
Exploiting multiformalism models for testing and
performance evaluation in SIMTHESys

E.Barbierato
Dipartimento di Informatica,

Università degli Studi di
Torino, Italy

enrico.barbierato
@mfn.unipmn.it

M.Gribaudo
Dipartimento di Elettronica e
Informazione, Politecnico di

Milano, Italy
gribaudo@elet.polimi.it

M.Iacono
Dipartimento di studi Europei

e Mediterranei, Seconda
Università degli Studi di

Napoli, Italy
mauro.iacono@unina2.it

ABSTRACT
SIMTHESys is a framework for the design of multiformalism
performance evaluation models. The modeler can create new
formalisms by specifying both the syntax and the dynamic
behavior of their atomic elements. Even if other approaches
address the same issue, the proposed methodology relies on
fewer assumptions, opening new possibilities that allow to
consider new types of composition and interaction between
formalisms.

In this direction, this paper shows how four formalisms be-
longing to three different classes can interact together in a
single environment. The multiformalism proposed is com-
posed of two standard performance evaluation formalisms,
a reliability formalism and a verification formalism. The
potential of this approach is demonstrated by analyzing a
model of an e-government process.

Keywords
Multi-formalism modeling, Tools for performance evalua-
tion.

1. INTRODUCTION
Multiformalism is a well established approach to modeling
complex systems: Mobius [22], Sharpe [24], SMART [5], Os-
MoSys [26] are some examples of frameworks and method-
ologies supporting it. The use of multiformalism modeling
techniques is based on the integration of components defined
using several different modeling languages (formalisms). The
peculiarities of this approach are twofold: from the modeler’s
point of view, allowing different subsystems to be modeled
by different formalisms favors the choice of a more familiar
or more appropriate language, lowering the learning curve
or matching the user ideal abstraction; from the point of
view of the solution, choosing the right combination of for-
malisms means a proper mapping of model concepts onto
solvers primitives, that better fits the problem.

This paper shows how multiformalism can be exploited to
enrich modeling when combining performance evaluation with
model verification techniques. The following combination of
formalisms belonging to three different classes is considered:

1. Performance evaluation, considered by supporting both
Stochastic Petri Nets (SPN) [16] and Finite Capacity
Queueing Networks; (TFCQN) [13];

2. Reliability through the use of Fault Trees [21]

3. Verification by means of an ad-hoc extension of Finite
State Automata [2].

The paper is organized as follows: following a works overview
about multiformalisms in Section 2, SIMTHESys is briefly
introduced in Section 3; the proposed multiformalism is pre-
sented in Section 4 and solving engines are described in Sec-
tion 5. Section 6 shows an application of the approach to
the evaluation of an e-government system; finally, some con-
clusions are drawn in Section 7.

2. RELATED WORKS
Multiformalism approaches in performance and performabil-
ity evaluation are widely witnessed by the existence of frame-
works like Sharpe [22] [24], SMART [5] and the DEDS tool-
box [3], or Mobius [6] [9] [23] [7] [8] and OsMoSys [11] [26] [18]
[25] [12], the last two being the most similar experiences
with respect to SIMTHESys [15]. In this field both the
concepts of multiformalism and multisolution are defined:
multiformalism is the ability of a framework or a methodol-
ogy to support the definition and the analysis of models that
are built by simultaneously using different formal languages,
while multisolution refers to the integration of existing eval-
uation tools (synthesized dedicated softwares, composable
solution engines or stand alone solutions) to obtain relevant
indexes on a complex model.

Multiformalism is a consolidated practice also in other fields
of modeling: for example in verification research, a branch
named ‘integrated formal methods’ deals with the coupling
of software formal analysis techniques to exploit the benefits
of combinations. Z variants and process algebras combina-
tion are given in [10], [17], [19] and extensions to include
other formalisms are presented in [14], [20]. Some more
examples of combinations are provided in [4], that also sug-
gests many other useful references on the topic. In the exam-
ple used in this paper we will couple performance oriented
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formal methods with a verification automata-like language,
that is newly designed though is inspired to [2], [1], and a
reliability formalism based on Repairable Fault Trees [21].

3. SIMTHESYS OVERVIEW
In [15] the SIMTHESys approach is introduced1.
SIMTHESys is a novel framework for the definition and so-
lution of multiformalism models based on the generation of
complex solvers, that are automatically obtained by com-
bining general solution engines, according to the rules re-
sulting from formalisms definitions. Formalisms are defined
by the explicit specification of both syntax and semantics of
all their atomic components.

The key advantages of this approach can be described as
the rapid prototyping of new formalisms and solution tech-
niques, the capability of deploying new solvers without mod-
ifying the existing ones and finally its open architecture, i.e.
the possibility to define new interfaces that can be used to
characterize different classes of formalisms.

In the current example we have considered formalisms that
describe systems characterized by exponential transitions.
This has been accomplished by defining appropriate inter-
faces that must be implemented by both the class of given
models and related solvers. It is possible to implement
other kind of formalisms such as non-Markovian Fault Trees
or Bayesian Networks by defining other types of interfaces
which consider probabilities and distributions.

In SIMTHESys a model is a description of a system written
according to a formalism. Models are written to be evalu-
ated by some point of view that depends on the formalism.
A formalism is a formal language defined in terms of its el-
ements, that form its grammar. For each element a set of
attributes (properties) and a set of method-like constructs
(behaviors) are given. Each property is either a constant, a
state information (used to define the state structure of the
model) or a result (computed during the solution). The set
of behaviors of an element describes its semantics (its dy-
namics or execution policy). In every formalism a special
container element is defined to represent a (sub)model writ-
ten in that language. This special element contains global
properties and behaviors that identify the entire (sub)model.

Special formalisms, defined as composition formalisms are
used to interface primitives belonging to different languages.
Elements of composition formalisms are designed to seman-
tically connect concepts belonging to different types of mod-
els. Such elements are said hybrid elements and exploit
their own behaviors as a handle to implement the interac-
tion logic. Formalisms and models are described by XML
formats, called respectively the“Formalism Description Lan-
guage”(FDL), and the“Model Description Language”(MDL).

4. DEFINING THE FORMALISMS
The purpose of this work is to propose an approach to test
a multiformalism performance oriented model against some
conditions. This guarantees that the model is correct from
the designer’s point of view. The proposed approach should
not affect the formalisms chosen to represent the original

1See also http://www.dem.unina2.it/simthesys.

model and should be based on an additional testing for-
malism capable to interact with the others. The solver for
the resulting formalism composition should be either able
to measure performances if an unwanted condition is not
met, or to compute specific indices that characterize the un-
wanted condition otherwise.

Two well defined performance evaluation formalisms, namely
SPN and FCQN, and their integration in the SIMTHESys
approach were already considered in [15]. In Section 4.1 a
brief introduction to the implementation of both formalisms
is given. Then two new formalisms are introduced: Fault
Trees (FT) for the specification of reliability performance
indices (in Section 4.2), and a Testing Formalism (TF) for
the verification of the model behavior (in Section 4.3).

Note that though the verification can also be done by using
an appropriate SPN model, and FT can be emulated using
SPN as described in [21], the use of different formalisms al-
lows a more compact representation, producing models that
are easier to read and to maintain.

4.1 Performance evaluation oriented formalisms
SPN is a class of Petri Nets in which firing of enabled transi-
tions consumes a time interval that is described by an expo-
nentially distributed random variable. Since the firing time
is exponentially distributed, it can be characterized by a
single parameter: the rate of the distribution.

Table 1 describes SPN formalism elements2.

The SPN element uses the behavior InitEvents to update
the state of the model by checking which of the transi-
tions are enabled, and by scheduling the firing of the cor-
responding events at the given rate. The behaviors Com-

puteStateRewards, CountStateRewards, SetStateRewards,
ListImpulseRewards and SetImpulseRewards are used to
compute performance indices.

For the sake of brevity, only one behavior is described in
Algorithm 1. The Fire behavior of the Transition element
updates the state of the system when the transition actually
fires.

Algorithm 1 Fire

1: for all a ∈ Arc where a.from = this do
2: a.Push();
3: end for
4: for all a ∈ Arc where a.to = this do
5: a.Pull();
6: end for

The second performance oriented formalism is FCQN. It is
suitable for the analysis of systems in which a number of
servers are connected to satisfy requests of customers. Ser-
vice stations are provided with queues and characterized by
the distribution of their service times. Queues are connected
in a network, so that a customer that is served in a queue
is delivered to another queue. In this work we consider only

2The complete FDL description of SPN is available at
www.dem.unina2.it/simthesys.
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Element Property Type Modifier Behaviors
SPN bounded boolean computed InitEvents, ComputeStateRewards,

CountStateRewards, SetStateRewards,
ListImpulseRewards, SetImpulseReward

Arc weight integer const IsActive, Push, Pull
from element const
to element const

Inhibitor weight integer const IsActive
Arc from element const

to element const
Place marking integer state GetOccupancy,

meantokens float computed AddOccupancy
Transition rate float const IsActive, Fire

throughput float computed

Table 1: Elements of the SPN SIMTHESys definition

queues with exponentially distributed service times. More-
over, in FCQN every queue has a finite capacity, with a
maximum number M of waiting customers allowed. In case
there is not room for new customers, a queue blocks the
server until it is able to receive a customer again (blocking
hypothesis). In this work we consider only the Blocking Be-
fore Service policy (BBS, the blocked queue processes the
customer after the end of the block).
FCQN with BbsSoQueue discipline are defined in SIMTHESys
using the elements, properties and behaviors presented in
table 23.

4.2 Reliability formalism
FT is used as a reliability formalism. A FT describes how a
complex fault (Top Event, TE) is generated by the combi-
nation of elementary faults (Basic Events, BE) by represent-
ing the relationship that components have in a system. In
this paper we will implement a repairable variant of FT, in
which a BE is a repairable event, to enable the TE of a FT
to dynamically evaluate the overall condition of a system.
The elements of the FT formalism are presented in table
34. A BE is described by a BasicEvent element. Each Ba-
sicEvent has associated two properties that specify an expo-
nential failure time (break rate), and an exponential repair
time (repair rate, which can be set to 0 if no repair is al-
lowed). BasicEvents also have a broken state property that
checks whether a component has failed. Fails propagates
up to the TopEvent using connecting arcs (specified by the
Arc elements), and can be combined using And, Or and Not
elements. All these elements implement a IsTrue behavior
that is used to check whether the sub-tree that is connected
to them describes a faulty situation in a given moment. A
FT is here enabled to use an element of a SPN or a FCQN
in place of a BE by exploiting SIMTHESys multiformalism
characteristics.

4.3 Verification formalism
The verification formalism is named Test and it is composed
of the elements presented in Table 45.

3The complete FDL description of FCQN is available at
www.dem.unina2.it/simthesys.
4The complete FDL description of FT is available at
www.dem.unina2.it/simthesys.
5The complete FDL description of Test is available at
www.dem.unina2.it/simthesys.

This formalism describes a sequence of conditions that should
occur in order to progress to a certain state by using an
automaton-like style. The state represents a situation where
the modeler wants to check the probability occurrence. Such
a situation is described by the Sat elements in the formal-
ism; the sequence of conditions is represented by a sequence
of State elements, that are connected by Next elements and
Check elements. Next elements are interconnection arcs that
join one State element to one Check element and viceversa.
Check elements act as guards on the model, and cause state
changes in the automaton when a given condition is satis-
fied. Conditions can be verified over elements of other for-
malisms, by exploiting SIMTHESys multiformalism charac-
teristics: here the state of the TE of a FT, the marking of
a place in a SPN and the length of a queue in a FCQN will
be used. The Test element of the Test formalism has a state
property currentState (that is preset to the initial state of
the automaton), as summarized in Table 4. This property is
used to track the state of the Test formalism. As seen for the
other formalisms, Test implements InitEvents (to initialize
the model) and five reward behaviors. It implements Ex-

pEventModel, to use the exponential events solving engine),
defines the PerformTest behavior to offer to the solvers a
way to invoke the check of the model.

The Test formalism evolution depends on the GetNext be-
havior of the State element, invoked by the solver. The
behavior uses the IsTrue behavior of the Next arcs to ver-
ify if some of the conditions (specified by the connections of
the Check elements) are verified. If this is true, the formal-
ism uses the GetDestination behavior to update the current
state. Note that we require that only one check can be valid
at a given time. If more than one check is valid, the Test
formalism will evolve following the specification associated
to the arc that came first in the XML file.

4.4 Bridging the three worlds
A composition formalism Tester is used to allow the interac-
tion between the verification, the reliability and the perfor-
mance oriented submodels. This multiformalism introduces
five elements that can be grouped into three categories, ac-
cording to the formalisms they interact with. The semantics
of the first category (PN place -> FCQN queue) is analo-
gous to the semantics of a SPN arc. When a place is marked
with a number of tokens equal to the weight of the arc, the
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Element Property Type Modifier Behaviors
TFCQN InitEvents, ComputeStateRewards,

CountStateRewards, SetStateRewards,
ListImpulseRewards, SetImpulseReward

Arc from element const HasSpace, Push
to element const IsActive, Pull

weight float const
BbsSoQueue length integer status IsActive,

meanlength float computed AddOccupancy, Fire,
capacity integer const CanSend, CanAccept
rate float const

throughput float computed

Table 2: Elements of the TFCQN SIMTHESys definition

Element Property Type Modifier Behaviors
FT InitEvents, ComputeStateRewards,

CountStateRewards, SetStateRewards,
ListImpulseRewards, SetImpulseReward

TopEvent prob float computed IsTrue
BasicEvent prob float computed IsTrue, Fire, GetRate

broken boolean state
break rate float const
repair rate float const

Or isTrue
And isTrue
Not isTrue
Arc from element const IsTrue

to element const

Table 3: Elements of the FT SIMTHESys definition

Element Property Type Modifier Behaviors
Test currentState string state PerformTest, ComputeStateRewards,

InitEvents, CountStateRewards
SetStateRewards, ListImpulseRewards

SetImpulseReward
State prob float computed GetNext
Sat prob float computed
Next from element const IsTrue, GetDestination

to element const
Check IsTrue

Table 4: Elements of the TEST SIMTHESys definition
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Element Property Type Modifier Behaviors
compose InitEvents, ComputeStateRewards,

CountStateRewards, SetStateRewards,
ListImpulseRewards, SetImpulseReward,

PerformTest
Arc from element const IsActive, HasSpace

to element const Push, Pull
CheckTrue from element const IsTrue

to element const
CheckFalse from element const IsTrue

to element const
CheckGE weight integer const IsTrue

from element const
to element const

CheckLT weight integer const IsTrue
from element const
to element const

Table 5: Elements of the composing formalism

queue is enabled and processes the requests. The seman-
tics of the second (FCQN queue or PN place -> FT gate)
is analogous to the semantics of a normal FT arc that con-
nects an event to a gate. It feeds the gate with the result of
a check over the number of units waiting in the queue or the
number of tokens in a place. The semantics of the third (FT
event -> TF check node) checks if the current probability of
the top event satisfies the specified condition and activates
consequently the check node.

The five elements of the Tester formalism are: Arc, CheckGE
and CheckLT, CheckTrue and CheckFalse. All these ele-
ments are arcs that connect primitives belonging to the other
four formalisms. Their properties and behaviors are summa-
rized in Table 6. The Arc primitive interconnects elements of
the two performance evaluation formalisms. CheckGE and
CheckLT connect an element from a performance oriented
submodel to a Check of a Test submodel, and they respec-
tively signal that the occupancy of a queue or the marking
of a PN place is either greater or equal, or less than, an in-
teger value (the weight of the arc); CheckGE and CheckLT
arcs can also interconnect an element from a performance
oriented submodel to a FT gate. Finally CheckTrue and
CheckFalse interconnect the TopEvent of a FT to a Check
in the Test submodel. The condition in this case is verified
if the TopEvent of the FT is true or false.

All the primitives belonging to the four submodel formalisms
plus the composition formalism are graphically represented
in Figure 1. Primitives belonging to the same formalism
are grouped as enclosed by dashed contours. The bridge
formalism in the middle of the figure also encloses the four
Formalism Elements from the other formalisms, represented
with dotted contours connected to their respective formalism
representations, to symbolize its bridge nature.

5. PERFORMANCE EVALUATION
ORIENTED SOLVERS

Two solution engines have been developed for the expo-
nential event based formalisms presented in Section 4 that
solve models using discrete event simulation or generation of
a Continuous Time Markov Chain (CTMC). The obtained

Arc

CheckGE

CheckLT

CheckTrue

CheckFalse

Test

FCQN

FT

SPN
Queue

Arc

S Sat

Check

State

Next

Event

OR Gate

AND Gate

Arc

Place

Transition

Arc

Inhibitor Arc

Figure 1: Elements of the formalisms and the mul-
tiformalism

CTMC can then be analyzed both in steady state and in
transient. All solvers rely on the possibility of taking a snap-
shot of the state of the model (by storing all the properties
with the status modifier), and then back track to it. Also all
algorithms implement the Schedule behavior by storing all
the scheduled events into a list. In the current implementa-
tion none of the solution components is optimized yet: cur-
rently their purpose is to show that they can be implemented
easily and that they can solve a large variety of formalisms
without having to re-design new solvers.

5.1 Stochastic Simulation
The simulator relies on the fact that, since all distributions
are exponential, it is sufficient to reschedule all the events
after each firing. The simulator repeats the analysis for a
fixed number N of runs. Each run is executed until a global
time Tmax is reached and statistics are collected only after
a transient time of fixed length Ttrans. A snapshot of the
initial state is taken, and after each run has finished, the
snapshot is used to start a new simulation from the same
initial state. The execution of each run simply calls the
InitEvents behavior to find all the enabled events, and then
draws an exponentially distributed sample for each of them.
The event with the shortest sample is executed, and time is
advanced accordingly until Tmax is reached. At the end of all
simulation runs, statistics are collected and returned to the
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Element Property Type Modifier Behaviors
Tester TestModel string computed InitEvents, ComputeStateRewards

CountStateRewards, SetStateRewards
ListImpulseRewards, SetImpulseRewards

Arc from element const IsTrue
to element const

CheckLT from element const IsTrue
to element const

Weight element const
CheckGE from element const IsTrue

to element const
Weight element const

Table 6: Elements of the Tester SIMTHESys definition

model using the SetStateRewards and SetImpulseReward

behaviors.

5.2 Numerical Analysis
The numerical solution solver generates the CTMC (Con-
tinuous Time Markov Chain) that describes the stochastic
process equivalent to the model. Starting from the initial
state, the solver calls the InitEvents behavior to compute
all the enabled events. The solver then builds a transition
graph, executing each enabled event. Finally, it checks if the
snapshot of the obtained state has already been encountered
(if not, it adds a new state), and backtracks to the initial
event. The process is repeated until all the states have been
visited. Snapshots are used both to reset the properties to
a previously encountered state, and to backtrack to the cur-
rent state whenever an enabled event is considered. Event
firing rates are used to label the arcs of the transition graph.
Each time a new state is encountered, the solver computes
the reward vector associated to that state: for state rewards
it simply accounts for the values returned by the ComputeS-
tateRewards behavior. For the impulse rewards, it considers
the reward value multiplied by the rate of the corresponding
enabled event. The generator matrix C of the underlaying
Markov chain is then computed from the transition graph.
The solver calculates the steady state solution vector π of
the Markov chain by computing πC = 0, and normalizing
the solution such that all the components of π sums up to 1.
Finally, a transient analysis is performed to compute π(τ)
(where τ represents the time) using randomization. Per-
formance indices are then computed by multiplying π (or
π(τ)) times the reward vectors, and are stored back into the
model using the SetStateRewards and SetImpulseReward

behaviors.

5.3 Solving Testing formalism
Solving the testing automaton requires the accumulation of
probability of the Sat event(s) in a model. Due to the prob-
abilistic nature of the approach, instead of developing a sep-
arate dedicated engine it has been decided to exploit the
existing exponential events engines. At every state change,
the conditions are evaluated and the probability of the Sat
state is updated, according to the evolution of the events
detected by the Check elements. The behaviors of the ele-
ments describe how to call the solving engines in order to
get to the final result. The elements of the Tester formalism

transfer the condition verified by the performance model to
the testing submodel, achieving the final effect of verifying
the given model.

6. EXAMPLE
An e-Government system that serves citizens’ requests is
composed by a number of different units. Every request is
registered, examined and then dispatched to the appropri-
ate processing unit. Some units are completely automated:
the others need a human supervisor to authorize the results
of the service. All processed requests are later checked and
verified to decide if their processing is concluded or they
generate another request that is sent back to registration.
Human supervisors are not always available and are not ex-
clusively in charge of a single unit. The system has to be
monitored against the verification of certain conditions in
case a service quality measure level is not satisfied.

The system is modeled by a multiformalism model com-
posed of: a FCQN fragment, describing the flow of requests
through units; a SPN fragment, describing the behaviour of
the human supervisors; a FT fragment, that computes the
quality level of the service (based on the blocking proba-
bilities of the working units); a TF fragment, that verifies
the undesired condition. Five versions of the model are pre-
sented in Fig. 2 and Fig. 3, in each of which the (a) part is
common and the (b) parts describe the different implemen-
tations. The (a) and (b) parts have elements with the same
names (in gray) that represent the same element.

The FCQN fragment is composed by a registering unit R,
four working units W1-W4 and a control unit C. R dis-
patches requests to W1-W4 with probability p1, p2, p3 and
p4 respectively. All requests processed by W1-W4 are sent
to C, that in turn sends requests back to R for further op-
erations with probability pR.

In the SPN fragment places EnableW1 and EnableW2 repre-
sent the activation of W1 and W2 when marked, since they
represent the presence of the supervisor. Available super-
visors are constituted of tokens in the Here place. Periodi-
cally supervisors start working at W1 and W2 (transitions
StartW1 and StartW2) and, after some time they finish their
working shift (transitions StopW1 and StopW2).

The FT fragment is composed by an AND gate A1 and an
OR gate O1 that feed events EA1 and EO1, which in turn
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Figure 2: System model (1-3)
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Figure 3: System model (4-5)
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feed the OR gate O2 and finally the top event EO2. A1 en-
sures that, being W1 and W2 conditioned by the presence of
human supervisors, their contribution to the overall quality
metric (that combines queue full probabilities) is weighted
as a whole, while O1 evaluates the feed of the automated
part of the system, in which W3 and W4 are independent.
O2 finally couples the two contributions as desired.

In Fig. 2 the model is completed with three different ver-
sions of a TF fragment. The first (b1) is composed by an
initial State, a Check intended to verify a critical condition
against the top event EO2 and a final Sat signaling that the
critical condition has been reached. The second (b2) also
considers the case in which the critical condition ceases by
means of a Check that verifies its absence against EO2, and
the third (b3) analogously verifies a second arise of the same
problem with a third Check element cheching EO2. In Fig.
3 the model is completed with two other FT fragments, that
check by FT fragments the condition of both resources work-
ing (b1) and at least one resource working (b2) in the SPN
fragment, to evaluate the influence of these situations on the
consequences of a critical condition, by the same TF frag-
ment. The TF fragment is composed by two Check elements
that account for the variations of the number of the working
resources (Chk1 and Chk2) and two Check elements that
verify the arise of the critical condition represented by EO2
(ChkBreak and ChkBreak2). If EO2 becomes true when the
TF fragment is in the Alert state (less than 2 resources at
work (b1) and no resource at work (b2)) the fragment ac-
tivates the absorbing state Sat representing the monitored
target condition, otherwise it activates the Broken state.

The average service times for W1, W2, W3 and W4 are
respectively 15, 30, 2 and 1 minutes, while the probabili-
ties that requests arrive to each queue are 0.1, 0.2, 0.3 and
0.4 and their maximum length is 2. The average service
times for R and C is 0.1 seconds. R and C are unbounded.
The probability that a request processed by C is sent back
to R is 0.1. Average firing times for StartW1, StartW2,
StopW1 and StopW2 are respectively 120, 30, 240 and 60
minutes. All service and firing times are exponentially dis-
tributed. The queue without name has service time 1 and
is unbounded.

The results obtained on the three models in Fig. 2 have
been resumed in Fig. 4, that shows the probability of the
three absorbing states Sat, obtained with a transient anal-
ysis (currently, the results can be validated by performing
the same analysis using other engines).

The figure shows the probability with which the system is
in one of the three absorbing states (and the initial state)
at a certain time. Fig. 5 shows the probability distribution
function of the time at which the system reaches the critical
condition for the first (‘1st Failure’) and second (‘2nd Fail-
ure’) time and at which the first critical condition is solved
(‘Repair’). The three curves suggest that ‘2nd Failure’ is a
most critical reference for the overall evaluation of the sys-
tem, since it happens after a ‘Repair’ with a short delay, due
to the buffer effect of the queues.

The results obtained on the two models in Fig. 3 have been
resumed in Fig. 6, that shows the relation between the prob-

Figure 4: Absorbing states distribution (1-3)

Figure 5: 1st Fault, Repair and 2nf Fault time dis-
tributions
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ability of the critical condition and the ratio between the av-
erage working and non working time of workers in the SPN
fragment, obtained with a steady state analysis, in the two
cases of no resource at work (‘Sat (OR)’) or less than two
resources at work (‘Sat (AND)’). In this case average firing
times for Start1, Stop1, Start2 and Stop2 variate so that
for each couple Start+Stop is constant and Start/Stop has
the value on the horizontal axis. The figure also shows the
same relation considering the arise of the critical conditions
with at least one resource at work (‘Broken (OR)’) or with
two resources at work (‘Broken (AND)’). The figure shows
the obvious bigger tolerance of the OR situation, but also a
substantially unexpected indifference of the probability with
respect of work/pause ratios from 0.1 to 0.9, that suggests a
proper resource management: workers assigned to this sys-
tem can be also used for other tasks, assumed that approxi-
mately 10% of their time is allocated to this one. Moreover,
at least with the given parameters, it is clear that the criti-
cal condition will happen with a non negligible probability,
that suggests a revision of system dimensioning regardless of
human resources. Due to the scope of this paper, this point
is not investigated any further.

Figure 6: Critical condition probability vs human
resource usage

Despite the fact that SIMTHESys solving engines are still
experimental and no optimization has been applied yet in
their design, the generated solver can obtain the desired
solution in a few tenths of seconds even if the maximum
number of generated states is approximately 80000.

7. CONCLUSIONS AND FUTURE WORKS
The main contribution of this paper with respect of [15]
has been the presentation of a multiformalism environment
that includes four different formalisms of three different cat-
egories, as well as an e-government case study. Even if ways
of mixing Petri Nets and Fault Trees have already been con-
sidered in literature, this is to the best of our knowledge
the first paper in which Markovian based models, logical
specification and complex test expressions defined by spe-
cial automata are joined in a single environment.

The way in which formalisms have been combined is open to
new extensions: for example adding new Markovian based
formalisms (such as Process Algebras), or reliability lan-
guages (such as Reliability Graphs) will require a small extra

effort. The same reasoning applies also to the introduction of
new optimized solution components that for example might
exploit MDD (Model Driven Development) or other symbol-
ical data structure to encode the state space and increase the
solution efficiency.

The proposed methodology is supported by a tool called
SIMTHESysER that can be freely downloaded from the
project web-page 6.
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