t, τ) ≤ 0 (for some τ ≥ 0) is equivalent
to say that there exists some non-anticipative strategy a[·]
such that (for any adverse strategy β) we can reach the
target Ct+τ at time t+ τ starting from x at time t.

4. NUMERICAL EXAMPLES
An important consequence of the study developed in the
last section, is that the reachability analysis can be car-
ried out by solving appropriate Hamilton-Jacobi equations.
For these equations, several efficient numerical schemes have
been developed and analyzed in the last decades.

Typical schemes are based on Finite Differences (ENO schemes,
see [19]), or on Semi-Lagrangian approximations which are
general methods used for solving Partial Diffential Equa-
tion. Let us also mention the anti-diffusive schemes devel-
opped recently to approximate discontinuous solutions of
the Hamilton-Jacobi equations. These schemes can have
very stable long-time numerical behavior (we refer to [10]
or [9] for illustrations and implementation details of such
approachs).

In this section, the numerical experiments are performed by
using the C++ software HJB-Ref, see [6, 5].
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(a) Optimal trajectory

Figure 3: A player (starting point in red) that aims
to reach a target inside a labyrinth.

4.1 Path planning
Figure 3 shows a first example of a single player that have
to reach the central point inside a simplified labyrinth. In
that case the player moves with a direct control θ, which is
the angle of its speed, as follows:

x′ = v cos(θ)
y′ = v sin(θ)

(23)

We can consider that the speed modulus v is fixed and θ
takes any value in the range [0, 2π] (we could also consider
only a finite number of allowed directions in [0, 2π]). In
Figure 3, the small ball in green centered at 0 represents
the target set, red rings correspond to the obstacles that
should be avoided, and the contours shown on the graph
correspond to the curves of the minimum time function. We
show also in black line an optimal trajectory starting from
point (−1.2, 0) and that reaches the target in minimum time
and without crossing the obstacles.

In the next example, we consider the car navigation prob-
lem, defined by (3). We show in Figure 4 an example of
an optimal trajectory obtained by our numerical algorithm.
Figure 4(a) presents the car at its initial position, the tar-
get set (in green) and some obstacles (in red). Remark that
the state of the vehicle here is defined by tree components:
(x, y) are his coordinates in the plane and θ is the direction
of his velocity vector (it is represented by an arrow on the
figure). One of the input controls is the angular velocity. In
the example on the figure the vehicle’s isn’t initially oriented
in the direction of the target. Then, the optimal trajectory
shown on Figure 4(b) takes into account the bounds on the
angular velocity. Indeed, it is impossible in this problem to
change the direction instantaneously. Therefore, the vehicle
must spend some time to maneuver.

4.2 Collision avoidance
We consider now the collision avoidance problem for UAVs
presented in section 1.2. In Fig. 5, we show the guarantee
capture basin, that is the set containing all initial relative
positions (in (x, y, ψ) coordinates) of two aircrafts such that
there is a non zero risk of collision. We present two cases:

(a) no disturbance (v = 0)

(b) with disturbance v (v ∈ [vmin, vmax)

Figure 5: collision avoidance problem

in Figure 5(a), no disturbance is considered, while in in Fig-
ure 5(b), some disturbance is allowed.

APPENDIX
A. PROOFS OF THE MAIN RESULTS
For sake of simplicity these proofs are given in the one-player
game setting.

Proof of Theorem 1. We reproduce here the idea of the proof
that can be found in [8]. Assume that ξ ∈ CapFC,K(τ). Then
there exists an admissible trajectory zξ such that

ϑ0(zξ(t)) ≤ 0, and zξ(θ) ∈ K for every θ ∈ [0, τ ].

Hence, maxθ∈[0,τ ] g(zξ(θ)) ≤ 0, and we have:

ϑ(ξ, τ) ≤ max(ϑ0(zξ(τ)), max
θ∈[0,τ ]

g(zξ(θ))) ≤ 0.

Conversely, assume that ϑ(ξ, τ) ≤ 0. Then there exists a
trajectory zξ for the dynamics F , such that

0 ≥ ϑ(ξ, τ) = max(ϑ0(zξ(τ)), max
θ∈[0,τ ]

g(zξ(θ))).

Thus, for all θ ∈ [0, τ ], g(zξ(θ)) ≤ 0, i.e. zξ(θ) ∈ K, and zξ is
an admissible trajectory. Moreover, we have ϑ0(zξ(τ)) ≤ 0,
hence zξ(τ) ∈ C and we can conclude that ξ ∈ CapFC,K(τ).
2
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(a) Initial position (b) Optimal trajectory

Figure 4: Car navigation problem with obstacles

Proof of Theorem 2. It is based on a dynamic programming
principle (DPP) for ϑ that we shall not reproduce here (see
for instance [4, Proposition 3.1]).

We recall here the definition of viscosity solution for (14)
(the definition in the case of (21) is similar).

Definition 1 (Viscosity solution). An upper semi-
continuous (resp. lower semi-continuous) function ϑ : Rd ×
R+ → R is a viscosity subsolution (resp. supersolution) of
(14) if ϑ(x, 0) ≤ ϑ0(x) in Rd (resp. ϑ(x, 0) ≥ ϑ0(x)) and for
any (x, t) ∈ Rd × (0,∞) and any test function φ ∈ C1(Rd ×
R+) such that ϑ−φ attains a maximum (resp. a minimum)
at the point (x, t) ∈ Rd × (0,∞), then we have

min(∂tφ+H(x,∇φ), ϑ− g(x)) ≤ 0

(resp. min(∂tφ+H(x,∇φ), ϑ− g(x)) ≥ 0) .

A continuous function ϑ is a viscosity solution of (14) if ϑ is
a viscosity subsolution and a viscosity supersolution of (14).

The fact that ϑ is the unique solution of (14) follows from
the comparison principle for (14) (which is classical, see for
instance [3]), and the fact that the Hamiltonian function H
satisfies

|H(x2, p)−H(x1, p)| ≤ C(1 + |p|) |x2 − x1|,
|H(x, p2)−H(x, p1)| ≤ C|p2 − p1|,

for some constant C ≥ 0 and for all xi, pi, x and p in Rd. 2

B. REFERENCES
[1] J.-P. Aubin. Viability Theory. Birkhäuser, Boston,
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