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ABSTRACT
In many real world problems, optimization decisions have to be

made often with limited information. The decision maker may

have no a priori data about the (nonconvex) objective function ex-

cept from on a limited number of points that are obtained over time

through costly observations. This paper presents an optimization

framework that takes into account the information collection (ob-

servation), estimation (regression), and optimization (maximiza-

tion) aspects in a holistic and structured manner. Explicitly quanti-

fying the information acquired at each optimization step using the

entropy measure from information theory, the objective function to

be optimized is modeled and estimated by adopting a Bayesian ap-

proach, specifically using Gaussian processes as a state-of-the-art

regression method. The resulting iterative scheme allows the deci-

sion maker to solve the problem by expressing preferences for each

aspect quantitatively and concurrently.

Categories and Subject Descriptors
G.1.6 [Optimization]: Global optimization; H.1.1 [Systems and

Information Theory]: Value of information; I.2.6 [Learning]: Pa-

rameter learning—Machine learning, statistical learning

General Terms
Theory

Keywords
Optimization, information theory, learning, multi-objective opti-

mization, decision making under limited information.

1. INTRODUCTION
In many real world problems, optimization decisions have to be

made with limited information. Whether it is a static optimization

or dynamic control problem, obtaining detailed and accurate in-

formation about the problem or system can often be a costly and

time consuming process. In some cases, acquiring extensive in-

formation on system characteristics may be simply infeasible. In

others, the observed system may be so nonstationary that by the

time the information is obtained, it is already outdated due to sys-

tem’s fast-changing nature. Therefore, the only option left to the

decision-maker is to develop a strategy for collecting information

efficiently, and choose a model to estimate the “missing portions”

of the problem, while trying to reach the given objective.

To make the discussion more concrete, consider the problem of

maximizing a (Lipschitz) continuous nonconvex objective function,

which is unknown except from its value at only a small number of

data points. The decision maker may have no a priori information

about the function and start with zero data points. Furthermore,

only a limited number of –possibly noisy– observations may be

available before making a decision on the maximum value and its

location. The function itself, however, remains unknown even af-

ter the decision is made. What is the best strategy to address this

problem?

The decision making framework presented in this paper captures

the posed problem by taking into account the information collec-

tion (observation), estimation (regression), and (multi-objective)

optimization aspects in a holistic and structured manner. Hence,

the framework enables the decision maker to solve the problem by

expressing preferences for each aspect quantitatively and concur-

rently. It explicitly incorporates many concepts that have been im-

plicitly considered by heuristic schemes, and builds upon many re-

sults from seemingly disjoint but relevant fields such as information

theory, machine learning, and optimization and control theories.

Despite methods and approaches from machine (statistical) learn-

ing are heavily utilized in this framework, the problem at hand is

very different from many classical machine learning ones, even

in its learning aspect. In most classical application domains of

machine learning such as data mining, computer vision, or image

and voice recognition, the difficulty is often in handling signifi-

cant amount of data in contrast to lack of it. Many methods such

as Expectation-Maximization (EM) inherently make this assump-

tion, except from “active learning” schemes [2]. Information the-

ory plays plays an important role in evaluating scarce (and expen-

sive) data and developing strategies for obtaining it. Interestingly,

data scarcity converts at the same time the disadvantages of some

methods into advantages, e.g. the scalability problem of Gaussian

processes.

Decision making with limited information is related to search the-

ory. The idea of using information (theory) in this context is hardly

new as evidenced by the article “A New Look at the Relation Be-

tween Information Theory and Search Theory” from 1979 [17].

The subject is further studied in [7] and has been recently revis-
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ited in [29].

The book [14] provides important and valuable insights into the

relationship between information theory, inference, and learning.

Measuring information content of experiments using Shannon in-

formation is explicitly mentioned and a slightly informal version

of the bisection example in Subsection 3.2 is discussed. However,

focusing mainly on more traditional coding, communication, and

machine learning topics, the book does not discuss the type of op-

timization problems presented in this paper.

Learning plays an important role in the presented framework, espe-

cially regression, which is a classical machine (or statistical) learn-

ing method. A very good introduction to the subject can be found

in [2]. A complementary and detailed discussion on kernel meth-

ods is in [21]. Another relevant topic is Bayesian inference [27,

14], which is in the foundation of the presented framework. In

machine learning literature, Gaussian processes (GPs) are getting

increasingly popular due to their various favorable characteristics.

The book [18] presents a comprehensive treatment of GPs. Addi-

tional relevant works on the subject include [14, 21, 13], which also

discuss GP regression.

Convex optimization is a well-known topic that is often easy to han-

dle even if available information is limited. Optimizing nonconvex

functions, however, is still a research subject [8]. It is interesting

to note that the method known as kriging in global optimization is

almost the same as GP regression in machine learning. The field

stochastic programming focuses on optimization under uncertainty

but assumes a certain amount of prior knowledge on the problem at

hand and models the uncertainty probabilistically [20]. The popular

heuristic method simulated annealing [19] is essentially based on

iterative random search. Another popular heuristic scheme particle

swarm optimization [9] is also based on random search but parallel

in nature as a distinguishing characteristic rather than iterative.

Gaussian processes have been recently applied to the area of op-

timization and regression [3] as well as system identification [26].

While the latter of these recent works mentions active learning, nei-

ther work discusses explicit information quantification or builds a

connection with Shannon information theory. The recent articles

[11] that utilizes GP regression for optimization in a setting similar

to the one in this paper and [28] for state-space inference and learn-

ing, respectively, do not consider information-theoretic aspects of

the problem, either.

The area of active learning or experiment design focuses on data

scarcity in machine learning and makes use of Shannon informa-

tion theory among other criteria [23]. The paper [12] discusses

objective functions which measure the expected informativeness

of candidate measurements within a Bayesian learning framework.

The subsequent study [22] investigates active learning for GP re-

gression using variance as a (heuristic) confidence measure for test

point rejection.

It is worth noting that the class of problems described here are much

more frequently encountered in practice than it may first seem. For

example, the class of black-box methods known as “kriging” [6]

have been applied to such problems in geology and mining as well

as to hydrology since mid-1960s. In addition, the solution frame-

work proposed is applicable to a wide variety of fields due to its

fundamental nature. One example is decentralized resource alloca-

tion decisions in networked and complex systems, e.g. wired and

wireless networks, where parameters change quickly and global in-

formation on network characteristics are not available at the local

decision-making nodes. Another example is security-related deci-

sions where opponents spend a conscious effort to hide their ac-

tions. A related area is security and information technology risk

management in large-scale organizations, where acquiring infor-

mation on individual subsystems and processes can be very costly.

Yet another example application is in biological systems where in-

dividual organisms or subsystems operate autonomously (even if

they are part of a larger system) under limited local information.

2. PROBLEM DEFINITION
Let X ⊆ Ψ ⊂ R

d be a nonempty, convex, and compact (closed

and bounded) subset of the original problem domainΨ of d dimen-

sions. The original domainΨ does not have to be convex, compact,

or even fully known. However, adopting a “divide and conquer” ap-

proach, the subset X provides a reasonable starting point. Define

next the objective function to be maximized

f : X → R,

which is unknown except from on a finite number of points (pos-

sibly imperfectly) observed. As a simplifying assumption, let f be

Lipschitz continuous on X . The problem is the find the best search

strategy that maximizes the function f .

The simplest (both conceptually and computationally) strategy to

solve Problem 1 is random search on the domain X . As such no

attempt is made to “learn” the properties of the function f . Unless,
f is “algorithmically random” [10], which is rarely the case, this

strategy wastes the information collected on f . A slightly more

complicated and very popular set of strategies combine random

search with simple modeling of the function through gradient meth-

ods. In this case, the collected information is used to model f rudi-

mentarily using derived gradients to “define slopes” in a heuristic

manner. Then, these slopes of f are explored step-by-step in the

upwards direction to find a local maximum, after which the search

algorithm randomly jumps to another location. It is also possible to

randomize the gradient climbing scheme for additional flexibility

[19].

The framework presented in this paper takes one further step and

explicitly models the (entire) objective function f (on the set X )

using the information collected instead of heuristically describing

only the slopes. The function f̂ , which models, approximates, and

estimates f , belongs to a certain class functions such that f̂ ∈ F .

The selection and properties of this class is based on “a priori” in-

formation available and can be interpreted as the “world view” of

the decision maker. These properties can often be expressed us-

ing meta-parameters which are then updated based on the observa-

tions through a separate optimization process. Likewise, a slower

time-scale process can be used for model selection if processing

capabilities permit a multi-model approach.

When doing random search on the domain X , at each stage i.e.

given the previous observations, each remaining candidate data point

provides equivalent amount of information. However, this is not

the case when doing model-based search. Depending on the model

adopted and previous information collected, different unexplored

points provide different amount of information. This information

can be exactly quantified using the definition of entropy and infor-

mation from the field of (Shannon) information theory. Accord-

ingly, the scalar quantity I(f̂ ,Ωn) denotes the aggregate informa-

tion obtained from the set of observationsΩn within the model rep-
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resented by f̂ . A related issue is the reliability and possibly noisy

nature of observations, which will be discussed in further detail in

the next section.

Now, the problem can be formally stated as:

PROBLEM 1 (Model-based Search Problem). Let f : X →
R be a Lipschitz-continuous objective function on the d-dimensional
nonempty, convex, and compact set X ⊂ R

d, which is unknown ex-

cept from on a finite number of observed data points. Further let

f̂(x) be an estimate of the objective function obtained using an a

priori model and observed data. What is the best search strategy

ΩN := {x1, . . . , xN : xi ∈ X ∀i, N ≥ 1} that solves the

multi-objective problem with the following components?

• Objective 1: maxΩN
f(x) given f̂(x)

• Objective 2: argminΩN
R
(

f(x), f̂(x)
)

, f̂ ∈ F

• Objective 3: maxΩN
I(f̂ ,Ωn)

Here,R(·, ·) is a risk or expected loss function quantifying the mis-
match between actual and estimated functions on the observation

data [18]. The scalar quantity I is the aggregate information ob-

tained from the set of observations ΩN within the model repre-

sented by f̂ . The cardinality of ΩN , N , can be either given, e.g.

N = 1, or defined as an additional constraint
∑

x∈Ωn
co(x) ≤ C,

where co(x) : X → R is the observation cost function, and the

scalar C is the total “exploration budget”.

3. METHODOLOGY
This section presents the methods that are utilized within the frame-

work which addresses the problem defined in the previous one.

First, the regression model and Gaussian Processes (GP) are pre-

sented. Subsequently, modeling and measurement of information

is discussed based on (Shannon) information theory.

3.1 Regression and Gaussian Processes (GP)
Problem 1 presented in the previous section involves inferring or

learning the function f using the set of observed data points. This

is known as the regression problem in machine learning and is a

supervised learning method since the observed data constitutes at

the same time the learning data set. This learning process involves

selection of a “model”, where the learned function f̂ is, for exam-

ple, expressed in terms of a set of parameters and specific basis

functions, and at the same time minimization of an error measure

between the functions f and f̂ on the learning data set. This paper

focuses on Gaussian Process [18] as the chosen regression method

within the framework developed without loss of any generality.

It is not possible to present here a comprehensive treatment of GP.

Therefore, a very rudimentary overview is provided next within

the context of the decision making problem. Consider a set of

M data points D = {x1, . . . , xM}, where each xi ∈ X is a

d−dimensional vector, and the corresponding vector of scalar val-

ues is f(xi), i = 1, . . . ,M . Assume that the observations are

distorted by a zero-mean Gaussian noise, n with variance σ ∼
N (0, σ). Then, the resulting observations is a vector of Gaussian

y = f(x) + n ∼ N (f(x), σ).

A GP is formally defined as a collection of random variables, any

finite number of which have a joint Gaussian distribution. It is

completely specified by its mean function m(x) and covariance

function C(x, x̃), where

m(x) = E[f̂(x)]

and

C(x, x̃) = E[(f̂(x)−m(x))(f̂(x̃)−m(x̃))], ∀x, x̃ ∈ D.

Let us for simplicity choose m(x) = 0. Then, the GP is character-

ized entirely by its covariance function C(x, x̃). Since the noise in
observation vector y is also Gaussian, the covariance function can

be defined as the sum of a kernel functionQ(x, x̃) and the diagonal
noise variance

C(x, x̃) = Q(x, x̃) + σI, ∀x, x̃ ∈ D, (1)

where I is the identity matrix. While it is possible to choose here

any (positive definite) kernel Q(·, ·), one classical choice is

Q(x, x̃) = exp

[

−
1

2
‖x− x̃‖2

]

. (2)

Note that GP makes use of the well-known kernel trick here by

representing an infinite dimensional continuous function using a

(finite) set of continuous basis functions and associated vector of

real parameters in accordance with the representer theorem [21].

The (noisy)1 training set (D, y) is used to define the correspond-

ing GP, GP(0, C(D)), through the M × M covariance function

C(D) = Q + σI , where the conditional Gaussian distribution of

any point outside the training set, ȳ ∈ X , ȳ /∈ D, given the training

data (D, t) can be computed as follows. Define the vector

k(x̄) = [Q(x1, x̄), . . . Q(xM , x̄)] (3)

and scalar

κ = Q(x̄, x̄) + σ. (4)

Then, the conditional distribution p(ȳ|y) that characterizes the

GP(0, C) is a GaussianN (f̂ , v) with mean f̂ and variance v,

f̂(x̄) = kTC−1y and v(x̄) = κ− kTC−1k. (5)

This is a key result that defines GP regression as the mean func-

tion f̂(x) of the Gaussian distribution and provides a prediction of

the objective function f(x). At the same time, it belongs to the

well-defined class f̂ ∈ F , which is the set of all possible sample

functions of the GP

F := {f̂(x) : X → R such that f̂ ∈ GP(0, C(D)), ∀D},

where C(D) is defined in (1) and GP through (3), (4), and (5),

above. Furthermore, the variance function v(x) can be used to mea-

sure the uncertainty level of the predictions with the mean value f̂ .
This issue will be discussed next in detail.

3.2 Quantifying Information in Observations
In the framework presented, each observation provides a data point

to the regression problem (estimating f by constructing f̂ ) as dis-
cussed in the previous subsection. The active learning problem

1The special case of perfect observation without noise is handled
the same way as long as the kernel function Q(·, ·) is positive defi-
nite
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defined in Section 2 requires addressing the question of “how to

quantify information obtained and optimize the observation pro-

cess?”. Making any decision on the next (set of) observations in

a principled manner necessitates first measuring the information

obtained from each observation within the adopted model. It is im-

portant to note that the information measure here is dependent on

the chosen model. The same observation provides different amount

of information to a random search model than a GP one.

Shannon information theory readily provides the necessary mathe-

matical framework for measuring the information content of a vari-

able. Let p be a probability distribution over the set of possible val-
ues of a discrete random variable A. The entropy of the random

variable is given by H(A) =
∑

i
pi log2(1/pi), which quantifies

the amount of uncertainty. Then, the information obtained from

an observation on the variable, i.e. reduction in uncertainty, can

be quantified simply by taking the difference of its initial and final

entropy,

I = H0 −H1.

It is important here to avoid the common conceptual pitfall of equat-

ing entropy to information itself as it is sometimes done in com-

munication theory literature.2 Within this framework, (Shannon)

information is defined as a measure of the decrease of uncertainty

after (each) observation (within a given model). This can be best

explained with the following simple example.

3.2.1 Example: Bisection
Choose a number between 1 and 64 randomly with uniform prob-

ability (prior). What is the best searching strategy for finding this

number? Let the random variable A represent this number. In the

beginning the entropy of A is

H0(A) =
64
∑

i=1

1

64
log

2

(

1

64

)

= 6 (bits).

The information maximization problem is defined as

max I = maxH0 −H1 = minH1,

since H0, the entropy before the action (obtaining information) is

constant. The entropy H1 is the one after information is obtained,

and hence is directly affected by the specific action chosen. Now,

define the action as setting a threshold 1 < t < 64 to check whether
the chosen number is less or higher than this threshold t. To sim-

plify the analysis, consider a continuous version of the problem by

defining p as the probability of the chosen number being less than

the threshold. Thus, in this uniform prior case, the problem simpli-

fies to

min
p

H1 = min
p

p log(p) + (1− p) log(1− p).

Clearly, the threshold p∗ = 0.5 is the global minimum, which

roughly corresponds to t = 32 (ignoring quantization and bound-

ary effects). Thus, bisection from the middle is the optimal search

strategy for the uniform prior. In this example, the number can be

found in the worst-case in 6 steps, each providing one bit of in-

formation. Nonuniform probabilities (priors) can be handled in a

similar way.

2Since this issue is not of great importance for the class of
problems considered in communication theory, it is often ig-
nored. However, the difference is of conceptual importance in this
problem. See http://www.ccrnp.ncifcrf.gov/~toms/
information.is.not.uncertainty.html for a detailed
discussion.

If this search process (bisection) is repeatedly applied without any

feedback, then it results in the optimal quantization of the search

space both in the uniform case above and for the nonuniform prob-

abilities. If feedback is available, i.e. one learns after each bisection

whether the number is larger or less than the boundary, then this is

as shown the best search strategy.

4. MODEL
The model adopted in the framework for decision making with lim-

ited information consists of three main parts: observation, update

of GP for regression, and optimization to determine next action.

These three steps, shown in Figure 1 are taken iteratively to achieve

the objectives in Problem 1. As a result of its iterative nature, this

approach can be considered in a sense similar to the well-known

Expectation-Maximization algorithm [2].

Figure 1: The main parts of the underlying model of the deci-

sion making framework.

Observations, given that they are a scarce resource in the class of

problems considered, play an important role in the model. Un-

certainties in the observed quantities can be modeled as additive

noise. Likewise, properties (variance or bias) of additive noise can

be used to model the reliability of (and bias in) the data points ob-

served. GPs provide a straightforward mathematical structure for

incorporating these aspects to the model under some simplifying

assumptions.

The set of observations collected provide the (supervised) training

data for GP regression in order to estimate the characteristics of the

function or system at hand. This process relies on the GP methods

described in Subsection 3.1. Thus, at each iteration an up-to-date

description of the function or system is obtained based on the latest

observations. Specifically, f̂ provides an estimate of the original

function f .3 Assuming an additive Gaussian noise model, the noise

variance σ can be used to model uncertainties, e.g. older and noisy

data resulting in higher σ values.

When making a decision on the next action through multi-objective

optimization, there are (infinitely) many candidate points. A prag-

matic solution to the problem of finding solution candidates is to

(adaptively) sample the problem domain X to obtain the set

Θ := {x1, . . . , xT : xi ∈ X , xi /∈ D, ∀i}

that does not overlap with known points. In low (one or two) di-

mensions, this can be easily achieved through grid sampling meth-

ods. In higher dimensions, (Quasi) Monte Carlo schemes can be

utilized. For large problem domains, the current domain of interest

3See [18, Chap 7.2] for a discussion on asymptotic analysis of GP
regression. It should not be noted, however, that asymptotic prop-
erties are of little relevance to the problem at hand.
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X can be defined around the last or most promising observation in

such a way that such a sampling is computationally feasible. Like-

wise, multi-resolution schemes can also be deployed to increase

computational efficiency.

A natural question that arises is: whether and under what condi-

tions does such a sampling method give satisfactory results. The

following result from [24, 25] provides an answer to this question

in terms of number of samples required.

THEOREM 1. Define a multivariate function f(x) on the con-

vex, compact set X , which admits the maximum

x∗ = argmax
x∈X

f(x).

Based on a set of N random samples Θ = {x1, . . . , xN : xi ∈
X ∀i} from the entire set X , let x̂ := argmaxx∈Θ f(x) be an

estimate of the maximum x∗.

Given an ε > 0 and δ > 0, the minimum number of random sam-

ples N which guarantees that

Pr (Pr[f(x∗) > f(x̂)] ≤ ε) ≥ 1− δ,

i.e. the probability that ’the probability of the real maximum sur-

passing the estimated one being less than ε’ is larger than 1 − δ,
is

N ≥
ln 1/δ

1/(1− ε)
.

Furthermore, this bound is tight if the function f is continuous on

X .

It is interesting and important to note that this bound is independent

of the sampling distribution used (as long as it covers the whole set

X with nonzero probability), the function f itself, as well as the

properties and dimension of the set X .

4.1 Quantifying Information in GP
The information measurement and GP approaches in Section 3 can

be directly combined. Let the zero-mean multivariate Gaussian

(normal) probability distribution be denoted as

p(x) =
1

√

2π|Cp(x)|
exp

(

−
1

2
[x−m]T |Cp(x)|

−1[x−m]

)

,

(6)

where x ∈ X , | · | is the determinant, m is the mean (vector) as

defined in (5), and Cp(x) is the covariance matrix as a function of

the newly observed point x ∈ X given by

Cp(x) =









C(D) k(x)T

k(x) κ









. (7)

Here, the vector k(x) is defined in (3) and κ in (4), respectively.

The matrix C(D) is the covariance matrix based on the training

data D as defined in (1).

The entropy of the multivariate Gaussian distribution (6) is [1]

H(x) =
d

2
+

d

2
ln(2π) +

1

2
ln |Cp(x)|,

where d is the dimension. Note that, this is the entropy of the GP

estimate at the point x based on the available data D. The aggre-

gate entropy of the function on the region X is given by H :=
∫

x∈X

1

2
ln |Cp(x)|dx.

The problem of choosing a new data point x̂ such that the informa-

tion obtained from it within the GP regression model is maximized

can be formulated in a way similar to the one in the bisection ex-

ample:

x̂ = argmax
x̃

I = argmax
x̃

∫

x∈X

[H0 −H1] dx (8)

= argmin
x̃

∫

x∈X

1

2
ln |Cq(x, x̃)|dx,

where the integral is computed over all x ∈ X , and the covariance

matrix Cq(x, x̃) is defined as

Cq(x, x̃) =











C(D) kT (x̃) kT (x)

k(x̃) κ̃ Q(x, x̃)
k(x) Q(x, x̃) κ











, (9)

and κ̃ = Q(x̃, x̃) + σ. Here, C(D) is a M × M matrix and Cq

is a (M + 2) × (M + 2) one, whereas κ and Q(x, x̃) are scalars
and k is aM ×1 vector. This result is summarized in the following

proposition.

PROPOSITION 1. As a maximum information data collection

strategy for a Gaussian Process with a covariance matrix C(D),
the next observation x̂ should be chosen in such a way that

x̂ = argmax
x̃

I = argmin
x̃

∫

x∈X

ln |Cq(x, x̃)|dx,

where Cq(x, x̃) is defined in (9).

An Approximate Solution to Information Maximization
Given a set of (candidate) points Θ sampled from X , the result in

Proposition 1 can be revisited. The problem in (8) is then approxi-

mated [25] by

max
x̃

I ≈ min
x̃

∑

x∈Θ

ln |Cq(x, x̃)| (10)

⇒ x̂ = argmin
x̃∈Θ

∏

x∈Θ

|Cq(x, x̃)|,

using monotonicity property of the natural logarithm and the fact

that the determinant of a covariance matrix is non-negative. Thus,

the following counterpart of Proposition 1 is obtained:

PROPOSITION 2. As an approximately maximum information

data collection strategy for a Gaussian Process with a covariance

matrix C(D) and given a collection of candidate pointsΘ, the next

observation x̂ ∈ Θ should be chosen in such a way that

x̂ = argmin
x̃∈Θ

∏

x∈Θ

|Cq(x, x̃)| ≈ argmax
x̃∈Θ

I,

where Cq(x, x̃) is given in (9).

Although it is an approximation, finding a solution to the optimiza-

tion problem in Proposition 2 can still be computationally costly.

238



Therefore, a greedy algorithm is proposed as a computationally

simpler alternative. Let, x∗ ∈ Θ be defined as

x∗ := argmax
x∈Θ

|Cp(x)| = |C(D)| |κ(x)− k(x)C−1(D)kT (x)|,

where the matrix Cp is given by (7) [16]. The first term above,

|C(D)| is fixed and the second one,

|κ(x)− k(x)C−1(D)kT (x)|,

is the same as the GP variance v(x) in (5). Hence, the sample x∗ is

one of those with the maximum variance in the setΘ, given current

data D.

It follows from (9) and basic matrix theory that if x̃ = x for a

given x then |Cq(x, x̃)| is minimized. As a simplification, ignore

the dependencies between Cq(x, x̃) matrices for different x ∈ Θ.

Then, choosing the maximum variance x̂ as

x̂ = argmax
x̃∈Θ

v(x̃) ≈ argmin
x̃∈Θ

∏

x∈Θ

|Cq(x, x̃)|,

leads to a large (possibly largest) reduction in
∏

x∈Θ
|Cq(x, x̂)|,

and hence provides a rough approximate solution to (10) and to

the result in Proposition 1. This result is consistent with widely-

known heuristics such as “maximum entropy” or “minimum vari-

ance” methods [23] and a variant has been discussed in [12].

PROPOSITION 3. Given a Gaussian Process with a covariance

matrix C(D) and a collection of candidate points Θ, an approxi-

mate solution to the maximum information data collection problem

defined in Proposition 1 is to choose the sample point(s) x̃ in such

a way that it has (they have) the maximum variance within the set

Θ.

5. OPTIMIZINGWITH

LIMITED INFORMATION
The static optimization Problem 1 introduced in Section 2 is for-

mulated next as a multi-objective optimization problem within the

model of Section 4.

The first and basic objective is the maximization of the function

f(x) on x ∈ X . As a simplification, observations are assumed to

be sequential, one at a time. Since f is basically unknown, this

problem has to be formulated as

max
x̃∈X

F1(x̃) = f̂(x̃),

where f̂ is the best estimate obtained through GP regression (5)

using the current data set D. Data uncertainty (observation errors)

is modeled through additive Gaussian noise with variance σ as a

first approximation.

The second objective is to minimize the difference (estimation er-

ror) between f̂ and f . Define e(x) = f̂(x) − f(x), ∀x ∈ X .

Given the set of noisy observations

O = {f(xi) + n(xi) : x ∈ D, ∀i},

where n ∼ N (0, σ) denotes zero mean Gaussian noise, it is possi-

ble to use another GP regression (5) to estimate this error function,

ê(D, x), on the entire setX . Thus, the second objective is to ensure

that the next observation x̃ solves

min
x̃∈X

F2(x̃) =

∫

τ∈X

|ê(x̃,D, τ)| dτ.

Note that, F2 here corresponds to a risk or loss estimate function.

The third objective is to maximize the amount of information ob-

tained with each observation x̃, or

max
x̃∈X

F3(x̃) = I(x̃, f̂) =

∫

x∈X

ln |Cq(x, x̃)|dx,

given the best estimate of the original function, f̂ . This objective
has already been discussed in Section 3.2 in detail.

The values of the three objectives, F1, F2, F3, cannot be evaluated

numerically on the entire set X . Therefore, a sampling method is

used as described in Section 4 to obtain a set of solution candi-

dates Θ, which replaces X in the maximization and minimization

problems above. Next, specific problem formulations are presented

based on such a sampling of solution candidates. The overall struc-

ture of the framework is visualized in Figure 2.

Figure 2: The decision making framework for static optimiza-

tion with limited information.

5.1 Solution Approaches
The most common approach to multi-objective optimization is the

weighted sum method [15, 5]. The three objectives discussed

above can be combined to obtain a single objective using the re-

spective weights [w1, w2, w3],
∑

3

i=1
wi = 1, 0 ≤ wi ≤ 1 ∀i.

Assuming a single data point is chosen from and observed among

the candidatesΘ at each step, i.e. x̃ = Ω1, a specific weighted sum

formulation to address Problem 1 is obtained.

PROPOSITION 4. The solution, x̃ ∈ Θ, to the optimization prob-

lem

max
x̃∈Θ

w1f̂(x̃)− w2

1

N

∑

τ∈Θ

|ê(x̃,D, τ)|+ w3I(x̃, f̂), (11)

constitutes the best search strategy for this weighted sum formula-

tion of Problem 1.

As discussed in Subsection 3.2 and stated in Proposition 2, the in-

formation objective, F3, in (11) can be approximated by substitut-

ing it with GP variance v(x) in (5) to decrease computational load.

Thus, an approximation to the solution in Proposition 4 is:

PROPOSITION 5. The solution, x̃ ∈ Θ, to the optimization prob-

lem

max
x̃∈Θ

w1f̂(x)− w2

1

N

∑

τ∈Θ

|ê(x̃,D, τ)|+ w3v(x̃), (12)

where v(x̃) is defined in (5), approximates the search strategy in

Proposition 4.
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The weighting scheme described is only meaningful if the three

objectives are of the same order of magnitude. Therefore, the orig-

inal objective functions, Fi, i = 1, 2, 3, have to be transformed

or “normalized”. There are many different approaches to perform

such a transformation [15, 5]. The most common one, which coin-

cidentally is known as normalization, aims to map each objective

function to a predefined interval, e.g. [0, 1]. To do this, estimate

first an upper FU
i and lower FL

i bound on each individual objective

Fi(x). Then, the i
th normalized objective is

FN
i (x) =

Fi(x)− FL
i

FU
i − FL

i

.

The main issue in normalization is to determine the appropriate up-

per and lower bounds, which is a very problem-dependent one. In

the case of Proposition 5, the estimated functions f̂ and ê on the set
Θ as well as the existing observations D, can be utilized to obtain

these values. The specific bounds for the respective objectives

FU
1 = maxx∈Θ f̂(x), FL

1 = minx∈Θ f̂(x),
FU
2 = maxx∈Θ |ê(x,D)|, FL

2 = 0,
FU
3 = maxx∈Θ κ(x), and FU

3 = 0
provide a suitable starting estimate and can be combined with a

prior domain knowledge if necessary. Thus, a normalized version

of the formulation in Proposition 5 is obtained.

PROPOSITION 6. The solution, x̃ ∈ Θ, to the optimization prob-

lem

max
x̃∈Θ

w1

∆1

(

f̂(x)− FL
1

)

−
w2

∆2

1

N

∑

τ∈Θ

|ê(x̃,D, τ)|+
w3

∆3

v(x̃),

(13)

where ∆i = FU
i − FL

i i = 1, 2, 3, provides an approximation to

the best search strategy for solving the normalized weighted-sum

formulation of Problem 1.

The bounded objective function method provides a suitable al-

ternative to the weighted sum formulation above in addressing the

multi-objective problem defined. The bounded objective function

method minimizes the single most important objective, in this case

F1(x), while the other two objective functions F2(x) and F3(x)
are converted to form additional constraints. Such constraints are

in a sense similar to QoS ones that naturally exist in many real life

problems. As an advantage, in the bounded objective formulation

there is no need for normalization.

The bounded objective counterpart of the result in Proposition 5 is

as follows.

PROPOSITION 7. The solution, x̃ ∈ Θ, to the constrained opti-

mization problem

max
x̃∈Θ

f̂(x) (14)

such that 0 ≤ F2(x̃) =
1

N

∑

τ∈Θ

|ê(x̃,D, τ)| ≤ b1,

and 0 ≤ F3(x̃) = v(x̃) ≤ b2,

where b1 and b2 are given (predetermined) scalar bounds on F2

and F3, respectively, provides an approximate best search strategy

for a bounded-objective formulation of Problem 1.

The advantage of the bounded objective function method is that

it provides a bound on the information collection and estimation

objectives while maximizing the estimated function. This leads in

practice to an initial emphasis on information collection and cor-

rect estimation of the objective function. In large-scale or high-

dimensional problems, however, the space to explore for satisfying

any bound on information is simply immense. Therefore, one does

not have the luxury of identifying the function first to maximize it

later as it would take too many samples to do this. In such cases,

it makes more sense to deploy the weighted sum method, possibly

along with a “cooling” scheme to modify the weights as part of a

cooling scheme to balance depth-first vs. breadth-first search.

5.2 Algorithm and Numerical Examples
An algorithmic summary of the solution approaches discussed above

for a specific set of choices is provided by Algorithm 1, which de-

scribes both weighted-sum and bounded objective variants.

Algorithm 1 Optimization with Limited Information

1: Input: Function domain, X , GP meta-parameters, objective

weights [w1, w2, w3] or bounds b1, b2, initial data set (D, y).
2: Use GPwith a Gaussian kernel and specific expected error vari-

ances for function f̂ and error function ê estimation.

3: while Search budget available, 1 ≤ n ≤ Nmax. do

4: Sample domain X to obtain Θ(n). In some cases, Θ(n) =
Θ ∀n.

5: Estimate f̂ and ê based on observed data (D, y) on Θ(n)
using GPs.

6: Compute variance, v(x), of f̂ (5) on Θ(n) as an estimate of

I(f̂).
7: if Weighted-sum method then

8: Next action maximizes a normalized and weighted sum

of objectives
∑

3

i=1
FN
i as stated in Proposition 6.

9: else if Bounded objective method then

10: Next action is solution to the constrained problem in

Proposition 7.

11: end if

12: Update the observed data (D, y).
13: end while

Example 1
The first numerical example aims to visualize the presented frame-

work and algorithm. Hence, the chosen function is only one di-

mensional, f(x) = sin(5x)/x on the interval X = [0.1, 3.9].
The interval is linearly sampled to obtain a grid with a distance of

0.01 between points, i.e. Θ = {xi ∈ X ∀i : x1 = 0.1, x2 =
0.11, . . . , xN = 3.9}. A Gaussian kernel with variance 0.1 is

chosen for estimating both f̂ and ê. The weights are equal to

one, w = [1, 1, 1], in the weighted-sum method. The bounds

are b1 = 0.5 for the error bound and b2 = 0.2 for the bound on

maximum variance estimate in the bounded objective method. The

initial data consists of a single point, x = 0.1.

Figure 3 shows the results based on the normalized weighted-sum

method in Proposition 6 after 5 iterations (6 samples in total, to-

gether with the initial data point). The variance here is v(x) of the

estimated function f̂ using data points D. Clearly, the estimated

peak is not the one of the real function f .

Next, Figure 4 shows that after 11 iterations (12 data points in D),

the function and the location of its peak is estimated correctly. The
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sequence of points selected during the iteration process are:

D = {0.47, 3.22, 1.17, 1.66, 2.43, 2.06, 3.9, 2.83, 3.6, 0.82, 1.42}.
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Figure 3: Optimization result using the weighted-sum method

with 6 data points.
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Figure 4: Optimization result using the weighted-sum method

with 12 data points.

Finally, Figure 5 depicts the results of the bounded objective method

with the given bounds. The number of iterations is 11 as before,

which gives an opportunity of direct comparison with the weighted-

sum method. The sequence of points selected during the iteration

process are:

D = {0.47, 3.22, 1.17, 1.66, 2.43, 2.06, 3.9, 2.83, 3.6, 0.82, 1.42}.

Example 2
The objective function in the second numerical example is the Gold-

stein&Price function [4], which is shown in Figure 6 in its inverted

form to ensure consistency with the maximization formulation in

this paper. The problem domain consists of the two dimensional

rectangular region X = [−2, 2] × [−2, 2], which is linearly sam-

pled to obtain a uniform grid with a 0.05 interval between sam-

ple points. A Gaussian kernel with variance 0.5 and 0.1 is chosen
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Figure 5: Optimization result using the bounded objective

method with 12 data points.

for estimating f̂ and ê, respectively. The weighted-sum method

is utilized in Algorithm 1 with the weights w = [4, 2, 3]. The

search budget is chosen as 50 before stopping the algorithm (for

the search space of approx. 6400 samples in the grid). The real

global minimum (peak) of the (inverted) Goldstein&Price function

is at (0,−1) and the location found by the algorithm using the 50
data points is (−0.15,−1.05). Figure 7 depicts the estimated func-

tion, the data points as well as the optimum found. Although the

real optimum value is −3 (in the inverted version) while the ob-

tained one is −9.75, the result is still very satisfactory consider-

ing that the simple sampling scheme used and the Goldstein&Price

function takes values in a range of 1 million, i.e. the error is less

than 0.001 percent of the range. Finally, Figure 8 depicts the mean

variance v and entropy I of the estimated function f̂ on Θ at each

iteration step. It is observed that the two quantities are closely cor-

related in accordance with the results in Section 4.
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Figure 6: The inverted Goldstein&Price function [4].

6. CONCLUSIONS
The decision making framework presented in this paper addresses

the problem of decision making under limited information by tak-
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Figure 7: Optimization of the inverted Goldstein&Price func-

tion [4] using the weighted-sum method with 50 data points.

ing into account the information collection (observation), estima-

tion (regression), and (multi-objective) optimization aspects in a

holistic and structured manner. The methodology is based on Gaus-

sian processes and active learning. Various issues such as quantify-

ing information content of new data points using information the-

ory, the relationship between information and GP variance as well

as related approximation and multi-objective optimization schemes

are discussed. The framework is demonstrated with multiple nu-

merical examples.

The presented framework should be considered mainly as an ini-

tial step. Future research directions are abundant and include fur-

ther investigation of the exploration-exploitation trade-off, adaptive

weighting parameters, and random sampling methods for problems

in higher dimensional spaces. Additional research topics are the

relationship of the framework with genetic/evolutionary methods,

dynamic control problems, and multi-person decision making, i.e.

game theory.
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Figure 8: Mean variance v and entropy I onΘ at each iteration

step.
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