A symbolic approach to quantitative analysis
of preemptive real-time systems
with non-Markovian temporal parameters

Laura Carnevali, Johnny Giuntini, Enrico Vicario
Dipartimento di Sistemi e Informatica - Universita di Firenze

laura.carnevali@unifi.it, giuntini.johnny@gmail.com, enrico.vicario@unifi.it

ABSTRACT Automata [12], Petri Nets with hyper-arcs [22], Scheduling-TPNs
The method of stochastic state classes provides a means for quantif21], and preemptive Time Petri Nets (pTPNs) [14]. The salient
tative analysis of a rather wide class of non-Markovian models. As and common trait of this class of models is that the mechanism of
a major and structural limitation, the approach cannot be applied suspension changes the order of complexity of the analysis, impair-
to models encompassing a preemptive policy, which in the practice ing decidability and polynomial solution time of various problems.
rules out the mechanism of suspension and resume usually appliedlo overcome the issue, various approaches resort to an approxima-
in many real-time systems. tion of timing domains. In particular, in [14], an approximation

of the state state-space maintains the efficient encoding of Differ-
We overcome here the limitation by proposing an approach that ence Bounds Matrix (DBM) zones and supports exact identifica-
faces the complexity issues introduced by the suspension/resumeion of feasible timings of selected behaviors through a clean-up
mechanism in the structure of supports and distributions of remain- algorithm, enabling efficient verification of reachability properties
ing times. In particular, these are distributed over a polyhedral sup- under real-time timing constraints.
port according to a multivariate joint density function with analytic
piecewise form over a partition into polyhedral subdomains. The In quantitative evaluation, the issue of suspension has been ad-
approach resorts to an imprecise analysis that extends distributionsdressed by models encompassing the so-c&ltedmptive Resume
over the tightest DBM zones enclosing polyhedral domains, and (PRs) policy [3], also known aage policy [17], reaching a lim-
approximates them with Bernstein Polynomials to obtain a global ited level of development with respect to models encompassing the
(non-piecewise) analytic representation. Computational experiencemore conventionaPreemptive Repeat Differe(fPRD) policy [3],
is reported to show the different impact of errors due to the approx- also calledenabling memoryolicy [17]. In particular, analytical

imation of supports and distributions. approaches based on a continuous abstraction of time were pro-
posed in [6] for models with exponential and deterministic timers
Keywords (Deterministic and Stochastic Petri Nets - DSPNs), using Markov

Renewal Theory under the so-called enabling restriction that rules
out concurrent enabling of multiple generally distributed (GEN)
transitions. In [3], the approach is extended to manage a combined
use of different preemption polices. A wider extension that relaxes
both the enabling restriction limit and accepts any kind of GEN
distribution was implemented in the WebSPN Tool [4] through a
1. I_NTRODUCTION . discrete approximation of time. In [16], a discrete-tir[n(]a varia%t of
Quantitative evaluation of densely-timed mpdels has Iqrgely ad- Time Petri Nets (TPNs) [10] leverages a maximal step semantics of
dressed the case of concurrent systems with stochastic temporal,ncrrency to support the representation of preemptive behavior
parameters, developing on the assumption of behaviors that do notyhq associate quantitative probabilities with timers and switches.
accept suspension and resume. However, this is an essential expresith the development of analysis methods that go beyond the lim-
sive feature when dealing with real-time systems, which, almost ji5 of the Markovian assumption and the enabling restriction, quan-
always, run under priority-driven preemptive scheduling [5]. titative evaluation is increasingly applied to real-time systems. This

makes the need to encompass suspension crucial and thus largely

In correctness verification, the case of systems with suspension hag,mphasizes the relevance of solution techniques that follow the PRs
been addressed by a few models, which notably include StopWatchgemantics.

Quantitative evaluation, non-Markovian Stochastic Petri Nets, Gen-
eralized Semi-Markov Processes, preemptive real-time systems, ap
proximate state space representation, Difference Bounds Matrix,
Bernstein Polynomials.

In this paper, we propose a symbolic approach to quantitative eval-
uation of densely-timed preemptive systems with non-Markovian
temporal parameters. To this end, we extend the model of stochas-
tic Time Petri Nets (sSTPNs) (Section 2) and the method of stochas-
tic state classes [11], [20] (Section 3) to represent resource assign-
copies bear this notice and the full citation on the first page. To copy ments and to encompass the representation of suspension in the ad-
otherwise, to republish, to post on servers or to redistribute to lists, vancement of clocks. In particular, we characterize the complexi-
requires prior specific permission andjor a fee. ties of an exact approach, which turns out to be practically impaired
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by the fact that timing domains take the form of linear convelyp Prob{to is selectedl = C(to)/ >, crs(s) C(ti), whereT/ (s) is
hedra and state density functions have a piecewise representationthe set of transitions that are firable in stateSince the treatment
over a partition in polyhedral subdomains. We thus propose an im- does not include immediate (IMM) and deterministic (DET) tran-
precise analysis technique that relies on the approximation of both sitions,C turns out to be irrelevant for the purposes of the analysis
domains and state density functions, obtaining a relevant gain in [11], but it is essential in the semantics formulation to associate
computational complexity without having a significant impact on each choice with a measure of probability [9].

performance measures. Computational experience validates the ap-

proach on a model of notable complexity by comparing quantitative Firing. When a transitior, fires, the statém, 7) is replaced by a
measures against simulation results (Section 4). As a relevant trait,noy states’ — (m’, '), which we write ass 2% s". Marking m/

the approach supports the definition of quantitative metrics to esti- 5 gerived fromm by removing a token from each input placetgf
mate the impact of approximation of both domains and state density 54 py adding a token to each output placegof
functions, which comprises an important step ahead with respect to

non-deterministic analysis of preemptive models [14]. Conclusions Mimp(p) =m(p) —1 Vp.(p,to) € A7,
are finally drawn in Section 5. For the sake of readability, proof of m' (p) = Mimp(p) —1 Vp. (to,p) € AT.
Theorem 3.1 is reported in the Appendix.

@)

Transitions that are enabled both by the intermediate marking,
and bym’ are saidpersistentwhile those that are enabled by

2. SPTPN but not bym..,, are saichewly-enabledIf ¢, is still enabled after
21 Syntax its own firing, it is always regarded as newly enabled [7], [10].
A stochastic preemptive Time Petri NepTPN) is a tuple P; T'; n _ .

A~: A*: A'smo; EFT®; LET®; F; C; Res; Reg; Prio). For any transitiort, newly-enabled after the firing @f, the time-

to-fire takes a random value sampled in the static firing interval

The first 10 elements comprise the model of STPNs, which are according to the static probability distributidry, ():

the variant of non-Markovian Stochastic Petri Nets addressed in EFT*(t.) < 7'(ta) < LFT*(ta)

[11], [20]. P is a set of placesT is a set of transitions disjoint Prob{T’@ )< x}; F2 (2). ' )
fromP. A~ C Px T, At C T x P,andA" C P x T are = ta

sets of precondition, postcondition, and inhibitor arcs (a pface For any transitiort; that was progressing in the previous state and
is said to be aninput, an output or aninhibitor place for tran- is persistent after the firing af), the time-to-fire is reduced by the
sition ¢t if (p,t) € A~, {t,p) € AT, or (p,t) € A", respec- time elapsed in the previous state (which is equal to the time-to-fire
tively). mo : P — N s the initial marking associating each place of ¢, measured at the entrance in the previous state):

with a non-negative number of token&F7° : T — R and ,

LET® : T — R} x (R} U {co}) associate each transition with 7 (i) = 7(t:) — 7(to)- @)

a staticEarliest Firing Timeand a (possibly infinite) staticatest
Firing Time (EFT®(t) < LFT*(t) V¢ € T). F andC define a
measure of probability for non-deterministic choicés: 7 — R™
associates each transition with a positive weight @hd 7' — ' (te) = 7(ta). (4)
F¢ () associates each transition with a static probability distribu-

tion supported in the static firing intervlD F7°(t), LFT*(t)]. If

EFT*(t) # LFT*(t), we assume that; () is absolutely contin-

uous and, thus, that there exists a density-funcfipfy such that 3. ASYMBOLIC APPROACH TO THE
Fi(x) = fy 1P (y)dy. ANALYSIS OF SPTPN MODELS

The introduction of suspension in the model semantics requires that

The last3 elements extend the model of sTPNs with a mecha- h vsi hod of hasi | b ded. Thi
nism of resource assignment that makes the progress of timed tranin€ analysis method of stochastic state classes be extended. This

sitions dependent on the availability of a set of preemptable re- |mpa_cts in re_levant manner both on the structure of supports and
sources Res is a set of preemptable resources disjoint frBrand density fur)ctlons. We formulate here an exact calgulug and propose
T. Req : T — 27 and Prio : T — N associate each transition an approximated approach that makes the analysis viable.
with a subset ofRes representing its resource request and with a
static priority level, respectively (low priority numbers run first). 3.1 Stochastic state classes

A stochastic state clagstochastic class for short) is a trifle:, D,
2.2 Semantics f=) wherem is a marking is the vector of times-to-fire of transi-
tions enabled byn, and f; is a probability density function for
supported oveD; [11], [20].

For any transitior, that was suspended in the previous state and is
persistent after the firing @f,, the time-to-fire remains unchanged:

The stateof an spTPN is a paifm, ), wherem : P — N 'is a
marking andr : T — R{ associates each transition with a (dy-
namic) time-to-fire.

Firability. A transition isenabledif each of its input places con- DEFINITION 3.1. A stochastic class)’ = (m/, DL, f=/()) is
tains at least one token and none of its inhibitor places contains & Successor of stochastic class= (m, Dx, f-()) throughto with
any token. An enabled transition [sogressingif every resource probability 1, which we writeX Lok 5 iff the following property
it requires is not requested by any other enabled transition with a holds: if the marking of the net is: and the vector of times to fire
higher level of priority; otherwise, it isuspendedA progressing of transitions enabled by is a random variabler with support
transitiont, is firable if its time-to-fire 7(¢o) is not higher than D; and densityf- (), then the firing ofty occurs with probability
that of any other enabled transition. When multiple transitions are x> 0 and leads to a new marking’ and a new vector of times to
firable, the choice is resolved by a random switch determined by  fire " with supportD”, and densityf, ().
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Given an initial stochastic class, the transitive closurétofiefines
astochastic class grap{stochastic graph for short), where vertexes
are stochastic classes and edges are labeled with a trarisiiwh

a probability .

3.2 Initial class

We address models where transitions have expolynomial distribu-

tion [1], [2] and, furthermore, those with unbounded support are
all distributed over{0, co) with negative exponential distribution.

firing domainD, :

Diy, =Dz N{(18, < 78,) A (T8, < 7.), Vg € [1,G — 1],
Veel[0,E—1].tg, andt,, are progressing ix}.
(6)

As in [11], [20], the probabilityu:, thatig, is the outcoming
event from clas& is the joint probability that- belongs toDy,

and tg, is selected in the random switch among all progressing
transitions that share the same time-to-fire gf. SinceFy’() is

We assume that the state density function of the initial class is an apsolutely continuous ¢ € T, the probability that s, has the

expolynomial function with global analytic representation over a

same time-to-fire of any other progressing transition is equel to

DBM domain, expressed as the product of two factors separating Hence,ju.,,, is equal to the probability that belongs taD, :

general and exponential timers:

Dl :D<IG7IE> =D x D

Ta TR
TBgy “TBgy < bﬁgl Bgo (9192)
Tayy —Tx  Sbgg  (g1%)
D- Te  —Tg < bagg, (xg1)
Vg1,92 € [0,G—1]. g1 # g2,
Te —Ty. <0 (xe)
D,
Veel0,E—1],
Jz(z) = f<IG’IE>(£G’£E) = fzc (zg) - Jrp (zg),

Z G-1
a _ .
fro(zg) = ZCZ H mﬂ;ﬁye X289
z2=0 g=0
E-1
fIE (QE) = H )\'Yee_/\’yew’yeﬁ
e=0

®)
where the vector of times-to-fire of enabled transitions is decom-
posed into two subvectogs= (7, 7 ) encoding the times-to-fire
of generally distributed and exponentially distributed transitions,
respectively and E denote the sizes af, and 7, respectively;
B4 andy. denote the indexes of theth generally distributed tran-
sition and the=-th exponentially distributed transition, respectively
(e, 7o = (T8, s TBo_1) ANAT 5 = (Tygs ooy Ty )); @Nd, 7

represents the ground time at which the class was entered. The

DBM representation has a normal form where coefficiépfss,,
coincide with the maximum value that can be attained by the dif-
ferencers,, — 75,,. The normal form exists uniquely, can be
computed in timeD(G?®) or evenO(G?), and is univocally identi-
fied by the conditiorme By < 5391 Bas + 5393 Bgs v 91,92,93 €

[0, G — 1] U {x} with g1 # g2 # g3 # g1 andS. = = [10].

The product form is easily verified in the initial class, where the

times-to-fire of all enabled transitions are independent random vari-
ables distributed according to their respective static density func-

tions, as if they were newly-enabled. We will illustrate that the
property is maintained in all the successor classes.

3.3 Successor detection

The firing of a transition, say a general transitigy, is apossible
outcoming evenfrom a class® = (m, D, f-()) iff tg, is pro-
gressing inX and D, accepts solutions such thaf, has a time-
to-fire not higher than that of any other enabled transition. This
occurs iff there is a non-empty set of solutions for thetricted
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3.4 Successor derivation

The steps of derivation of a successor class require a different de-
velopment depending on whether the firing transition is generally
distributed or exponentially distributed.

3.4.1 Firing of a general transition

Conditioning. The assumption that a general transitigy is

the next transition to fire conditions and yields a new random
variabler® = (7 | (13, < 78,) A (T8, < Tv,,), Vi € [1,1 — 1],

vV h € [0, H — 1]), wherep, ..., B1—1 and~o, ..., yu—1 denote

the indexes of generally distributed transitions and exponentially
distributed transitions, respectively, that are progressing and
persistent irt’. The vectorr® is distributed over:

Dra = Dz M (T80 < 78,) A (T80 < T ),

Vie -1, vhepa—1r &

according to:

f<TG7TE>(—1G7£E)
ra(Lay X =
fra(zg zp) toe

©)

In particular, if coefficients3 denote the maximum value attained
by the difference between any two generally distributed timers (in-
cluding the fictitious ground reference), the normal form/fa

can be represented as:

Thy = Thyy < Bgyise, (9192)
Thy — T < Bp,«  (91%)
T — 75, < Bugg, (*g1)
ngl - Tgo < Bﬁgl Bo (910)
Thy  — Thy, < Bgys,,  (0g1)
Dra = T — 75 < B, (xh) (10)

T,Z — 7;2,C <0 (xk)
TG — Ty, <0 (0h)
V1,92 € [1,G — 1], g1 # g2,
Yhelo,H—1],

VkelH E-1],

where: the maximum value attained by — 7, is equal toB.g,
sincery — 15, = 7! — 15, + 75, — 7y, < min{0, B.g,} and
min{0, B.g,} = Buig,, beingB.z, < 0; the maximum values
attained byr! — 75, andrj, — 75, are equal t® andoo, respec-
tively, since constraints added @Y.« to D do not perturb coef-
ficients related to suspended exponentially distributed transitions;



and, constraints ong,, — 7, ae not made explicit since they are
directly |mp||ed by ConStl’alnt$g10) and(0h), i.e.,1a,,
TBor — Tﬁo + TBO n < BByl Bo+

= Ty =

Time advancementit the firing of ¢g,, times-to-fire of pro-
gressing transitions are reduced by the valueggfwhile those of

suspended transitions remain unchanged This ylelds anew randomrc

variabler® —<T30,Tﬁ1 TBys o T8y 1 —Thos Thrs s Thg 13 Tyo—

T8> s Tour 1 —Tho» Ty - Tvg_1 ) distributed over a domai .,

that can be represented as the product of two factors separating gen-

erally distributed and exponential timers:
be = D‘rb X DTb s (11)

- fe] IE
WhereDIzé is made by DBM constraints adal% =[0,00)".

The density functiory,., () of 7 is obtained frony.. () by shifting
the components of progressing transitionsty:

v TRy T Xpy, Tpys
737”/12)

fzb(gG7£E) = fra (xB()?xBl + Ty -
s TRG_15Tyg T TPos s Ty T TRos Typyy oo

Tor_y T Lo Ty ey xﬁG—l)

/“50

_ fIG (xﬁovxﬂl + Ty s

E—1
e*)"vhzﬁo . H )\7 67)‘76175‘
e

e=0

e}

(12)
According to this, the density function ef can be expressed as
the product of two factors’, s (zg, 25) = f.v (ze) - [ro (25)

separating generally distributed and exponential timers:

G’

fTG (xﬁmxﬁl +x307' STy T Tpy, Ty, '“733»3071)
/“50 '
E—-1
-2
fup (20) = T Mce e
e=0
(13)

The time-to-fire oft s, is then eliminated from?, yielding a new
random variabler® = (75, .75, ,, 7y, ..., 7y, _,), Which is
distributed over the projection dp . that eliminates,:

Dre =D lgy= (Dllé 180 ) X Dllfg (14)
according to:
fTC(£0G7xE) - b f (vaxE) dxﬁo
(15)
:/B fro (26) dg, - [ (2),
DY ()
-G
wherez¢, = (zp,,...,xp5_,); Dyo $30 = {ZEG €RE™ Ty, €

R such thatzg,,z¢;) € D,v}; and, the supporDﬁgG (25) def

{xs, € R| 325 € R ' suchthat(zs,,z) € D,v} repre-

sents all possible values ef,. According to this, the subvector

TG = (T, The_,) I distributed overD,e, = Dlzé; 1, ac-

cording tofre, (z¢;) = fog (@) fzzé (zs) dzg, and the subvec-
G

tor r, = (r5,,...,75,_,) is distributed overD,c = [0,00)"
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according tof-¢ (z (zg), With Dze = Dr¢, x Dr¢ and

Jre(z) = fzg (ig) : fz% (zp)

Disabling. Whentg, fires, one or more transitions may be dis-
abled. If a generally distributed transition, sy, ,, is disabled,

its elimination yields a new vector of times-to-fité = (5 , ...,
560> T, distributed over:
Dya = (Drg dsg_1) X Drs, (16)
according to:
fralehizs) = [ fp s fy @) an)

wherez?, = (x5,,...,254_,). In a similar manner, the elimina-
tion of an exponentially distributed transition, say, ,, yields

: d __ c c c H :
the new random variable® = (zg,7y,,...,75,_,), distributed
over D_.u = D¢ x [0,00)" % according tof,a(zg, zf) =
. E—2 — ;
Jre(zg) - 2o Mee M, Wherezq, = (Tygs oy Typ_s)-

When multiple generally distributed or exponentially distributed
transitions are disabled, the step is repeated for each of them.

As in [20], the step of disabling may partition the subdomain of
generally distributed timers into a finite set of DBM subdomains,
over each of which the state density function accepts an analytic
representation. To resort to the representation of Eq.(5), the state
density function is approximated through Bernstein Polynomials
[18], [23] as it will be illustrated in Section 3.5.

Newly enabling.Iftransitionsts,, ..., ts,_, are newly enabled,
the vectorr’ = (zd, Tso, - Ton ) Of times-to-fire of transitions
enabled in the destination clas$is distributed over:

N—-1
D'=Dya x [[IEFT*(ts), LFT*(t5)]  (18)
1=0
according to:
N—
f;/(zé,sz,:vsm...,x(sN,l): :EG,xE H
) (29)

preserving the product decomposition of state density functions.
Note that this is the step where the form of state density functions
is determined by static density functions associated with transitions
in the model.

3.4.2 Firing of an exponential transition
The assumption that the firing transition is an exponential transi-
tion, sayt,,, gives rise to two subcases.

If no general transition is progressing, then the steps of condition-
ing and time advancement eliminate the factor pertaining,jo
from both the class domain and the state density function, without
involving the other persistent transitions. In fact, the assumption
thatt,, is the next transition to fire conditions the vector of times-
to-fire T and yields a new random variabté = (7,75 | 7, <

Tons VR € [1, H—1]), distributed oveD,a = (D- . x [0, 00)*)N

{T < 7,, Vh € [1,H — 1]} according tofTa(:cg,xE) =

fzc (EG) sz (EE)/#% fTG (xG) HE ! Ay e*)wezw A Ay,

whereA = Y771\, . The step of time advancement yields a



new vector of times-to-fire® = (7§, ...

a a a a
yTBG—19Tv00 Ty~ Tyoo o

TﬁHil — TN Ty s Tyy_, ), distributed overD _, = D-a ac-
cording tof,v (2, 2g) = fra(Lg, Ty, Tyy + Ty ooy Toypr_y +
—A
Lo Lyprs oo Typ— 1) ffg(xG) A / )‘”/0 )"Yue “0
Hf 11)\ e~ MeTve — f"’G (xG) A-e —Azng HE 1)\ €7>"YEI'YE'

The projection that eliminates,, yields the vector of times-to-
fire 1 = (75, ..., The s Tors - Top ), distributed overD e =

Dy x[0,00)°~" according 10 fre(Tg,Tyyseos Trp 1) =

fro (@) - TIZ5 Ay e <™. Finally, the elimination of dis-
abled transitions and the addition of newly enabled transitions is
performed as described in Section 3.4.1.

If at least a general transition is progressing, then the condition-
ing of the vector of times-to-fire yields a new random variable
" = (Tg,1p | (T < 78) AN (Tyy < 7,),V i € [0,] —

1], Vh € [1, H—1]), distributed oveDre = Dr, + yN{(7y, <
78,) N (Tyg < Ty, ), Vi€ [0, —1], Vh € [l, i g 1]} accord-
ing to fre(zg,zp) = flG,IE>(£G7£E)/Nt'yO In so doing, 7,
turns out to be distributed ové, min, (o, 1] Bp, ] according to
fra (@) = Ay €™ M0 /., and, thust,, can be regarded as
a general transition. According to this,, is inserted in the set of

behaviors. In particularD-¢, is actually a linear convex polyhe-
dron iff the parent class includes both progressing and suspended
transitions that are persistent after the firing of a transition taking
a non-deterministic time-to-fire; otherwise, it preserves the DBM
representation and does not require any approximation. This en-
ables straightforward identification of classes where approximation
errors are actually introduced and supports techniques that leverage
structural properties of a model to confine the effects of approxima-
tion.

3.5.2 Approximation of state density functions
In the derivation of the state density function, the supmﬁ‘; (&)
el

of Eq.(15) is an |ntervaD50 () = [Eﬁé (%), Lﬁ;c’; (z5;)], with:

Bo (e _ {—=B.py, —Bgs,p; + 78, — s,

max a

TG( zc) icl.1—1 —Big, —mp,, —Bg,p, + rg, } (@)
z e[l G —1]

. B Bg.g. +x5. —xs,

150 (z2) — {Bsox: Bpipa + Tp. — x5, b

E42 (@e) =, eIty Bp — s, Bags, + 5, }- (®)
e [I,G — 1]

(20)

general transitions and successor derivation proceeds from the steg=d-(20) partitionsD-¢ into a finite set of polyhedral subdomains
of time advancement described in Section 3.4.1 through the stepswithin each of whu:hEB0 0 andLB0 () accept analytic represen-
% %

of disabling and newly enabling.

3.5 Successor approximation

tation. The density functiotfi-¢, () accepts a continuous piecewise
representation over this partition, since static density functions of
transitions in the model are continuous functions and the steps of

The step of time advancement described in Section 3.4.1 subtendsconditioning and time-advancement preserve the property of con-

notable complexities both in the derivation of the firing domain and
in the computation of the state density function. We characterize

tinuity of state density functions. The derivation of the exact rep-
resentation off¢, () thus requires exponential complexity in the

here the complexities of exact analysis and propose an imprecisenumber of generally distributed enabled transitions.
approach that approximates both domains and state density func-

tions, obtaining a relevant gain in computational complexity with-
out significantly affecting the accuracy of performance measures.

3.5.1 Approximation of class domains

In the derivation of the timing domain, the eliminationf, from

D_ b, yields a domairD ¢, [14] which includes constraints in DBM
form but also linear constralnts with more than two unknown val-
ues. According to thisD.¢, is not in DBM form and, thus, the
space of DBM firing domains is not closed with respect to the suc-

cession relation induced by the semantics of spTPNs. In particular,

D¢, takes the form of a linear convex polyhedron which gets more

and more complex as the succession transformation is repeatedly

applied, yielding a number of inequalities which is exponential in
the number of generally distributed enabled transitions. According
to this, the derivation of the exact form &f.c, becomes a general
linear programming problem [13], which can be solved with at least
polynomial complexity in the number of domain inequalities and,
thus, exponential complexity in the number of generally distributed
enabled transitions.

We overcome space and time complexities of representation and

manipulation of polyhedral constraints by replacing the subdomain
of general transitions with its approximatidn, ¢, that discards in-
equalities that are not in DBM form [14]. Since all inequalities of
Dye, are included inD:¢,, D¢, admits any solution admitted by
Dre, plus additional solutions that would not be feasible for the ex-
act representation of the firing domain, which we €alse behav-
iors. In [14], D, is proven to be the tightest possible embedding
DBM of D¢, and an algorithm is provided for the clean-up of false
behaviors and the tight estimation of the timing profile of feasible
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Theorem 3.1. Integration bounds2”) (z¢,) and L% ) (z5) are
G

piecewise continuous functions with analytic representatlon over
each element of a partition @-c, in polyhedral subdomaing;. ;,,
withi,j € [0, —1]andz,y € [I, G — 1]. Within each subdomain
Ri.jy, the two integration bounds are either constants, or mono-
variate linear functions of a single component of the vegipr or
bivariate linear functions of two components of the veatpr In
particular, if ¢, € Ri.jy, then:

—B.g, iffi=0,2=1I
—B.g, — zg, iff i >0,2=1
Bo cy *B; B R
Ellé? (25) = —Bg, 8, + ®s, iff i=0,2>1
—Bg,p, +xp, — T, iff i >0,2>1
BBO* Iff]:()’y:]'
L% (z8) = Bgjv — ap; iff j >0,y=1
= G Bgop, + 23, iff j =0,y>1
Bg,p, + s, — x5, iff >0,y >1
(21)

Note that, when domaiti[)zé maintains the DBM representation,

the integration bound&”? (z.,) and L™ (z,) become:
% %
EBI? (QG) = max {73*307 —Bup, — xﬂi}7
;a i€[1,G— (22)
LY = Bg,«, B )
8, (QG) e, én 1] { Boxs PBix xﬁz}7

which partitions D¢, into a finite set of DBM subdomaing;;
with i, j € [1, G — 1], within each of which£”? () and L”¢ () are
T& e



either constants or monovariate functions of a single corapbof
the vectorz, [20]. In particular, ifzg, € Rij, then:

s [ —Buo iff i =0

Elbc (@g) = { —Boi + x; iff i >0
(23)

50 [ Bo iff j =0

LII’G(QG) B { Bj() +x; iff 7>0

As a consequence of this, the density functfon () accepts piece-
wise representation over a partitionf¢, in DBM subdomains.

We cope with the complexity of derivation of state density func-
tions by employing global approximant functions. Sinfe, () is

a continuous function over the bounded and thus compact support

D¢, according to Weierstrass theoref, () is bounded and can
be arbitrarily well approximated by polynomials.

We employ multivariate Bernstein Polynomials [18], [23], which

Lipschitz inequality [18]. On the other hand, Bernstein Polynomi-
als do not preserve the integral of the approximated function. For
this reason, the approximant function is normalized with respect to
its own integral ovelD-¢, to guarantee unit-measure.

3.6 Equivalence between stochastic classes

As in [20], the test of equivalence between state density functions
is relaxed by assuming that two classeés= (m, D., f-()) and
Y= <m/7D/1’: fé’ (), with fr = fzc Jrp and f; = fé/G ‘fé/E1

are equivalent as soon g§shey have the same underling state class
(.e,m = m’ and D, = D.,); ii) they have the same rate of
exponential transitions (i.e),, = X, Vi € [0, £ — 1]); and

iii) the distance betweefy () and f;,G () measured according to

a metrics|| - ||4 is below a given threshold of tolerande(i.e.,
1£260=Fa, Olla = 5= [, 1Fre(@e)=Fiy, (2e)ldze < 9).

The metricd] - ||« is approximated in discrete form by evaluating it
in correspondence with samples taken over the regular grid of Bern-

were successfully used in the approximation of state density func- stein approximants and taking into account border effects [20]:

tions of models that do not encompass preemptive behavior [20].
Bernstein Polynomials approximate a function defined over a com-

pact hyper-rectangle by weighting a kernel of multivariate mono-

mials according to the samples of the approximated function taken 1£20lla =~

over a regular grid. I%;; denote the coefficients of the normal
form of D-,, then the Bernstein approximayite, () of f-¢, () that
is defined over the minimum embedding hyper-rectargjle, =

157 [~bep, . bs,«] Of Dz, and takesk, samples for each vari-
abl T, IS
c k1(bg,« — (—bs
fre@l) = > fzg<— bep, + 1 ﬁlKl E : ﬁl)),...,
kg € [0, Kg — 1]
g €[1,G—1]
b n ko—1(bgg_1x — (=bsg_1))
*Ba—1 Koo1—1

(x5, = (=bup,)) " (bgyx —wp,) o™ 7ha
(ng* — (-lh[ﬁ,))Kg*l ’

(K, -1
()
(24)

Wherezk,ge[o’,{g_ll’ ge[1,G—1) denotes the multiple summation
SR e RS and fye () is extended over the en-
tire hyper-rectangle by assigning null value to samples belonging
to Rye, butnottoDye,,i.e., fre, (y) = 0ify € Rre, \ Dre,. Note

that samples oflé() belonging toD-, are derived in a straight-
forward manner by resolving Eq.(15), since, for a giyea D-c,,

the integrand fUﬂCtiOfflzé(mgo,y) is a monovariate function of

xp, and the integration bountﬂfé (y) and Lig@ (y) are constant

ko kg1
A vkao1) | fo | —, -,
Z (ko, -, kG-1) f*(Ko KGA)’
0<kg<Kg—1
g€[0,G—1]
> Alko, .o ka-1)

0<kg<Kg—1
g€[0,G—1]
(25)

whereA(ko, ..., kg_1) = 1/20°mer(koke—1) andborder (ko, ...,
kc—1) denotes the number of elements(&f, ..., kc—1) that are
equal to 0 orK.

4. COMPUTATIONAL EXPERIENCE

The accuracy maintained in the enumeration of the stochastic class
graph was evaluated by estimating the impact of errors due to the
approximation of domains and state density functions, respectively.
On the one hand, the error due to the replacement of polyhedral
subdomains of general transitions with their tightest embedding
DBM was estimated through the portion of points over a regular
grid that belong to the DBM zone but not to the polyhedron, which
comprises a qualitative measure of false behaviors introduced in
the approximation of domains. Detected false behaviors were then
weighted according to the samples of the approximated state den-
sity function taken over the grid, yielding a quantitative measure of
false behaviors introduced in the approximation of domains. We
derived the number of classes including false behaviors, together
with the average and the maximum values of the percentage and the

values (obtained as the maximum and the minimum value of the probability of false behaviors in one of these classes. On the other
two sets defined in Eq.(20), respectively, whose elements are allhand, the error due to the approximation of the factor of state den-

constant for assigned values of variabtes, ..., zg._,).

sity functions associated with general transitions was evaluated by
estimating the distance between approximated functions and their

On the one hand, approximation based on Bernstein Polynomialsapproximant functions through the metri¢g|s. We derived the

exhibits a set of favorable properties that nicely fit the needs of our
application context: the approximantg#obal, in the sense that it

has analytic representation over the entire domain of the approxi-

mated function; the approximant @sitive since all polynomials

in the kernel and the samples of state density functions are posi-

tive; the approximant isimple to derivesince it is obtained in a

straightforward manner from the the samples of the approximated

function; and, the approximanbnvergesiniformly to the approxi-

number of classes with non-null d-distance together with the av-
erage and the maximum value of the d-distance in one of these
classes, both after the step of time-advancement and after the step
of disabling. All accuracy metrics were evaluated over a regular
grid that takesl0 samples for each variable associated with a gen-
eral transition.

The overall approach was then validated by evaluating steady state

mated function as the number of samples is increased, provided thafprobabilities of reachable markings in the Discrete Time Markov

the approximated function is continuous (which is the case of our
state density functions), with an approximation error bounded by a
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Chain embedded in the stochastic class graph [11], [20] and by
comparing them against simulation results. In particular, we com-



pared the overall fit, together with the average and maximdm di ample extends the case of the preemptive M/D/1/2/2 queue of [6]
ference in the probability of the same marking. Both analysis and in two aspects: DET timers are replaced with a GEN distribution
simulation results were obtained through a preliminary implemen- with non-pointlike support; the number of servers and customers is
tation in the Oris Tool [15]. extended to 2 and 3, respectively, so as to stress the complexity of
the analysis by including classes with polyhedral domain.

In Sects.4.1 and 4.2, we discuss the application of approximated
analysis on two examples: the former includes a low number of
markings but is still sufficient to illustrate the complexities of the
approach, while the latter is a model of notable complexity.

[100,200]

t11
(prs)

4.1 The M/G/2/3/3 queue

Fig. 1 shows the model of an M/G/2/3/3 queue. The system is a [0,] LI“OO”O]
closed queue witB customers and servers: transitionsl0, ¢20, O 1
andt30 model the arrivals of customér 2, and3, respectively, and P20 120 p21 21
have exponentially distributed firing times with rat®03; transi- (Prs) (pre)
tionst11, t21, andt31 represent the completion of jobs of customer (0] [100,200]

1, 2, and3, respectively, by servdr, 1, and2, respectively, and they
have uniformly distributed firing times on the interaDo, 200].
The queue has a preemptive service in such a way that a job of cus- P30 (‘;‘;) P! (:,3,1)
tomer2 is preempted as soon as a new job of custoherentually
arrives at the server, and itis resumed as soon as the server becomes
available again, i.e., the service time of the recovered job is equal Figure 2: The M/G/2/3/3 queue of Fig. 1 represented according
to the residual service time of the preempted job. This is obtained tg the formulation of [3].
by associating10 and¢20 with the same resource request, it&Q
and¢20 require resourcel, but with different priority levels, i.e., Approximated analysis with threshadcequal t00.0001 and Bern-
t10 andt20 have priority levell and2, respectively. stein degree equal tb enumerate$8 stochastic classes, covered
by 8 markings, in nearlyl0 seconds. Approximation of timing
domains may affect any class where, ¢20, and¢30 are con-
currently enabled (sincel0 andt30 are progressing, whil&20 is
suspended) and, in particular, this occurg iclasses, as shown in
plo 1o pri Table 1. Although the portion of false behaviors in any of these
fro02901 classes seems to be relevant, with average and maximum percent-
prio=l-{m age equal td7.01 % and25.44 %, respectively, their probability is

N | extremely low, with average and maximum values equal @24
p20 120 p21 2 and0.0180, respectively.

[1 00,200]
[0,%] prio=1] - {r1}

[0,]

[1 00,200]
prio=1] - {r2}

[[ Metrics on domains | average| max | #classes]|

030 130 T % false behaviors | 17.01 % | 25.44 % 3

prob. false behaviors 0.0124 0.0180

Figure 1: An spTPN representing an M/G/2/3/3 queue. Table 1: M/G/2/3/3 queue: Errors due to the approximation of
class domains.

In general, the semantics of spTPNs combinesPtieemptive Re- o ) ) .
peat Differen{PRD) and thdreemptive Resun{BRs) policies of Approximation of_ state density _functlons affects a hlg_her number
[3], [6]: when a transition is disabled by the lack of a token in any ©f classes, since it may be applied both at the end of time advance-
input place, its time-to-fire is reset; when a transition is suspended Ment, when the state density function accepts a piecewise repre-
by the lack of any required resource, its time-to-fire is maintained Sentation over a partition in polyhedral subdomains, and at the end
and resumed when the transition is assigned the resource again. i disabling, when the state density function accepts a piecewise
the formulation of [3], [6], instead, the clock of a transition dis- €Presentation over a partition in DBM subdomains. As shown in
abled by the lack of a token is reset or maintained if the transition 1aPle 2, in our example, state density functions are approximated
is associated with PRD or PRs policy, respectively. With respect to after the steps of time advancement and disablingGirand 30
the model of [3], [6], spTPNs make the progress of times to fire de- classes, respectively, yielding a d-norm distance W|th average value
pendent on both the presence of tokens into input places and on thedf 7.7- 1077 and4.487 - 10—4, respectlvgly, and maximum value
availability of preemptable resources, enabling separate represen®f 1.62 - 1077 and1.9278 - 1077, respectively.
tation of inter-process communication mechanisms from real-time . )
concurrency on resources. This impacts on modeling convenience,Fig- 3 compares steady state probabilities of reachable marking ob-
facilitating the representation of task-sets [8], [19] as usually en- tained by ap.p.roxmated analy3|§ with S|mulgt|on results obtained
countered in the practice of real-time systems. To illustrate the &fter200000 firings. The overall fit together with average and max-
concept and facilitate comparison, Fig. 2 shows the model of the Imum error, equal t9.00252 and0.00510, respectively, evidence
M/G/2/3/3 queue using the semantics and the graphical notation that analysis results agree with simulation results.
from [4], [7]. Note that in this case the inhibitor arc from place
to transitiont21 accounts for the preemption. Also note that the ex-
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|| Metrics on densities| average |  max [ # classes|
d-norm distance
(time advancement) 0.0000077 | 0.0000162 36
d-norm distance |, 44487 | 0.0019278 | 30
(disabling)

Table 2: M/G/2/3/3 queue: Errors due to the approximation of
state density functions.

[0,100] [200,400] [100,200]  [0,100] [200,400]
[prio=1] - {r1, r3} [prio=1] - {r1, r3} [prio=1] - {r1} [prio=1] - {r1, r3} [prio=1]-{r1, r3}

t12

p13 3 p14 p15 t15

[200,400] [100,200] [0,100] [200,400]

prio=2] - {r2, r3} [prio=2] - {r2, r3}

©24  p25

p20 120 p21 21 125

R23( *
[100,200]

,100] [200,400] 10,100] [200,400]

[,
0.25 Si‘mulatior‘r firings‘= 200060 T [prio=1] - {r1, r3}| [prio=1] - {r1, r3} [prio=3] - {r1}\/[prio=2] - {r1, r3}| [prio=2] - {r1, r3}
Approximated Analysis: & = 0.0001, degree =4 ——1 ‘ ‘
3 p30 30 p31 31 p32 32 p33 133 p34 t34 p35 35
= average error = 0.00252
% 0.2 max error = 0.00510 b
e}
S
; Figure 4: Three-Synchronizing-Tasks model: An spTPN model
2 o5t A representing three recurrent tasks sharing three resources.
=)
[
2
@ . . e . .
& 47.00 %, respectively, their probability is quite low and, thus, does
£ 0.1 ¢ | not impair performance measures on the model.
£
005 [[ Metrics on domains | average| max | # classes]|
’ Mg M, My, Mg My My Mg M % false behaviors | 26.14 % | 47.00 % 14
markings prob. false behaviors 0.0240 | 0.0512

Figure 3: M/G/2/3/3 queue: Measures of steady state marking
probabilities obtained by simulation (with 200000 firings) and
approximated analysis (with thresholdd = 0.0001 and Bern-
stein degreed).

4.2 A complex example
Fig. 4 depicts a variant of the Three-Tasks model introduced in [20],
called Three-Synchronizing-Task&hich represents three concur-

rent tasks that perform three computations at each activation and

share three mutually exclusive resources. The three tasks are mad
by transitiong 1z, t2x, andt3zx, respectively: transitions:0 model
tasks arrival; transitionsr2, tz3 andtx5 represent three compu-
tations performed at each task activation; transitians andtx4
model the acquisition of a mutually exclusive resource which is
necessary to perform the subsequent computatiofsand ¢tx5,
respectively. In particular, these mutually exclusive resources are
represented by placd®l12, R23, and R13. Times-to-fire of transi-
tionstx0 are exponentially distributed ové, co] with rate0.003;
times-to-fire of transitiongx1 and txz4 are expolynomially dis-
tributed over[0, 100] according tof (z) = k 2 e~%-%93%; times-
to-fire of transitionstz2 and ta5 are uniformly distributed over
[200, 400]; and, time-to-fire of transition&r3 are uniformly dis-
tributed over[100, 200]. The first and the third task require re-
sourcer1 with priority level 1 and2, respectively; the second task
requires resource2 with priority level 1; all tasks require resource

r3 whenever they need to access one of the three mutually exclu-
sive resource®12, R23, andR13, raising their own priority to the
highest priority level of any task that may access the resource.

Approximated analysis enumeratelr stochastic classes, covered
by 180 markings, in nearly2 minutes. Approximation of domains
affects14 classes, as shown in Table 3: also in this case, although
the estimated average and maximum portion of false behaviors in
any of these classes is a notable quantity, equatv4 % and
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Table 3: Three-Synchronizing-Tasks model: Errors due to the
approximation of class domains.

As illustrated in Table 4, approximation of state density functions
affects a consistent number of classes (2@l, after time advance-
ment andl49 after disabling), yielding average and maximum er-
rors under acceptable limits.¢-10~° and3.09-107°, 3.376-10~*
and1.9885 - 103, for time advancement and disabling steps, re-
spectively).

Q Metrics on densities| average | max [ #classes]|
d-norm distance
(time advancement) 0.0000057 | 0.0000309 201
d-norm distance |, 403376 | 0.0019885 | 149
(disabling)

Table 4: Three-Synchronizing-Tasks model: Errors due to the
approximation of state density functions.

Fig. 5 reports results obtained on steady state marking probabili-
ties, evidencing acceptable errors with respect to simulation results,
with average and maximum error equal®®0023 and0.00211,
respectively.

Experiments were repeated with different values of the approxima-
tion thresholds (i.e., 0.001 and 0.00001) and the Bernstein de-
gree (i.e.3 and5). Approximated analysis is substantially insensi-
tive to the threshold and, instead, yields more accurate quantitative
measures as the Bernstein degree increases. In particular, with de-
gree3: average and maximum probability of false behaviors are
equal t00.0329 and0.0649, respectively; average and maximum
d-norm distance after time-advancement are equal.@600066
and0.0000343, respectively; average and maximum d-norm dis-
tance after disabling are equal 0004057 and 0.0019314, re-
spectively. With degreé: average and maximum probability of



0.035

Simulation: firings < 200000 m—"

0.03

0.025

markings steady state probabilities

MSO M75 M100 M125 M150 M175

markings

Approximated Analysis: 3 = 0.0001, degree = 4 ———

average error = 0.00023
max error = 0.00211

markings steady state probabilities

M;75

Mzs
markings

Migo Mz Mg

Figure 5: Three-Tasks model: Measures of steady state mark-
ing probabilities obtained by simulation (with 200000 firings)
and approximated analysis (with threshold§ = 0.0001 and
Bernstein degrees).

false behaviors are equal @0179 and0.0413, respectively; av-

The representation of preemptive behavior is a relevant issue also
in non-deterministic analysis, where approximation seems to be the
only viable approach to manage this class of models as well. In
stochastic analysis, the problem becomes even more complex both
in the theory and in the practical implementation. However, quan-
titative measures also provide a notable leverage to restrain the im-
pact of approximation, since false behaviors are associated with a
measure of probability. Experimental results show that while the
enlargement of domains can be significant, its impact on perfor-
mance measures is still limited.

Appendix: Theorem Proof
Theorem 3.1. Integration bound®” (z;) and L b (2g,) are
G

piecewise continuous functions with analytic representatlon over
each element of a partition @#.¢, in polyhedral subdomaing;.
with i, j € [0, I —1] andz,y € [, G —1]. Within each subdomain
Rixjy, the two integration bounds are either constants, or mono-
variate linear functions of a single component of the vegfor or
bivariate linear functions of two components of the vecatpr. In
particular, ifzg, € Riajy, then:

—B.g, iffi=0,z=1
EBO( c) = —B.p, — g, iffi >0,0=1
& "] —Bsuso + 75, iffi=0,2>1
—Bg,p; + x5, — x5 iffi >0,z >1
Bﬁo* iffj:()’y:]
L3 (al) =8 T > 0y=1
e BoBy T T8, iff j =0,y >
Bg;p, + 15, — 15, iff 5 >0,y > 1(26)

PROOF Let{R;,} withi € [0
subsets of),¢, defined as:

,I —1]andz € [I,G — 1] be

Ror Y Dye (W | w5, < Bup, + Bugo Vi€ [1,1— 1]

A\ _xBISB*BO BﬁngVQZG[I G—l]
Nxg, —xp, < Bupy + Bg,p,
Viel[l,I-1],Vze[l,G—-1]},

erage and maximum d-norm distance after time-advancement are

equal to0.0000050 and0.0000286, respectively; average and max-
imum d-norm distance after disabling are equa).t@029023 and
0.0013614, respectively.

5. CONCLUSIONS

= de
Ra ™ Dre,(Wz | —xp, < Bip, — Bug,

/\l’gj—x[giSB*gi—B*BjVjG[I,I—l].j;ﬁi
/\—w[-; Tg, <B*g BBIBOVl'E[[,G—l]
ANzg, +xg; — 8, < Bug, — Bga,3,

Vjell, I—l] Jj#1, VxE[IG—l]}

We proposed an analytical approach for quantitative evaluation of
systems with multiple concurrently enabled GEN timers running
under fixed-priority preemptive scheduling. The approach extends
the theory of stochastic state classes so as to deal with models that
combine Preemptive Repeat Different (PRD) and Preemptive Re-
sume (PRs) policies. The expressive extension exacerbates the
complexity of analysis, as it requires to deal with timer vectors
distributed in piecewise form over linear convex polyhedra. To
reduce complexity, the approach approximates exact distributions
with global Bernstein approximants supported over DBM zones.
Computational experience illustrates application on a relatively com-
plex model that combines usual patterns of real-time concurrency
and non-Markovian temporal parameters, showing that the approach
attains a significant reduction of complexity while suffering a lim-
ited impact on the accuracy of quantitative measures.
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= de

Roo & Dre, (Wz | w8, < Bg,p, — Bsso

Nwg, + w5, < Bg,p, — Bug, Vi €[L,G = 1] .0 # ]
Nzg, —xp, < Bg,p, — Bp,s, Yy €[[,G—-1].y#z
Nzg, —xg, + 28, < Bp,p, — Bg,p;
Vie[l,H—-1],Vye[l,G—-1].y#x},

= def

Riz = Dre,(Wz|zp, — 25, < Bp,p, — Bssy
ANzg, — 905 +zs;, < Bg,p, — Bg.;
Vje[I,G—l].j;éz‘

Nzg, —xp, —xp, < Bpg,s, — Bg,s,
Vyell,G-1].y#x

Nzg, —xg, —xp, +xp;, < Ba,p, — Bp,,
Viel,I-1.j4iVye[l,G-1].y#z}

27)



According to Eq.(20-a):

— B, iff x € ROI

6o (o — ) —DBss — s, iff z € Riz
By (@)= —Bgs, 50 + 5, iff z € Roo (28)

—Bg,p; + s, —Tp; iff z € Riz.

RegionsR;,;, are convex polyhedral zones, being the restriction of
a convex polyhedron through linear constraints that may not be in

DBM form; they are disjoint by construction; their unionfis.c ;
and, within each of themE”? (z) is either constant (i.e= B.s,,
G

in Ror), or a monovariate linear function (i.esB.s, — zp, Of

— Bga, gy, IN Rir or Row, respectively), or a bivariate linear

function (i.e.,xs, — Bg,8, — x3,, iN Riz). In a similar manner,

Eq.(20-b) partitionsD., into a finite set of polyhedral subdomains

{R;,} with j € [0, —1] andy € [I, G — 1], within each of which
Lf‘g (z) accepts analytic representation. The intersection of the [11]
tvx?g partitions defines a set of polyhedral subdomdws;, with
1,7 € [0,I —1]andx,y € [I,G — 1], within each of which both
Eﬁé (z) and Ligé (z) have analytic representation.

Given a pointi at the border between two regions, SRy, and
R;,, Egs.(27) and (28) imply that:

According to this £ (z) is continuous along subdomains borders
g

Zp, — s, — Bp.s,

g, —2p; — Bpays;
lim &3, — Bg,3, — &g,
=3

= &, — Bp,s; — Ip, (29)

lim i’gy — Bgy[gj — i[jj

L

= Zp, — Bg,s, — s,

and, since it is analytic within each subdomdi., ;, it is a glob-

ally continuous function oveD:¢,. The same steps can be applied

to demonstrate that” (z) is a globally continuous function.[]
el

6.
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