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ABSTRACT
We investigate the scheduling of a common resource between
several concurrent users when the feasible transmission rate
of each user varies randomly over time. Time is slotted and
users arrive and depart upon service completion. This may
model for example the flow-level behavior of end-users in a
narrowband HDR wireless channel (CDMA 1xEV-DO). As
performance criteria we consider the stability of the system
and the mean delay experienced by the users. Given the
complexity of the problem we investigate the fluid-scaled
system, which allows to obtain important results and in-
sights for the original system: (1) We characterize for a large
class of scheduling policies the stability conditions and iden-
tify a set of maximum stable policies, giving in each time
slot preference to users being in their best possible chan-
nel condition. We find in particular that many opportunis-
tic scheduling policies like Score-Based [9], Proportionally
Best [1] or Potential Improvement [4] are stable under the
maximum stability conditions, whereas Relative-Best [10]
or the cµ-rule are not. (2) We show that choosing the right
tie-breaking rule is crucial for the performance (e.g. aver-
age delay) as perceived by a user. We prove that a policy
is asymptotically optimal if it is maximum stable and the
tie-breaking rule gives priority to the user with the highest
departure probability. In particular, we show that simple
priority-index policies with a myopic tie-breaking rule, are
stable and asymptotically optimal. All our findings are val-
idated with extensive numerical experiments.
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1. INTRODUCTION
Next generation wireless networks are expected to support

a wide variety of data services. Due to fading and interfer-
ence effects, for each user, the quality of a downlink channel,
and hence its transmission rate, fluctuates over time. This
has triggered a large amount of work aiming at understand-
ing the performance of channel-aware scheduling policies. It
is by now accepted that so-called “opportunistic schedulers”
have many desirable properties (see for example [10]). A pol-
icy is called opportunistic if it takes advantage of the chan-
nel fluctuations by serving a user whose channel condition is
“good” in some sense with respect to its own statistical be-
havior. With the objective of minimizing mean users’ delay,
there arises a key tradeoff in the design of scheduling mech-
anisms between making full use of the opportunistic gains
(hence ensuring a stable system) and prioritizing users hav-
ing small residual service sizes.

Broadly speaking, researchers have explored scheduling
in wireless systems both at the packet level and at the flow
level. In packet-level models it is typically assumed that
there exists a finite number of permanent users. The focus
of the scheduler is on the number of packets in the queue
of each user. We refer for example to [31, 2, 30, 17, 24, 3,
27] for this line of research. In a flow-level model instead,
users arrive randomly to the system and leave after receiving
their finite-sized service demands. This allows to capture the
performance as perceived by the end-users, see for example
[9, 20, 10, 25, 21, 1, 4, 28]. For a survey paper on flow-level
modeling we refer to [23] and [11]. In [22], hybrid models
are studied.

The performance evaluation and optimization of wireless
networks at the flow level has proved to be extremely chal-
lenging. One of the most successful approaches has been the
so-called time-scale separation argument (see [10, 12, 27, 1,
13]) where it is assumed that at the flow scale the dynamics
of the channel fluctuations can be averaged out. Under this
time-scale assumption, it was shown in [12] that any utility-
based scheduling policy is stable in a flow-level model. The
authors of [1] make the same assumption when they dis-
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cuss rate-stability for priority-index policies. Another ap-
proach is the Lagrangian-relaxation method (introduced in
[32]) used in [4]. This allowed the authors of [4] to construct
the Potential Improvement (PI) scheduling policy, which is
optimal for a relaxed optimization problem. In addition,
several other policies have been proposed and numerically
investigated in the literature, among others the Proportional
Fair [14] discipline, the Score-Based (SB) algorithm [9], the
Relative Best (RB) scheduler [7] and Proportionally Best
(PB) [1].

To sum up, without a time-scaling separation argument,
which is a rather strong assumption, the performance of op-
portunistic schedulers, regarding stability and performance
perceived by the users, is not well understood. In order to
gain better insight into the latter issue, in this paper we will
study a flow-level model without the time-scale separation
assumption. More precisely, we assume that data users ar-
rive randomly in time and have a finite amount of data to
download. Time is slotted and the quality of the channel
condition of each user varies per time slot. In every time
slot at most one user may be served. We are interested
in stability and optimization of the system. Given the com-
plexity of the problem we first prove convergence of the fluid
scaled system towards a unique fluid limit. We note that the
precise characterization of the fluid limit involves averaging
phenomena of the scaled system which is not grasped by the
usual description of the weak limits.

The fluid-limit description allows us to obtain several im-
portant results and insights for the original wireless sys-
tem. First of all, we can characterize the maximum stabil-
ity conditions (the weakest possible conditions on the traffic
parameters such that there exists a scheduling policy that
makes the system positive recurrent) and show that the set
of policies that are stable under the maximum stability con-
dition have a very simple characterization: whenever there
are users present that are currently in their best channel
condition, only such users are served. Such a characteriza-
tion was previously given for rate stability [1], but, to the
best of our knowledge, stochastic stability was still an open
issue.

Second, for a large class of scheduling policies we deter-
mine the stability conditions and conclude that many known
opportunistic scheduling policies like Score-Based [9], Pro-
portionally Best [1] or Potential Improvement [4] are stable
under the maximum stability conditions, whereas Relative-
Best [7, 10] or cµ-rule are not.

We furthermore demonstrate the importance for the choice
of the tie-breaking rule when the goal is to optimize the per-
formance. Until now, the literature proposed to break ties at
random, see for example [7, 9, 10, 1]. We propose the myopic
tie-breaking rule, i.e., give priority to the user with highest
instantaneous departure probability when there are multi-
ple users in their best channel condition. We prove that the
myopic tie-breaking rule is asymptotically optimal and our
numerical experiments further illustrate that the myopic tie-
breaking rule significantly improves the performance. This
in turn shows that one can use simple priority-index poli-
cies that will be both maximum stable and asymptotically
optimal.

The rest of the paper is organized as follows. In Section 2
we present the model. In Section 3 we introduce the policies
of interest and define their tie-breaking rules. In Section 4 we
derive fluid limits for a large class of policies. In Section 5 we

present our stability results. In Section 6 we characterize the
asymptotically optimal policies and discuss the importance
of the tie-breaking rule. In Section 7 we perform numerical
experiments to validate our theoretical findings.

2. MODEL DESCRIPTION
We consider a time-slotted system serving one user in each

time slot. This models for instance a CDMA 1xEV-DO sys-
tem. There are K classes of users, and in each time slot the
number of class-k users arriving to the system, Ak, follows an
i.i.d. sequence of random variables, with E(Ak) = λk < ∞
and E(A2

k) = γk <∞.
For each user the departure probability varies over time as

the quality of the channel is changing from slot to slot. The
quality of the channel (or state of the channel) for a class-k
user is modeled as an i.i.d. sequence of random variables tak-
ing values in the finite set Nk := {1, 2, . . . , Nk}. For each
time slot we let qk,n denote the probability that a class-k
user is in channel state n ∈ Nk. Associated with channel
state n is a departure probability µk,n. This can be used
for instance to model a system in which the service require-
ments of users is geometric (see Remark 1). Without loss of
generality we assume that the channel condition labels are
ordered such that 0 ≤ µk,1 ≤ µk,2 ≤ · · · ≤ µk,Nk ≤ 1, and
qk,Nkµk,Nk 6= 0 for all k. The channel condition of a class-k
user is independent of the channel conditions of all the other
users and of the channel quality history.

In each time slot, a scheduler/policy f decides which user
is served. Because of the Markov property we can focus
on policies that base decisions on the current number of
users present in the various classes and on their channel
conditions.

Since the channel conditions are independent and identi-
cally distributed for each time slot, without loss of generality,
we can focus on the number of users in each class instead of
the number of users in each state. For a given scheduling pol-
icy f , letXf

k (t) denote the number of class-k users in the var-

ious classes at time slot t and Xf (t) = (Xf
1 (t), . . . , Xf

K(t)).
Since the channel conditions are i.i.d. and independent of
the process Xf (·), it follows that Xf is a Markov chain.

Performance criteria: Our performance criteria are
stability and long-run average number of users. We use the
following definition for stability:

Definition 1. A scheduling policy f is stable if the pro-
cess Xf is positive recurrent.

Because of the time-varying channel conditions the system
is not work-conserving, and hence it depends strongly on
the employed scheduling policy whether the system can be
made stable. We define the maximum stability conditions
as the conditions on the traffic inputs such that there ex-
ists a policy that can make the system stable. A maximum
stable policy is a policy that is stable under the maximum
stability conditions. From the performance point of view it
is therefore of crucial importance to design a scheduler that
is maximum stable.

Besides stability, another important performance measure
is the long-run time-average holding cost,

lim sup
T→∞

1

T

K∑
k=1

T∑
t=0

ckE(Xf
k (t)), (1)

with ck > 0 the holding cost incurred per time slot for having
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a class-k user in the system. In the case ck = 1, for all k, this
is equivalent to minimizing the mean sojourn time (because
of Little’s law).

Remark 1 (Modeling of a wireless data network).
The mathematical model, even though simple, captures some
of the key properties of wireless communication systems. Time
is slotted, as is the case in the CDMA 1xEV-DO [6] and the
OFDM-based LTE systems [29]. The available transmission
rate of each user fluctuates due to fading effects, and as a
consequence, it varies from one slot to another. We note that
in real systems the number of feasible transmission rates is
finite (see [6]).

In a wireless system one may classify the users into differ-
ent classes based on their applications or traffic conditions
for example. Let the service requirement (in bits) of a class-k
user be a geometric random variable denoted by Bk, and let
E(Bk) denote its expectation. Let ∆ denote the amount of
bits transferred in one slot under the current channel con-
dition. Note that in practice ∆ will vary from slot to slot
depending on the channel condition, and the allocation. The
probability that a user leaves the system is approximately
P(b ≤ Bk ≤ b + ∆|Bk > b) ≈ ∆/E(Bk), which does not de-
pend on the attained service b (memoryless property of the
geometric distribution). This expression becomes asymptot-
ically exact as the ratio ∆/E(Bk) goes to 0. Hence, this is
the case if the mean service requirement (in bits) of a user is
very large compared to the amount of bits that can be served
in one slot. Let sk,n denote the transmission rate (in bits
per second) of a class-k user when the channel state is n.
So taking ∆ = sk,n · tc we obtain that the departure proba-
bility of a class-k user under channel condition n (when it
is served at full capacity) can be approximated by

µk,n :=
sk,n · tc
E(Bk)

, (2)

where tc is the length of the slot (for example tc = 1.67ms
in the CDMA 1xEV-DO system).

3. POLICIES
In this section we introduce scheduling policies that will

be used throughout the paper. Most of these policies are
opportunistic, meaning that they take advantage of chan-
nel fluctuations by serving a user whose channel condition
is “good” in some sense with respect to its own statistical
behavior.

Priority-index policies are very popular due to their sim-
plicity from an implementation point of view. A priority-
index policy is characterized by an index function that as-
signs an index to each user based solely on its class and its
current state.

Definition 2 (Priority-index policy). In every time
slot, users that have the highest index among all users present
in the system are served.

Priority-index policies might need to be augmented with a
suitable tie-breaking rule. Such a rule refers to the strategy
adopted when there is a tie on the highest index value. A tie
means that there are several users present having the high-
est index value, but these users belong to different classes.
In the literature, most of the papers specify to break ties at

random (see for example [9, 7, 1]). One of our main con-
tributions will be to emphasize that the choice for the tie-
breaking rule is crucial for the performance of the system
(as will be explained in Sections 6 and Section 7).

An important subset of the priority-index policies are the
so-called weight-based policies.

Definition 3 (Weight-based policy). A priority-index
policy with index function ωkµk,n. Here ωk denotes a class
dependent weight.

Important examples of weight-based policies are: the cµ-
rule (ωk = ck, with ck the holding cost), Relative Best (RB)

[7] (ωk = 1/
∑Nk
n=1 qk,nµk,n), and Proportionally Best (PB)

[1] (ωk = 1/µk,Nk ). For all these policies, ties are broken at
random.

In [9] the Score-Based (SB) policy is introduced. SB is
a priority-index policy where the index value of a class-k
user in state n is given by

∑n
ñ=1 qk,ñ, and ties are broken

at random. In [4] the Potential Improvement (PI) policy is
introduced. PI is a priority-index policy with as index value

ckµk,n∑̃
n>n

qk,ñ(µk,ñ − µk,n)

and the tie-breaking rule is the myopic-rule, that is, among
the users with the highest index, select the one with highest
value for ckµk,Nk , k = 1, . . . ,K. The ck’s refer to the holding
cost introduced in Section 2.

It will be convenient to define the following two classes of
policies, which play an important role in the results on the
stability analysis and asymptotic optimality.

Definition 4 (Best Rate (BR) policies). The BR
policies are such that whenever there are users present that
are currently in their best channel condition, i.e., in state
Nk, such a user is served.

Definition 5 (Best Rate Priority (BRP) policies).
The BRP policies are such that whenever there are users
present that are currently in their best channel condition,
i.e., in state Nk, among those users the one with the highest
value for ckµk,Nk is served.

The collection of BRP policies is a subset of the BR poli-
cies. In our main results we will show that the classes of poli-
cies BR and BRP have desirable properties: In Section 5 we
show that any BR policy is stable under the maximum sta-
bility conditions and in Section 6 we show that BRP policies
are asymptotically optimal.

In Figure 1 we have depicted a diagram in which we have
summarized the various (classes of) policies. From the poli-
cies introduced above, SB, PB and PI are BR policies. This
follows since the highest possible index value is 1 for SB and
PB, and ∞ for PI, and these indices can only be obtained
whenever a user is in its best possible channel condition.
For RB and the cµ rule it can be that the index value of a
class-k user in state n < Nk is larger than the index value
of a class-l user in state Nl, hence RB is not a BR policy.

From the policies introduced above, PI is the only BRP
policy. This results from the fact that instead of a random
tie-breaking rule, the myopic tie-breaking rule is used in PI.
Hence, whenever there are users present in their best channel
condition (i.e., having index∞), the user having the highest
value for ckµk,Nk is chosen.
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Fluid optimal policies
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Priority Index policies

Figure 1: Classification of schedulers.

4. FLUID LIMITS AND CONVERGENCE
In this section we study the fluid-scaling limits for a large

class of policies. Fluid scaling or time-space scalings, corre-
sponding to “zooming out” the trajectories, have been used
extensively to study stochastic processes with complex dy-
namics [16]. The limiting processes are usually much simpler
to describe while they provide crucial insights on the behav-
ior of the non-scaled version of the process. However, most
results for stochastic networks are concerned with a generic
description of the weak limits (usually not unique) [15] or
convergence in probability to a unique limit but only for a
subset of the state space [19]. To be able to characterize
both stability and asymptotic optimality for a wide range of
policies, we need to prove convergence in probability towards
a unique fluid limit and characterize the whole trajectory of
this fluid limit. This requires to deal with averaging phe-
nomena: for instance, it may happen that one class of users
reaches its stationary regime before the other classes do. In
this case, the drift of the other classes needs to be averaged
with the stationary distribution of this class. Hence, a de-
scription of the fluid limit will involve averaged drifts (we
refer to this as second-vector fields, following [18]).

For the stochastic process Xf (t) associated with a policy

f , we define the drift function by δf (x) := (δf1 (x), . . . , δfK(x)),
x ∈ NK , with

δfi (x) := E(Xf
i (1)− xi|Xf (0) = x).

(We will drop the superscript f when it is clear that we
consider a unique policy.) We say that a vector field v :
NK → RK has uniform limits [13] if for any U ⊂ {1, . . .K},
there exists a function vU : N|U| → RK (constant when
U = ∅) such that

lim
R→∞

sup
x∈NK :|xUc |>R

|v(x)− vU (xU )| = 0,

where xU denotes the restriction of the vector x to indices in
the subclass U . Intuitively, this means that the drift vector-
field has limits when we make the number of users of some
of the classes go to infinity, and that we can interchange the
order of the coordinates when taking these limits. We shall
suppose in the following that the drift vector has uniform
limits and thus that we can define the asymptotic drifts δU :
N|U| → RK as follows:

δU (xU ) := lim
xk→∞, k∈Uc

δ(x). (3)

Here, Uc (the complementary set of U) corresponds to the
“saturated”classes for which we make the number of users go

to infinity. We define the stochastic processes XU as the U-
dimensional stochastic process corresponding to the original
process seeing an infinite number of users of class k ∈ Uc
and let πU denote its stationary measure assuming it exists.
We define the averaged drift vectors by

δ̃U =
∑

x∈N|U|
δU (x)πU (x). (4)

Finally, following [13] we say that a vector field v is par-
tially increasing if vi(x) is increasing in xj for all j 6= i.
These assumptions, which are crucial to prove the conver-
gence towards the fluid limit, are verified for many cases of
interest, see the next lemma.

Lemma 4.1. A priority index policy or a BR policy with
non-state dependent tie-breaking rule (i.e., independently of
the numbers of users) induces a partially increasing drift vec-
tor field with uniform limits.

Proof: We prove the lemma for BR policies, the other case
being similar. When increasing the number of users of one
class only, the probability that this class has at least one user
in its best possible state is increased. Hence, given that the
tie-breaking rule does not depend on the number of users,
the probability that this class is served is increased while the
probability that a user of another class is served decreases.
This implies that the drift vector field is partially increasing.

Using further the independence of the channel variations,
the probability that class i ∈ Uc has at least one user in
its best state is 1 − (1 − qi,Ni)

xi , where xi is the number
of class-i users. Hence, when the numbers of class-i users,
i ∈ Uc, go to infinity, the probability of having at least one
user in its best state is converging to 1. Together with the
property that the tie-breaking rule does not depend on the
number of users, this implies that:

δ(x) = δU (xU )
∏
i∈Uc

(1− (1− qi,Ni)
xi) + o(1/|x|),

which in turn implies the uniform convergence of δ. 2

We construct different realizations of the processes, depend-
ing on the initial state. To be precise, for a given policy f
we let Xf,r(t) denote the number of class-k users at time t
when the initial state equals Xr

k(0) = rxk(0), k = 1, . . . ,K,
with r ∈ N. We are then interested in the fluid-scaled

processes Y f,r(t) := Xf,r(brtc)
r

, t ≥ 0, k = 1, . . . ,K, with
Y r(0) = x(0).
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We now state the convergence towards a unique fluid limit
which is the main result of this Section. The proof can be
found in the technical report [5].

Theorem 4.2. For a given policy f inducing a partially
increasing drift vector field with uniform limits, we have

lim
r→∞

P( sup
0≤s≤t

|Y f,r(s)− yf (s)| ≥ ε) = 0, for all ε > 0,

with yf (t) a piece-wise linear function that can be described
recursively as follows. Let U0 = ∅ and T0 = 0. Then we
have,

dyfk (t)

dt
= δ̃

f,Ul
k , t ∈ [T fl , T

f
l+1], (5)

with T fl+1 = T fl + min
k∈Uc

l
,δ̃
Ul
k
<0

yfk (T fl )

−δ̃f,Ulk

, (6)

and Ul+1 = Ul ∪ arg min{
yfk (T fl )

−δ̃f,Ulk

, k ∈ Ucl }, (7)

with the assumption that if there exists no k ∈ Ucl with

δ̃
f,Ul
k < 0, then T fl+1 =∞.

Remark 2 (Calculation of the averaged drifts).
Theorem 4.2 characterizes the fluid limit as a piece-wise lin-
ear function with slopes δ̃U . In practice, the calculations of
these slopes involve:

• deriving the asymptotic drifts (see (3)),

• calculating the stationary distributions of XU ,

• averaging the asymptotic drifts with these stationary
distributions (see (4)).

For instance, assume K = 2, N1 = 2 and N2 = 1 and
a Bernoulli arrival process. Consider the policy that gives
priority to the best class-1 user present in the system and
otherwise (i.e., when there is no class 1) serves a class-2
user. Then

δ∅ = (λ1 − µ1,N1 , λ2),

δ{1}(x1) = (λ1 − s1(x1), λ2 − µ2,N21(x1=0)),

with s1(x1) = µ1,N1(1−(1−q1,N1)x1)+µ1,N1−1(1−q1,N1)x1 .

The process X{1} is a 1-dimensional Markov chain with sta-
tionary distribution

π{1}(x1) = C

x1∏
j=1

λ1(1− s1(j − 1))

(1− λ1)s1(j)
,

where C is a normalization constant. The average drift can
now be computed using (4).

In the specific case of BR policies with a priority-type tie-
breaking rule, we can in fact explicitly derive the fluid limit,
since we can make use of rate conservation arguments. This
will prove to be very useful to obtain both maximal stability
and asymptotic optimality statements.

Proposition 4.3. Consider a BR policy with a priority
type tie-breaking rule. Let us reorder the classes according
to the priority ordering. The associated asymptotic drift in
the interior of the orthant is

δ∅ = (λ1 − µ1,N1 , λ2, . . . , λK). (8)

If T1 <∞, then

δ̃{1} = (0, λ2 − µ2,N2

(
1− λ1

µ1,N1

)
, . . . , λK), (9)

and more generally, if Tk−1 <∞, then Uk−1 = {1, . . . , k−1}
and

δ̃Uk−1 = (0, . . . , 0, λk −

(
1−

∑
j∈U

λj
µj,Nj

)
µk,Nk , . . . , λK). (10)

Proof: Using Lemma 4.1, the drift δ associated to a best
rate policy is partially increasing with uniform limits and
Theorem 4.2 holds. When U = ∅, there are infinitely many
users of each class and hence there is always a class-1 user in
its best state, which directly implies (8). Note that T1 <∞
if and only if λ1

µ1,N1
< 1. In this case the process X{1} is

ergodic. For T1 ≤ t ≤ T2, we can simplify the asymptotic
drift δ̃{1} using the specific properties of the policy and rate
conservation arguments: let A1,x1 be the event that class 1
is served given there are x1 users of class 1. Since X{1} is
ergodic, we have the following rate conservation equation∑

x1

π{1}(A1,x1)µ1,N1 = λ1,

(for details see the technical report [5]), which gives that∑
x1
π{1}(Ac1,x1) = 1− λ1

µ1,N1
. Since U = {1} (so in particular

there is still an infinite amount of class-2 users which are ex-
clusively served when there are no class-1 users in their best
state) class 2 receives service at rate µ2,N2

∑
x1
π{1}(Ac1,x1) =

µ2,N2(1− λ1
µ1,N1

) which gives (9).

Consider now the case where the classes in U := Uk−1 are

stationary (assuming as in the previous case that
∑
j∈U

λj

µj,Nj

< 1). Let Aj,xU be the event that class j ∈ U is served given
there are xi users of class i, i ∈ U . By similar rate conser-
vation arguments we obtain∑

xU

πU (Aj,xU )µj,Nj = λj , j ∈ U .

Noting that the setsAj,xU are disjoints,
∑
xU
πU (∪j∈UAj,xU )

=
∑
j∈U

λj

µj,Nj
, which gives (10). 2

Remark 3. For all BR policies where the scheduler chooses
with probability αUi to serve class i when a subset U of classes
has at least one user in its best channel condition, the fluid
limit in the interior of the orthant has a drift given by:

δ∅ = (λ1 − α{1,...,K}1 µ1,N1 , λ2 − α{1...,K}2 µ2,N2 (11)

, . . . , λK − α{1,...,K}K µK,NK ). (12)

However, we cannot simplify further the second-vector fields
in general. An exception is the case K = 2, i.e., two classes.
Then, using the rate conservation argument as in the pre-
vious proposition, we obtain (assuming w.l.o.g. that class 1
empties first)

δ̃{1} = (0, λ2 −
(

1− λ1

µ1,N1

)
µ2,N2).

5. STABILITY ANALYSIS
The derivation of fluid limits allows us to conclude for

stochastic stability. In particular, we describe the stability
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conditions for a large class of policies, we derive the maximal
achievable stability region, and in addition characterize the
class of policies that will achieve maximum stability.

The next Theorem characterizes the stability of any policy
having a partially increasing drift vector field with uniform
limits.

Theorem 5.1. A policy f inducing a partially increasing
drift vector field with uniform limits is stable if T fl <∞ for

all l, where T fl is given by Theorem 4.2.

Proof: If T fl < ∞ for all l, the fluid limit described in

Theorem 4.2 is equal to 0 for t large enough, i.e., Y f,r(t)
converges in probability to 0 for t large enough. In addition,
the random variable Y f,rk (t) is uniformly integrable. This

can be seen by the fact that Y f,rk (t) can be upper bounded by
Y rk (0) plus the total amount of users that have arrived until
time rt divided by r, which is uniform integrable, see [15].

The convergence in probability to 0 of the scaled system
and the uniform integrability together imply that
limr→∞ E(Y f,rk (t)) = 0, for t large enough, for all k, see
[8, Theorem 3.5]. Using an extended Foster-Lyapunov cri-
terion, as expressed in [18] or [26, Corollary 9.8] this implies
the positive recurrence of the Markov process. 2

We now state the maximum stability condition and charac-
terize a set of policies that achieve maximum stability.

Theorem 5.2. The maximum stability condition is

K∑
k=1

λk
µk,Nk

< 1. (13)

In addition, any BR policy is maximum stable.

Proof: We first prove that a BR policy with a non-state
dependent tie-breaking rule is stable when (13). For the
proof of a BR policy with a general tie-breaking rule we
refer the reader to the technical report [5].

Consider the fluid limit y(t) of a BR policy with a non-
state dependent tie-breaking rule. We prove that the fluid
limit is 0 after a finite time by considering the Lyapunov

function
∑K
k=1

yk(t)
µk,Nk

. We have that
∑K
k=1

dyk(t)
dt

1
µk,Nk

=∑K
k=1

δ̃Uk
µk,Nk

. For any BR policy we have that for all U and

for all xU ,

K∑
k=1

δUk (xU )

µk,Nk

= lim
xi→∞,i∈Uc

K∑
k=1

δk(x)

µk,Nk

=

K∑
k=1

λk
µk,Nk

− 1 < 0,

because the server spends all its capacity on users in their

best state (since Uc 6= ∅). Hence,
∑K
k=1

dyk(t)
dt

1
µk,Nk

< 0, so

the fluid limit empties in finite time, i.e., Tl < ∞ for all l.
Therefore, by Theorem 5.1 the policy is stable.

When condition (13) is not satisfied, the system is not
rate stable, which precludes stability. 2

Condition (13) was recognized as the maximal rate stabil-
ity condition in [1] and as the maximum stability condition
under a time-scale separation assumption in [10].

We note that SB, PI and PB are stable under the max-
imum stability conditions (they belong to the class of BR
policies). The intuition behind Theorem 5.2 is that asymp-
totically the system under a BR policy behaves as a classical

work-conserving system where class k has departure proba-
bility µk,Nk . On the contrary, other policies, including RB
and the cµ-rule, spend (at the fluid scale) a non-negligible
fraction of time serving users that are not in their best states,
and are therefore not maximum stable. For an example, we
refer to Section 7 where we numerically derive stability con-
ditions for RB and the cµ-rule.

6. ASYMPTOTIC OPTIMALITY
Besides stability, another important performance measure

concerns the long-run average holding cost as given in (1).
Deriving an optimal policy with respect to this criterion is
difficult and the size of the state space makes the problem
intractable. For this reason we introduce a related determin-
istic control problem, which allows us to prove that any BRP
policy is asymptotically optimal for the original stochas-
tic system. This emphasizes the important role of the tie-
breaking rule in order to achieve efficient performance of the
system.

We study the following deterministic fluid control model,
which arises from the original stochastic model by only tak-
ing into account the mean drifts.

min

∫ D

0

K∑
k=1

ckxk(t)dt, (14)

subject to (15)

xk(t) = xk(0) + λkt−
Nk∑
n=1

µk,n

∫ t

0

uk,n(v)dv, (16)

xk(t) ≥ 0, k = 1, . . . ,K, (17)

such that for all v ≥ 0,

K∑
k=1

Nk∑
n=1

uk,n(v) ≤ 1, uk,n(v) ≥ 0, for all k, n, (18)

and the control functions uk,n(v) being integrable.
We remark that though in general the fluid limit of a

policy does depend on the distributions of the random envi-
ronments (i.e., the qk,n’s), these do not appear in the above
equations of the fluid control model. This is because the
fluid trajectory xk(t) can be interpreted as a limit of a fluid-
scaled process (see technical report [5] for details). Hence,
when xk(t) > 0 this implies that there are infinitely many
class-k users so that with probability 1 there are infinitely
many class-k user in each of the channel state conditions
(this being independent of the exact values of the qk,n > 0’s).

An optimal control u∗(·) and its corresponding trajectory
x∗(·) are derived in the following lemma.

Lemma 6.1. Assume c1µ1,N1 ≥ c2µ2,N2 ≥ . . . ≥ cKµK,NK .
The fluid control that solves the fluid control problem is as
follows. Let l = arg min{k : xk(t) > 0}. Then

u∗k,Nk
(t) =

λk
µk,Nk

, for k < l, u∗l,Nl
(t) = 1−

l−1∑
i=1

λi
µi,Ni

,

and u∗k,n(t) = 0 otherwise.

Proof: It is immediate that u∗k,n(t) = 0 for n < Nk, for all
k = 1, . . . ,K. Hence, the fluid control model reduces to a
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multi-class server with service rates µk,Nk , k = 1, . . . ,K for
which the optimal control is as stated in the lemma. 2

The optimal fluid cost serves as a lower bound for the fluid-
scaled cost of the stochastic network, see the lemma below.
The proof may be found in the technical report [5].

Lemma 6.2. For any policy f and D > 0 we have

lim inf
r→∞

E
(∫ D

0

K∑
k=1

ckY
f,r
k (t)dt

)
≥
∫ D

0

K∑
k=1

ckx
∗
k(t)dt.

We define a policy to be asymptotically optimal when the
lower bound is obtained. The following Theorem character-
izes a class of policies that is asymptotically optimal.

Theorem 6.3. Any BRP policy is asymptotically opti-
mal.

Proof: We have
dx∗k(t)

dt
= λk−u∗k,Nk

(t)µk,Nk , k = 1, . . . ,K,
with u∗(·) the optimal control as derived in Lemma 6.1. This
drift coincides with the drift of the fluid limit yBRP (·), see
Proposition 4.3, hence yBRP (t) = x∗(t).

The terms Y f
∗,r

k (t) are uniform integrable (see the proof
of Theorem 5.1), hence we have that the random variable∫ D
0

∑K
k=1 ckY

f∗,r
k (t)dt is uniformly integrable. Together with

the fact that Y r(·) converges in probability to yBRP (t) =
x∗(·), see Proposition 4.2, we then obtain that [8]

lim
r→∞

E(

K∑
k=1

ck

∫ D

0

Y f
∗,r

k (t)dt) =

∫ D

0

K∑
k=1

ckx
∗
k(t)dt.

2

Unfortunately, asymptotic optimality of BRP policies does
not give any performance guarantee in terms of the long-
run time-average holding cost as expressed in Equation (1).
Numerical experiments reported in Section 7 indicate how-
ever that BRP policies can significantly outperform all other
policies in terms of the long-run time-average holding cost.

To the best of our knowledge, the only policy studied in the
literature that belongs to BRP, and hence is both maximum
stable and asymptotically optimal, is PI. We recall that PI
was derived in [4] as the solution of a relaxed optimization
problem. We remark that SB will as well become asymptot-
ically optimal when the myopic tie-breaking rule is used.

7. NUMERICAL EXPERIMENTS
We consider a CDMA 1xEV-DO system with two classes

of users (K = 2). Time is slotted, with the length of one slot
being tc = 1.67ms. In each time slot, one new class-k user
arrives with probability λk. We choose 10.257 kb as the
expected service requirement of both a class-1 and class-2
user. Associated to the state of the channel, we have trans-
mission rates (kb/s), see Table 1 (taken from [6]). We as-
sume that class-1 users have five possible transmission rates
while class-2 users have three. The corresponding proba-
bilities (qk,n) are given in Table 1. In addition, applying
equation (2) we calculate the departure probabilities (µk,n).
We fix λ2 = 0.05, so λ2/µ2,N2 = 0.5. We set c1 = c2 = 1,
so that we are interested in minimizing the total number of
users in the system.

We compare the performance of the policies SB, RB, PI,
PB and the cµ rule, which were introduced in Section 3. We
summarize below the main conclusions of this section:

• The drifts of the fluid limit, δU , (which can be cal-
culated numerically (and in some cases theoretically))
provide insightful information on the behavior under
the different policies.

• We calculate the stability conditions under RB and the
cµ-rule and observe that these are much more stringent
than the one of BR policies (e.g. SB, PB and PI).

• Our simulations illustrate that the tie-breaking rule
has a very big impact on the performance of the sys-
tem and we observe that BRP policies, i.e., policies
that combine opportunistic scheduling with the myopic
tie-breaking rule, minimize the long-run time-average
holding cost as expressed in (1).

Fluid limit.
We first illustrate how the scaled process converges to the

fluid limit. We take r = 10000, Y r(0) = X(0)/r = (1, 1) and
plot the scaled processes Y r1 (t), Y r2 (t), and Y r1 (t)+Y r2 (t) for
different policies, see Figure 2. In this simulation we set
λ1 = 0.14, so λ1/µ1,N1 = 0.35.

We describe the fluid limit yf (t) as defined in Theorem 4.2.
When both classes are present at the fluid scale, i.e., U = ∅,
the drift is

δf,∅ = (λ1 − αfµ1,N1 , λ2 − (1− αf )µ2,N2), (19)

see Remark 3. Here αf is a random tie-breaking rule, i.e., in
case of a tie, αf is the probability that class 1 is favoured over
class 2. For our set of parameters, the best class-1 user under
the cµ-rule and RB is always preferred over the best class-2
users, i.e., there occur no ties, hence one can set αf = 1 in
(19) for f = cµ,RB. For PI, SB and PB we do have ties,
and we set αPI = 1 and αSB = αPB = 1/2. In Table 2

we present the values of δf,∅. From the drifts it is clear that
under all policies class 1 empties before class 2. The moment
that this happens, T f1 , can be derived from Theorem 4.2
and satisfies TPI1 = T cµ1 = TRB1 < TSB1 = TPB1 , see also
Figure 2 a).

For T f1 < t ≤ T f2 , the drift of class 1 is 0, whereas the drift
of class 2 is going to depend on the policy. From Proposi-
tion 4.3 we have that for all BR policies (e.g. PI, SB and

PB) δf,{1} = (0, λ2 − µ2,N2(1− λ1/µ1,N1)). For the cµ rule
and RB we calculate the drift numerically using Remark 2.
In particular we observe that these drifts are positive for the
latter two policies, which implies instability of the system.
We observe that for t ≤ T f1 the number of class-2 users in-
creases under policies PI, cµ and RB, while for SB and PB,
the drift of class-2 users is negative for t ≤ TSB,PB2 .

A direct consequence of the drift function is that SB, PB,
and PI (in fact all BR policies) empty the system all at the

same time, i.e., T f2 is the same. However, the performance of
a policy will depend on the order in which classes are served.
In the fluid limit, this is fully determined by the choice of the
tie-breaking rule. Note that, as can be seen from Figure 2 c),
PI (and hence any BR policy with the myopic tie-breaking
rule) minimizes the total number of users at any moment in
time.
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Channel state 1 2 3 4 5 6 7 8 9 10 11

Transmission rate (kb/s) in CDMA 38.4 76.8 102.6 153.6 204.8 307.2 614.4 921.6 1228.8 1843.2 2457.6
Probabilities in CDMA 0.00 0.01 0.04 0.08 0.15 0.24 0.18 0.09 0.12 0.05 0.04

q1,n 0 0 0.05 0 0.23 0 0.42 0 0.21 0 0.09
q2,n 0 0 0.15 0 0.33 0 0.52 0 0 0 0

µ1,n 0 0 0.017 0 0.033 0 0.1 0 0.2 0 0.4
µ2,n 0 0 0.017 0 0.033 0 0.1 0 0 0 0

Table 1: The transmission rates and the corresponding channel condition probabilities in the CDMA 1xEV-
DO wireless network, as reported in [6].

Figure 2: (a) Scaled number of class-1 users (b) Scaled number of class-2 users (c) Scaled total number of
users

δf,∅ δf,{1}

f Class 1 Class 2 Class 1 Class 2

PI -0.26 0.05 0 -0.015
cµ-rule -0.26 0.05 0 0.0096
PB/SB -0.06 0 0 -0.015

RB -0.26 0.05 0 0.0004

Table 2: Drift of the fluid limit.

Stability region.
We now vary the value of λ1 from 0.004 to 0.196, and

as a consequence we have that ρ := λ1/µ1,N1 + λ2/µ2,N2

varies from 0.51 to 0.99. The policies PI, PB and SB be-
long to the BR policies, and are hence stable when ρ < 1.
For the cµ-rule and RB the stability condition can be calcu-

lated (numerically) by setting δ
f,{1}
2 equal to zero and using

Remark 2. In particular, the cµ-rule is stable if and only if
ρ < 0.79 and RB is stable if and only if ρ < 0.84. In Figure 3
a) we plot the mean number of users, see (1), for different
values of ρ and we observe that the number of users for these
policies grows to infinity as the load approaches the critical
value.

Impact of Tie-Breaking rule.
We study the impact of the tie-breaking rule on the per-

formance of the system. In order to investigate this issue
in more depth, we simulate PI under different random tie-
breaking rules, i.e., we let the probability α vary from 0 until
1. We emphasize that PI as defined in [4] uses by default the
myopic tie-breaking rule, i.e., αPI = 1. In Figure 3 b) we
plot the relative degradation (in terms of the mean number
of users, see (1)) over PI as we vary α. The results show
that the myopic tie-breaking rule, which is asymptotically

optimal (see Theorem 6.3), is also optimal when minimizing
the mean number of users. In addition, the relative degra-
dation of the tie-breaking rule with α = 1/2 (compared to
the myopic tie-breaking rule αPI = 1) can be very large. For
example, for ρ = 0.8 the degradation is 29% and for ρ = 0.9
it is 45%.

8. CONCLUSION
We have characterized the classes of policies that are max-

imum stable and asymptotically optimal in a system with
random environment. An important conclusion, validated
by numerical experiments, is that the tie-breaking rule has
a tremendous impact on the performance. Our analysis also
shows that simple priority-index policies like PI or SB with
a myopic tie-breaking rule, are stable and asymptotically
optimal. While in this model we assumed geometric ser-
vice requirements, we do believe that direct extensions of all
our results exist for phase-type distributed service require-
ments. In particular, we expect that an optimal tie-breaking
rule will be of a simple priority-index type.
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