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ABSTRACT
We propose a tool that provides both analytical and simu-
lation based performance analysis of both homogeneous and
inhomogeneous Quasi-Birth-and-Death (QBD) processes.
We extend SMCSolvers in order to study inhomogeneous
case and to analyze first passage times. Simulations are per-
formed on a discrete-event based approach. We also provide
a rich input interface to give the most flexibility to the user
to define its QBD transitions. The analysis of sensitivity in
a complex level-dependent QBD model of a reliable system
is an illustration of the wide range of QBD the tool may
help to analyze.

1. INTRODUCTION
In the past, Quasi-Birth-and-Death (or QBD in short) pro-
cesses have been extensively used for the design and the
performance analysis of a great variety of systems, such as
reliability systems (see [13] for example), peer-to-peer sys-
tems (see [5]), fluid Markov models (see [3] among many oth-
ers) or call center systems (see [7]) to cite but a few. QBD
processes are particular cases of Markov processes, defined
on state space with the following structure

S = {(k, i); k ∈ N, 0 ≤ i ≤ nk}, (1)

with usually nk < ∞ for all k ∈ N. Accordingly, their
generator has the following form

Q =
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 , (2)

where the inner blocks A
(k)
i are of size nk×nk+i, for k ∈ N0

and i ∈ {−1, 0, 1}, and Bi is of size n0×ni, i ∈ {0, 1}. Diag-

onal elements of B0 and of A
(k)
0 , for all k ∈ N are negative.

Other elements are positive or null. Moreover, we have

B0~1 +B1~1 = ~0 (3)

A
(k)
−1
~1 +A

(k)
0
~1 +A

(k)
1
~1 = ~0 (4)

for all k ∈ N, where ~1 and ~0 respectively are vectors full of
1 and 0 respectively and of appropriate size.

When A
(k)
i = Ai for all k ∈ N0 and for all i ∈ {−1, 0, 1}

(expect for A
(1)
−1), the QBD is said to be homogeneous. Oth-

erwise, the QBD is said inhomogeneous. In case there exists
K <∞, such that

Q =
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0 . . . 0 0
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. . .
...

0 0 0 . . . B−1 BK

 , (5)

with B−1 of size nK × nK−1 and BK of size nK × nK ; the
QBD is said to be finite. In case it does not exists such a
K, the QBD is said infinite.

We refer to Latouche and Ramaswami [8] for a clear intro-
duction to the matrix analytic methods that exist to perform
QBDs analysis.

To perform sensitivity analysis of such systems is of great
interest, in particular when measuring the robustness of op-
timal designed policies. Our aim is to propose a tool that
would, as a first objective, rapidly give some insight about
the sensitivity of QBD models subject to small variations
on their input parameters. Our effort will be put on devel-
oping such a tool that will use either simulation or exact
methods to solve the QBD, depending on the nature of the
performance problem itself.

At this stage, exact computations are performed on both
the original and perturbated QBD, except in the case of a
M/PH/1 queue where we used results developed by Dendie-
vel et al. in [4]. The tool also proposes to make use of a
discrete-event based simulation procedure. This is of par-
ticular help when the size of the QBD is large. The tool
supports the analysis of both homogenous and inhomoge-
neous QBDs. Input parameters can be specified following
three different formats : the user may specify (i) the type of
queue using Kendall’s notation, (ii) the complete generator,
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(iii) the possible transitions.

There exists different tools to solve QBD, see for example
MAMSolver developed by Riska and Smirni in [14], or SMC-
Solver proposed in [2]. We decide to incorporate the second
tool to solve exactly homogenous QBD and to extend it to
the analysis of inhomogeneous QBD. We also propose to add
a function to compute first passage times.

Such tools usually propose to specify the blocks that com-
pose the QBD generator (see Equation (2)). As mentioned
earlier, our tool allows the user to specify the input param-
eters by means of transition specification. This method is
indeed necessary to implement in order to offer the possibil-
ity to deal with general structured inhomogeneous QBDs.
In Katoen et al. [6], all possible transitions have to be given
by the user. In our tool, repetitive structure of the inner
blocks can be defined as such.

The paper is composed of three main sections. First, we
explain the tool design choices operated for both the input
and output interfaces and the architecture of the code itself.
In the following section, we perform as an illustration to our
work, a sensitivity analysis of a preventive repair policy in
a reliable system. This model was first discussed in [12].
Finally, we conclude our work by indicating work that need
to be done in the future.

2. TOOL ARCHITECTURE
In this section, we discuss the specificity of the tool regarding
the input and output interfaces, as well as the architecture
of the code itself.

2.1 Input interface
An interesting feature of the tool is the ability for the user to
specify the QBD generator by using one of the three different
input interfaces. We now describe each method.

The first possibility is to define the QBD as a queueing sys-
tem, using Kendall’s notation in concise form. After choos-
ing the queue type, each parameter of the selected system,
such as an exponential rate or a phase-type distribution,
must be entered. We refer to Latouche and Ramaswami [8],
Chapter 2 for a clear introduction to phase-type distribu-
tions. At the moment, the tool is restricted to the M/M/1,
M/PH/1, PH/M/1 and PH/PH/1 queues. However, it
can be extended to be able to work with more queue types.
The size of the buffer, possibly infinite, can also be chosen.
Figure 1 illustrates how our input interface looks like. In this
example, we want to specify an M/PH/1 queue. We must
define the size of the buffer, the arrival rate, the probabil-
ity row vector and the generator matrix of the phase-type
distribution. In this particular example, the generator is a
3 × 3 matrix, where each component of a row is separated
by a comma and each line of the matrix is separated by a
semicolon.

The second input interface allows to explicitly define the
blocks that compose the generator. For this purpose, the
user must provide a Matlab or Octave function. Octave is
a programming language specialized in numerical computa-
tions. Its syntax and its semantic are almost identical to the

Figure 1: Definition of a QBD generator as a queue-
ing system, using Kendall’s notation.

MATLAB ones. Octave is a free software under the terms
of the GNU General Public License.

This function would have one parameter: that is i, the level
for which the inner blocks would be computed. The out-
put parameters of the function are then the three inner
blocks corresponding to this level, given in the following or-

der: A
(i)
−1, A

(i)
0 and A

(i)
1 . If one of these three matrices is

not defined for the considered level, the function returns an
empty matrix. For example, the result of the function for
level 0 would be: [], B0, B1 as specified in Equation (2).

For the program to load the function, the user has to pro-
vide the path where to find it. Once the function loaded, the
tool has everything it needs to define the QBD process. The
main drawbacks of this method are that first programming
in Octave is required. Second, knowing the exact and com-
plete form of the generator is required, while it may be easier
to define only the transitions of the corresponding process.
The next and last method is an answer to these problems.

The third and last input method consists in specifying the
possible transitions of the process in a syntax consistent and
textual language we developed. The particular feature of
our method is that all the possible transitions have not to
be given. Instead, the user may specify more concisely a
repetitive structure appearing in the generator. Our tool is
now restricted to two-dimensional Markovian state spaces.
A small context-free grammar has thus been developed in
order to build our parser. It reads a text file respecting this
grammar and accordingly, produces an Octave function. As
for the second method, this function returns the inner blocks
of a given level. For readability reason, we present in the
appendix the most important symbols of the grammar in
Backus-Naur Form, as well as their semantic.

Figure 2 illustrates this specification method for the defini-
tion of an M/PH/1 queue. The arrival rate is lambda. The
service time distribution is completely specified using four
parameters, these are mu1, mu2, p and q. As specified in
our code, these input parameters are constant in the speci-
fication of the transitions.

We are then able to specify the transitions. Each transition
definition begins with the keyword TRANSITION, followed by
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Figure 2: Definition of an M/PH/1 queue using
text-based transition specification.

the type of transition and the destination phase. More pre-
cisely,

• possible type of transitions are UP, DOWN or SAME respec-
tively, which describes movement to the upper level,
the downer level or in the same level, respectively and

• the phase is explicit or is given through some con-
straint.

We then give these constraints for the level L and the phase
P. The instruction finishes when the rate is finally given us-
ing possible predefined constants.

In Figure 2, we observe that the first specified transition
means that when in level 0 and phase 1, the process may stay
is that state for an exponential amount of time whose rate is
lambda. We also observe that the fourth specified transition
concerns all the level strictly greater than 0, but only phase
1. It indicates that in that starting state, the process may
move to state (L,P+1) with a rate of probability mu1 × q.

Once the QBD is defined, the tool may analyze it using ma-
trix analytic methods, or may simulate it via discrete-event
simulation and accordingly, carry out a sensitivity analysis.
The user indicates his choice by clicking on the correspond-
ing button. When simulating it, some additional parameters
must be set, such as the starting level, the starting phase and
the simulation end time.

When doing sensitivity analysis, the tool will work with a
perturbed generator defined as follow:

Qpert = Q+ εQ̃ (6)

Firstly, the perturbation generator Q̃ must be specified via
the same input interface that was used to define the QBD
generator Q. After that, a set of values that ε will take must
be chosen. Then, for each selected value of ε, the tool will
perform an analysis or a simulation on the resulting Qpert,
whose inner blocks will be computed dynamically.

2.2 Output interface and performed analysis
The tool computes different data that may be useful when
evaluating the performance of a QBD process. In this first

version of the tool, we focus on the stationary probability
vector ~π and first passage times.

Following the matrix analytic methods, key matrices Ri
(with i being the level) must be computed in order to de-
termine the stationary probability vector. In the particular
case of an homogeneous QBD, we have used the SMCSolver
([2]) implementation of the Logarithmic Reduction algorithm
(see [8], Chapter 8), which is quadratically convergent. To
handle the level-dependent case, we have implemented in
Octave the algorithm presented in [8], Chapter 12.

In [8], Chapter 11, two algorithms to compute the expected
first passage time from the level 0 to any upper level of an
homogeneous QBD are detailed: these are the Linear Level
Reduction and the Reduction by Bisection algorithms. We
have chosen to implement the former, as it can be more eas-
ily generalized to compute the expected first passage time
from any level to any other one, in both the homogeneous
and inhomogeneous cases. Our tool implements that gener-
alization.

In case of a simulation, we use a discrete-event simulation
approach (see Leemis and Parkin [9]). The main lines of the
algorithm are as follows, assuming the process is in level i,
phase φ,

• the inner blocks A
(i)
−1, A

(i)
0 , A

(i)
1 corresponding to the

current level i are obtained.

• These blocks are discretized with a rate r equal to the

maximum absolute value of the diagonal of A
(i)
0 . We

follow here the principles of the uniformization method
(as described in Latouche and Ramaswami [8], Section
2.8).

• Next only the line corresponding to the current phase
(φ) is considered. It now gives the transition probabil-
ities that after a random exponential time t (with rate
r), the process moves to another state or remains in
state (i, φ). We simulate that transition.

• Accordingly, the process moves to this state and the
simulation time is increased by t.

We repeat this procedure until the simulation end time is
reached.

Note that the algorithm covers both the homogeneous and
inhomogeneous cases. However, for the homogeneous case,
an optimization can be made by computing only one time
the inner blocks as those are identical for each level, except
for the levels 0, 1 and the two last levels in case of a finite
QBD.

The stationary probability of a given state is then estimated
by dividing the time spent in this state during the simulation
by the total simulation time. We also provide the confidence
interval round our estimation (see Figure 3 for one particular
M/PH/1 case).

First passage times are obtained as arithmetic mean of time
at which the simulation reached the level of interest. Enough
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Figure 3: Simulation results for the stationary prob-
ability of a M/PH/1 case.

simulations must be performed and confidence intervals are
always provided to measure it.

The outputs are given either in graphical format or as a text
file. The text file presents at each line the steady state prob-
abilities of the corresponding level. When a plot is provided,
Xaxis gives the level while Y axis gives the probability that
the process is in level i, whatever the phase (see Figure 3
for an example of the graphical output interface). Finally,
the expected first passage time starting in a given level i can
also be plotted in a graph whose abscissa is the target level j
and the ordinate is the expected first passage time from i to
j. The expected first passage times from i can also be given
via in a text file. In this case, for each destination level j,
we provide the expected first passage time to that level for
each possible phase of the starting level i.

As mentioned before, the tool allows to do some sensitivity
analysis either by using matrix analytic methods or simu-
lations on the perturbed process. The same data can then
be computed for each ε value of the perturbation. Then, a
graph showing the influence of the perturbation on a specific
performance measure (that is the stationary probability of a
particular level or the first passage time from a given level to
another one) can be displayed. The Xaxis gives the differ-
ent values ε takes. The Y axis is the value of the considered
performance measure.

2.3 Code architecture
The tool is composed of some Java and GNU Octave mod-
ules. One of our goals is to make it quite easily modifiable.
Therefore, we focus on modularity by dividing the program
into high-level components. Figure 4 shows those differ-
ent components and the dependencies between each other.
Each green box represents a component. The dependencies
are indicated by the arrows. The component at the origin
of an arrow depends on the component at the edge of this
arrow. Before describing each component, its roles and de-
pendencies, we first motivate the choice of the programming
language.

Each .m file contains all the Octave functions implement-
ing the matrix-analytic methods and simulation algorithms.
Some of them come from SMCSolver [2]. We choose to pro-
vide these functions as a stand-alone resource so that one
may be able to call them directly with Octave, instead of
only observing their results via the graphic user interface
developed in Java.

Figure 4: High-level architecture of the tool.

We choose to use Octave as the computation core of our
tool because of its higher performance in numerical (mainly
matrix) computation, compared to Java. Two features of
this language must be kept in mind:

• Octave uses an interpreter to execute instructions which
are written through its command-line interface or are
contained in a script.

• It allows to dynamically load some new functions or to
redefine an existing one.

JavaOctave is a Java library that works as a bridge from
Java to Octave. It was developed by Kim Hansen1. It allows
to call the Octave interpreter from a Java program and to
transform an Octave data structure into a Java object. Ba-
sically, it runs Octave and provides some functions to send
back the instructions written in the Octave language.

Let us now present some of the main components in Figure
4.

OctaveCaller is a Java component we developed. It is
the only component that communicates with JavaOctave.
Thanks to this property, modularity is improved: the other
Java components are completely independent from Octave
components. Since JavaOctave is a bridge between Java and
Octave, OctaveCaller can be seen as a gate on the Java side.
It provides routines to keep track of every Octave function
that has been declared. Any function can thus be called and
its return values will be contained in Java objects managed
by the OctaveCaller.

The Java component QBD Analyser is the masterpiece of
the tool. It determines which function must be called, de-
pending on the chosen analysis method, the characteristic
of the defined QBD process and the desired output data.
It determines which function has to be registered in the Oc-
taveCaller, when and how such a function must be modified.
It also sets the right parameters of a function and orders the
OctaveCaller to call it. Then, it analyzes the data structures
returned by the OctaveCaller to extract the desired results.

1http://kenai.com/projects/javaoctave/
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The general performance of the tool highly depends on the
choices of the QBD Analyzer. For example, when a simula-
tion of an homogeneous QBD is required, it can either choose
to call the general function that can simulate any QBD or
the specific function for the level-independent case. The lat-
ter is far more efficient than the former, as the inner blocks
of the QBD are computed once at the start of the simulation
instead of being determined at each level movement.

JavaCC2 is an open source tool originally owned by Sun
Microsystems. Basically, it allows to generate a lexical ana-
lyzer and a descending syntax analyzer from a conflict-free
grammar defined in Backus-Naur Form (see [1] Chapters 1
to 4, for a clear introduction). A FAQ3 about JavaCC is
also maintained by Theo Norvell at Memorial University of
Newfoundland.

We used JavaCC to create the Transition Parser compo-
nent. Its role is to parse a text file (a .qbd file) respecting
the grammar we developed (see Section 2.1 and Appendix A)
and to produce an Octave function that dynamically com-
putes the inner blocks of the QBD corresponding to the de-
fined transitions. Accordingly, the input grammar and the
output language are completely independent.

JFreeChart4 is a free library that allows the developers
to display graphs inside their Java applications. It is dis-
tributed under the GNU Lesser General Public License. It
supports a large variety of graph types and provides a com-
plete API for dynamically editing the graph, as well as per-
forming zooms on it.

Finally, the Graphic User Interface (GUI) component
has two main roles. Firstly, it displays the different win-
dows through which the user can navigate. That includes
both the input windows, in which the parameters of the
studied system are entered and the path to essential files, as
well as the output windows in which the evaluation results
are displayed. Secondly, it manages the user actions and
requests the right service of the right component when nec-
essary. Basically, this component reads the data introduced
by the user, calls the right input interface in order to set
every parameter and ask the QBD Analyser to perform the
analysis.

3. SENSITIVITY ANALYSIS OF A RELIA-
BLE SYSTEM

As an illustration to our tool, we propose to analyze the
sensitivity of a particular reliable system, as first defined
and analyzed in [12]. We choose this model as it constitutes
one clear example of the use of inhomogeneous finite QBD
(see Equation (5)) to model a complex system. It thus allows
us to clearly highlight the use and the versatility of our tool.

In this section, we explain the system itself. We then clarify
the state-space’s definition as exposed in [12]. We propose

in this summary, to give the inner structure of the A
(i)
0 , 1 ≤

i ≤ n− 1 only. We choose the second method to specify the
structure of the generator to the tool. Finally, we propose

2https://javacc.dev.java.net/
3http://www.engr.mun.ca/∼theo/JavaCC-FAQ/
4http://www.jfree.org/jfreechart/

to measure the sensitivity of the system subject to longer or
shorter inspection.

System definition
The system is composed of n units. One unit is online,
the others are in warm standby. However units are subject
to degradation and eventually may go to corrective repair.
Only one unit may be repaired at a time, others are queueing
in FIFO order. To prevent full degradation when online,
inspections are randomly performed. In case the level of
degradation is too high, a preventive repair is performed,
except if the system contains no more standby unit. Would
the system be empty of standby units and the online unit
need a corrective repair, one unit in preventive repair would
be preempted (if available). In the other case, the system
would be said to have failed.

Standby and online lifetimes (prior to full degradation) re-
spectively are assumed to be phase-type distributed PH(αs,
Ts) of order ms and PH(α, T ) of order m respectively. Pre-
ventive and corrective repairs take a random phase-type
distributed time, with parameter (βp, Sp) of order np and
(βc, Sc) of order n respectively. Inspection times are random
and two consecutive inspection procedures are separated by
a phase-type random time with parameters (γ, L) of order
ν. All random variables are independent of each other.

State-space definition and decomposition
As estabished in [12], the system can be modeled as a Markov
process whose state-space is

(i, j, k, z(i,j), lp, lc, f) (7)

where

• i is the number of units in preventive repair, with 0 ≤
i ≤ n− 1,

• j is the number of units in corrective repair, with 0 ≤
j ≤ n,

• k is the phase occupied by the online unit, with 1 ≤
k ≤ m,

• z(i,j) is the phase of the standby units,

• lp is the phase of the unit in preventive repair, with
1 ≤ lp ≤ np,

• lc is the phase of the unit in corrective repair, with
1 ≤ lc ≤ nc,

• f is the phase of the inspection procedure, with 1 ≤
f ≤ ν.

Let us be more precise about z(i,j). This vector is composed
of (z1, z2, . . . , zn−1−(i+j)), with 1 ≤ zr ≤ ms, where 1 ≤ r ≤
n− 1− (i+ j).

The level M is defined as the number of units in repair
(either preventive or corrective repair), that is 0 ≤ M ≤ n,
with

M = {(i, j); 0 ≤ i ≤ n− 1 and j = M − i}, (8)

M = {(0, n)}. (9)
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We now explain the inner structure of one particular block,

that is A
(M)
0 , for 2 ≤M ≤ n−2. Other blocks that compose

generator (5) are clearly defined in Appendix A of [12]. Our
objective is here to illustrate the complexity of the inhomo-
geneous QBD that may be handled by our tool.

We have

A
(M)
0 =

A
(M)
0 (1, 1)

A
(M)
0 (2, 2)

A
(M)
0 (3, 3)

 , (10)

where level M has been partitioned in three subsets, that is
M = M1 ∪M2 ∪M3, defined as follows

M1 = {(0,M)} (11)

M2 = {(i, j); 1 ≤ i ≤M − 1, j = M − i} (12)

M3 = {(M, 0)}. (13)

This explains why only diagonal blocks are non-null. Indeed,
moving from a state in Mi to a state in Mj (j 6= i) implies
some repair to be finished and a new one to start.

We then have for matrix A
(M)
0 (1, 1)

A
(M)
0 (1, 1) = T ⊗ I(ms)n−M−1ncν

+ Im ⊗ (Ts ⊕ . . .⊕ Ts)⊗ Incν

+ Im(ms)n−M−1 ⊗ Sc ⊗ Iν
+ Im(ms)n−M−1nc

⊗ L

+ U1 ⊗ I(ms)n−M−1nc
⊗ L0γ, (14)

where In is the identity matrix of size n,

U1 =

(
Ig 0
0 0

)
m×m

(15)

is a matrix that permits to identify the states in which the
units do not need to go to corrective repair (the first g phases
are ok, others are not), and

L0 = −L~1. (16)

Equation (14) is readily explained as follow. No change of
level in this Markov process implies that we did observe a
change of phase only. This can be a change of phase for
the online unit (determined by T ) or (”+”) for one of the
standby units (determined by Ts) or (”+”) for the corrective
repair unit (determined by Sc) or (”+”) for the inspection
unit (determined by L). In case a new inspection period
starts (determined by L0γ), the online unit was not in a too
degraded state (determined by U1).

In our tool, we choose the second input interface to specify
these matrices. This one example showed the complexity
of this inhomogeneous QBD. The best is to code all the
matrices according to an Octave program and to let our
program load it and call it when necessary.

Sensitivity analysis
We propose to identify the impact of a shorter or longer
inspection period on the rocof of the system, that is the
probability that the system fails completely (i.e. no more
unit is available to become the online unit).

Authors in [12] had proposed such a study based on the
phase g (see U1 definition in (15)) at which the unit needed
to go to preventive repair. They were able to measure the
prize of being more strict on the need to go preventive repair.
We wish here to see if performing more often inspection
could have the same effect on the rocof of the system. For
this we choose a perturbation of the inspection procedure as
follows

Lε = L+ εA (17)

where

A =

(
−1 1
0 −1

)
, (18)

and ε ranges from 0.01 to 0.09 by step of 0.02.

We choose exactly the same input parameters as they did in
[12] and obtain the results in Table 1.

We have chosen ε such that the greater ε, the smaller the
interval in between two consecutive inspections. Accord-
ingly, we observe in Table 1 that for a given g, the greater
ε, the smaller the rocof. Indeed, the system will repair more
rapidly the default units. As established in [12] the greater
g the greater the rocof. This makes sense since on the con-
trary in this case, the inspection will cause a preventive re-
pair more lately. With this sensitivity analysis, we may now
decide about a compromise in between the phase of decision
for preventive repair (that is g) and the rate of inspection,
that is

µ = γ(−(L+ εA))−1~1. (19)

4. PERSPECTIVE AND FUTURE WORK
There are two main directions we wish to follow in the future
to extend our tool. First, we wish to integrate recent and
further developments on sensitivity analysis of QBD process.
Second, the grammar need to allow the user to define more
complex QBD transition structure and state space.

Sensitivity analysis is the subject of many research papers
(see for example [10] or [11]) but few propose a systematic
and tractable approach to any kind of QBD. In our tool, at
this stage of the development, we have chosen to carry out
two type of analysis, one on the original QBD and one on
the perturbated QBD. This is clearly not efficient and our
tool will definitely need to integrate recent advances in this
matter.

Future work on the grammar should permit to extend our
approach to n-dimensional Markovian state-space. We should
also be able to cover the case where complex dependencies
in between state transition and rate of transition occur.

Let us conclude that recent developments on QBD simu-
lations techniques (such as perfect simulation for example)
might be of great interest to be included in our tool.

APPENDIX
A. DEFINITION OF THE GRAMMAR USED

FOR THE INPUT INTERFACE
We develop a small context-free grammar in order to build
a parser that reads a text file respecting this grammar and
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Table 1: Performance analysis on the rocof of the system
g/ ε 0.01 0.03 0.05 0.07 0.09

1 1.4921e-06 8.3196e-07 6.3283e-07 5.4581e-07 4.9886e-07
2 2.4186e-06 1.5270e-06 1.2121e-06 1.0623e-06 9.7770e-07
3 5.9177e-06 4.4985e-06 3.8340e-06 3.4591e-06 3.2224e-06
4 1.5043e-05 1.4081e-05 1.3302e-05 1.2666e-05 1.2141e-05

constructs the generator of a QBD process. This appendix
presents all the symbols composing the grammar as well as
their informal semantic. It also aims to explain how to spec-
ify the transitions of a QBD thanks to them. Let us recall
that our approach is limited to two-dimensional Markovian
state spaces. All the grammar symbols are defined in figure
5.

Our QBD specification method consists in the declaration
of a number of constants followed by the declaration of a
number of transitions. We propose to consider Figure 2 as a
clear example of the use of the grammar. While it is allowed
not to declare any constant, we have imposed the restriction
that at least one transition must be defined.

The declaration of a constant begins with the keyword CONST,
which is followed by an id and then a value. Variable id sim-
ply represents the name of the constant. It is a string begin-
ning with a lower case letter. This letter can be followed by
a series of some of the following characters: letters, digits,
underscore. A value is a decimal number and represents the
value of the constant.

The definition of a transition begins with the keyword TRAN-

SITION, followed by the type of transition and the destina-
tion phase. More precisely, the possible types of transition
are UP, DOWN and SAME respectively, that describes if the pro-
cess moves to the upper level, the downer level or stays in
the same level, respectively. The destination phase has ei-
ther explicit value or depends on the starting phase P .

Then, a series of constraints on the starting level L and
starting phase P are specified. They are preceded by the
keyword FOR and separated from each other by the keyword
AND. The conjunction of these constraints explains for which
source states the transition is defined. Finally, the keyword
RATE is followed by an expression giving the rate at which the
transition occurs. This can be a simple expression such as a
decimal number, an id referencing a constant. It can also be
compound, i.e. simple expressions joined by an arithmetic
operator (+,−, ∗ and /) or by the binary function min and
max. Finally, expressions can be grouped using parentheses.

Accordingly, one could define the next transition using our
grammar by writing:

TRANSITION (UP,1) FOR L > 1 AND P = 3 RATE 5.2

It means that the process can move from every state (L,P )
such that L > 1 and P = 3 to the upper level and in phase
1, thus to the state (L+ 1, 1) with rate 5.2.

B. THE OCTAVE FUNCTIONS

qbd ::= (constant)* (transition)+
constant ::= CONST id value
transition ::= TRANSITION (move, expression)

FOR conditions RATE expression
move ::= UP | SAME | DOWN
conditions ::= condition (AND condition)*
condition ::= (L | P) (< | <= | = | >= | >) expression
expression ::= term term 0
term 0 ::= ((+ | -) expression) | ε
term ::= factor factor 0
factor 0 ::= ((* | /) term) | ε
factor ::= id | L | P | value

| ( expression )
| - expression
| min( expression , expression )
| max( expression , expression )

id ::= [a-z]([a-z] | [A-Z] | [0-9] | ])*
value ::= (0 | [1-9] [0-9]*) ([.][1-9][0-9]*)?

Figure 5: Definition of the symbols of the context-
free grammar. ε represents the empty symbol.

We use Octave as the computation core of our tool. There-
fore, we provide some Octave functions that implement the
simulation and the matrix-analytic algorithms. These func-
tions can be either called from the Octave command line or
from our Java code. In this appendix, each function is de-
scribed. We explain specifically what are their parameters
and their return values.

The functions can be separated into two groups. The first
group is a set of functions implementing the matrix-analytic
algorithms to compute the rate matrices, the stationary prob-
ability vector or the expected first passage times. The sec-
ond group includes the simulation functions, as well as other
functions used to provide some statistics from the simulation
results.

Matrix-analytic functions
One of our goal is to compute the stationary probability vec-
tor. In the infinite and homogeneous case, we use some func-
tions of the SMCSolver (see [2]): QBD LR.m and QBD
pi.m. The first one computes the rate matrix R by using

the Logarithmic Reduction algorithm. The second one com-
putes the steady state vector. In case of finite and inhomo-
geneous QBDs respectively, we define two other functions:
QBD pi finite.m and QBD pi Inh.m respectively. Both
implement a modified version of the Linear Level Reduction
algorithm ([8], Chapters 10 and 12). One key difference be-
tween these two functions is how they get the inner blocks.
In the former function, they are passed as parameters. Thus,

the arguments of QBD pi finite.m are: A
(1)
−1, B0, B1, A−1,

A0, A1, A
(K)
−1 , A

(K)
0 , A

(K−1)
1 and K (as defined in Equation

(5)). In the latter case, that is QBD pi Inh.m, the inner
blocks are dynamically computed by calling another func-
tion that returns those and that takes only one parameter:
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the level to compute the block of. This function must be
implemented in the file computeLevelMatrices.m.

Once the steady state vector is computed, it can be passed
as a parameter of QBD stat.m. This function returns the
mean stationary visited level and its standard deviation.

To compute the expected first passage times from a given
level to an upper one, an algorithm was proposed in [8],
Chapter 11. The function QBD fpt LLR.m implements a
generalized version of this algorithm. It allows to compute
the expected first passage times from every phase of a given
level to any another level. It takes two parameters: s, the
origin level and d, the destination level. The inner blocks
are dynamically computed whenever they are needed thanks
to computeLevelMatrices.m.

Simulation functions
The discrete-event simulation algorithm is implemented via
three functions. Again, these functions only differ in the
way the inner blocks are obtained.

QBD sim hom.m simulates an infinite homogeneous QBD.

Six inner blocks are needed: A
(1)
−1, B0, B1, A−1, A0 and A1.

They are computed and stored before the simulation begins.

To simulate an homogeneous and finite QBD, three more

inner blocks are needed: B−1, BK , A
(K−1)
1 (if different from

A1). Along with the six previously defined blocks, they can
be passed as parameters of the function QBD sim hom
fin.m.

Finally, the inhomogeneous case is simulated by the function
QBD sim Inh.m. The inner blocks of a given level are
computed when this level is reached for the first time. Then,
these blocks are stored in order to be used whenever they
are needed. Thus, a block is computed at most one time.

Each simulation function computes the estimated station-
ary probability of every state of the process, the mean vis-
ited level, its standard deviation, the lowest and the highest
reached levels.

The first passage time from the starting level to any reached
level is also returned as a vector.

If the number of batches is greater than one, a confidence in-
terval for the expected probability of every state is also com-
puted. The lower (respectively higher) bounds are contained
in the returned value lowerBounds (respectively higher-
Bounds).

This interval is obtained by calling Estimate Mean.m.
This function has two parameters: Sample, a vector that
contains the sample values, and alpha, the level of confi-
dence of the estimation.
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