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ABSTRACT
We examine the stability of wireless networks whose users
are distributed over a torus. Users arrive at spatially uni-
form locations with intensity λ and each user has a ran-
dom number of packets to transmit with mean β. In each
time slot, an admissible subset of users is selected uniformly
at random to transmit one packet. A subset of users is
called admissible when their simultaneous activity obeys the
prevailing interference constraints. We consider the SINR
model and the protocol model as two canonical models for
interference, and denote by µ the maximum number of users
in an admissible subset for the model under consideration.
We show that the necessary condition λβ < µ is also suffi-
cient for random admissible-set scheduling to achieve stabil-
ity. Thus random admissible-set scheduling achieves stabil-
ity, if feasible to do so at all, for a wide range of interference
scenarios. The proof relies on a description of the system
as a measure-valued process and the identification of a Lya-
punov function.

Keywords
Wireless networks, stability, Foster-Lyapunov, Harris recur-
rent, measure-valued process, interference constraints, SINR
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1. INTRODUCTION
The present paper examines the stability of a broad class

of wireless networks whose users arrive to a torus H (of
arbitrary dimension). The torus may be interpreted as a
square coverage area with a wrap-around boundary, which
is a common notion in the modeling of wireless networks
to avoid boundary effects. Time is slotted, and users ar-
rive at H according to some spatial stochastic process with
mean λ per time slot. Users independently take their loca-
tions in H at random according to the uniform distribution.
Each user has a random number of packets to transmit, gen-
erally distributed with mean β, and can transmit at most
one packet per time slot.
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In each time slot, we select a set of users for transmis-
sion from all admissible sets uniformly at random. A subset
of users is called admissible when their simultaneous activ-
ity obeys the prevailing interference constraints. In prac-
tice, the relevant interference constraints depend on various
system-specific properties, such as the propagation environ-
ment and the operation of the physical and medium access
layers of the network. In the present paper we therefore
adopt generic feasibility criteria, which in particular cover
the SINR (Signal-to-Interference-and-Noise Ratio) model and
the protocol model as two canonical models for interference,
see for instance [5].

Let µ be the maximum number of users in an admissible
set. It is clear that λβ ≤ µ is a necessary condition for sta-
bility: The mean number of packets that arrive per time slot
should be no larger than the maximum number of packets
that can be transmitted simultaneously. The main result
we show is that this necessary condition is also nearly suffi-
cient for stability. Specifically, the Markov chain describing
the evolution of the system is positive Harris recurrent when
λβ < µ, implying that the network will be empty infinitely
often. Thus random admissible-set scheduling is a highly
robust strategy in that it achieves stability, if feasible to do
so at all, for a wide range of interference scenarios.

As described above, we investigate stability in the context
of a model that combines a scheduling discipline operating
under interference constraints and a continuous spatial set-
ting. While these two elements have each been considered
in isolation before, the present paper is, to the best of our
knowledge, the first to capture both features in conjunc-
tion. Indeed, stability of wireless networks has been widely
studied in the literature, see for instance Bonald and Feuil-
let [2], Bordenave et al. [3] and Wu et al. [11]. These papers
restrict attention to discrete topologies and interference con-
straints such that the system can be represented as a conflict
graph. Our model does not allow such a representation due
to the continuum of locations, and hence these results are
not directly applicable to our problem. Stability of queue-
ing networks in continuous space is investigated in Altman
and Levy [1], Leskelä and Unger [7] and Robert [10]. These
papers prove stability of networks in which only one user is
allowed to transmit at a time. In contrast, the present pa-
per focuses on the more complex situation of simultaneous
transmissions governed by a scheduling discipline.

While a discrete network structure is a reasonable assump-
tion in case of a relatively small number of long-lived flows,
it is less suitable in case of a relatively large number of
short-lived flows. The latter scenario is increasingly relevant
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as emerging wireless networks support traffic generated by
massive numbers of nodes, each of which engage in sporadic
transmission activity. The continuous spatial setting also
provides useful insights in the scaling behavior of discrete
topologies as the number of nodes grows large.

From a methodological perspective, the continuous spa-
tial setting involves major additional challenges compared
to a discrete network structure. Since users reside in a con-
tinuum of locations, the evolution of the system cannot be
represented in terms of a Markov chain with a finite state
space, and we therefore introduce a measure-valued process
as a description of the system. In order to prove stability,
we identify a Lyapunov function which has a negative drift
for all but a ‘small’ set of states, so that the Markov chain
is positive Harris recurrent.

The remainder of the paper is organized as follows. In
Section 2 we show how the evolution of the system may
be described in terms of a Markov chain with a measure-
valued state space. The main stability result is presented in
Section 3, along with an interpretation and discussion of its
ramifications. In Section 4 we provide a proof outline, and in
particular identify a Lyapunov function which has negative
drift for all but a ‘small’ set of states. In Appendix A we re-
call various useful definitions and collect some preliminaries
that are needed in order to apply the Foster-Lyapunov ap-
proach for our specific Markov chain. Appendix B provides
the full proof details for the stability result.

2. MODEL DESCRIPTION
Consider the hypercube H = [0, 1)n. To avoid boundary

conditions we connect the boundary points of the hypercube
to the opposite boundary points, so that the space can be
thought of as the surface of an n-dimensional torus. The
distance between x = (x1, . . . , xn) and y = (y1, . . . , yn),
x, y ∈ H, is then defined by

D(x, y) =
( n∑
i=1

D1(xi, yi)
2
)1/2

,

where

D1(a, b) = min(|a− b|, 1− |a− b|).
Users arrive at locations uniformly distributed in H, inde-

pendent of the locations of other users. The number of users
that arrive during a time slot has a general non-negative
discrete distribution with mean λ and is independent of the
number of users that arrive in other time slots. Each user
has a number of packets to transmit. The number of packets
a user has to transmit has a general non-negative discrete
distribution with mean β. Denote by A(t, s) the number of
packets arriving during the t-th time slot in the orthotope
[0, s1)×· · ·× [0, sn), with s1, . . . , sn ≤ 1. That is, the num-
bers A(t,1), t = 1, 2, . . . , are i.i.d. copies of a non-negative
discrete random variable A with E{A} = λβ. Here 1 is the
all-one vector, so that A(t,1) is the total number of packets
that arrive during the t-th time slot. We further assume
that E{A log(A)|A > 0} < ∞ and that 0 < P {A > 0} < 1.
Note that, because users arrive to a location according to
a uniform distribution, the expected number of packets to
arrive to a subspace B ⊆ H in one time slot is given by
E {A} ν(B), where ν(B) denotes the volume or surface area
of B.

We denote the number of packets in H at the start of the
t-th time slot by Y (t), with Y (t) = (Y (t, s), 0 < s ≤ 1)

and Y (t, s) denoting the number of packets residing in the
orthotope [0, s1)× · · · × [0, sn) at the start of the t-th time
slot. The state space of this process is denoted by Ψ and
consists of all nondecreasing integer-valued step functions
on H. So, when y ∈ Ψ, y(s) denotes the number of packets
residing in the orthotope [0, s1) × · · · × [0, sn). Note that,
using the information in Ψ, we can in fact find the number
of packets in any Borel set B ⊆ [0, 1)n. We denote this
number by y(B). In particular, y({x}) denotes the number
of packets at location x ∈ H.

At the start of every time slot an admissible subset of users
is selected to transmit one packet in that time slot. Here,
z ∈ Ψ is called a subset of y ∈ Ψ if z({x}) ≤ y({x}) for
all x ∈ H. To decide whether a set is admissible we define
a function F : Ψ → {0, 1} and we call z ∈ Ψ admissible
if and only if F (z) = 1. The function F follows from the
interference constraints of the wireless network, so that an
admissible set consists of users whose transmissions are all
successful if only the users in that set are transmitting at
the same time. In Subsections 2.1 and 2.2 we will discuss
some prototypical examples of this function in more detail.

Let χ(y) be the set of all subsets of y, i.e.

χ(y) = {z ∈ Ψ : z({x}) ≤ y({x}), ∀x ∈ H},

and let R(t, Y (t), s) be the number of packets transmitted
from the orthotope [0, s1) × · · · × [0, sn) in the t-th time
slot, given the configuration, Y (t). An admissible subset
of packets is selected uniformly at random. Hence, given
Y (t) = y, R(t, y) = z with probability

F (z)
∏

x∈H,z({x})>0

y({x})∑
u∈χ(y) F (u)

∏
x∈H,u({x})>0

y({x}) ,

where R(t, Y (t)) = (R(t, Y (t), s), 0 < s ≤ 1). Note that for
z 6∈ χ(y) we have F (z) = 0 or ∃x ∈ H such that z({x}) = 1
and y({x}) = 0, so this probability is always zero in this
case. Here and in the remainder of this paper, the value of
the empty product is defined as 1.

The evolution of Y (t, s) is described by the recursion

Y (t+ 1, s) = Y (t, s) +A(t, s)−R(t, Y (t), s).

From this description it follows that (Y (t))t∈N is a Markov
chain. We will equip the state space of the Markov chain
Ψ with the smallest σ-field B(Ψ) with respect to which the
map y → y(B) is measurable for any Borel set B ⊆ H.
That is, we equip Ψ with the Borel σ-field as we will prove
in Lemma 8.

Below we discuss two common models for interference, see
for instance Gupta and Kumar [5].

2.1 Protocol model
Under the protocol model for interference two users can

successfully transmit at the same time whenever the distance
between these two users is at least r. This minimal distance
r is often called the reuse distance. Let {Ui ∈ H : i ∈ I} be
the set of active users in some time slot. The transmission
of a user Ui, i ∈ I, is successful if

D(Ui, Uj) ≥ r for all j ∈ I. (1)

Further, the transmission of all users is successful if (1) holds
for all i ∈ I.
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To decide whether y ∈ Ψ is admissible we thus take the
function F : Ψ → {0, 1} such that F (y) = 1 if and only
if y({x}) ∈ {0, 1}, ∀x ∈ H and y({x})y({w}) > 0 only if
D(x,w) ≥ r, ∀x 6= w ∈ H.

2.2 SINR model
Again, let {Ui ∈ H : i ∈ I} be the set of active users

in some time slot. The transmission of a user Ui, i ∈ I, is
successful under the SINR model for interference if

P

η + P
∑

j∈I\{i}
D(Ui, Uj)−α

≥ γ. (2)

Here η, P and α are constants representing the background
noise, the power at which a user transmits and the path
loss exponent, respectively. If (2) holds for all i ∈ I the
transmission of all users is successful and thus that set is
admissible.

The function F : Ψ → {0, 1} associated with this model
for interference is now such that F (y) = 1 if and only if for
all x ∈ H, y({x}) ∈ {0, 1} and

Py({x})
η + P

∑
w∈H

y({w})>0

D(x,w)−α
≥ γy({x}).

3. MAIN RESULT
In this section we present the main result, along with an

intuitive explanation.
Let µ be the maximum number of users in an admissible

set, i.e. µ = max{y(1) : F (y) = 1}. To avoid having almost
surely no admissible subset of packets of maximum size µ
at any point in time, we will assume that there exists an
admissible set of maximal size such that the set remains
admissible if all packets are moved over a distance of at most
δ > 0. More formally, we make the following assumption:

Assumption 1. There exists an y ∈ Ψ with y(1) = µ and
F (y) = 1 such that for z ∈ Ψ with z({xi}) > 0 for i =
1, . . . , µ and X = {x1, . . . , xµ} ∈ Xδ for some δ > 0 we have
F (z) = 1. Here Xδ = {X = {x1, . . . , xµ} : D(xi, wi) < δ, i =
1, . . . , µ} and {w1, . . . , wµ} = {w ∈ H : y({w}) > 0}.

As an example consider dimension n = 1, so that we have
a unit circle. Further consider the protocol model for inter-
ference with reuse distance r introduced in Subsection 2.1.
Then the above assumption boils down to assuming that
the value of 1/r is non-integer. Alternatively, the constraint
in (1) could be assumed to hold with strict inequality.

The following theorem states the main result of this paper
and is a shorter version of Theorem 6, which is proven at
the end of Section 4.

Theorem 1. Under Assumption 1, the Markov chain
(Y (t))t∈N is positive Harris recurrent if λβ < µ and if inter-
ference is modeled by the protocol model or the SINR model.

This theorem states that Y (t,1) = 0 for infinitely many
values of t, i.e. the Markov chain will be in the empty con-
figuration infinitely often.

The result of Theorem 1 may be interpreted as follows.
Suppose that the total number of users in the system is
large. Then there will be a large number of admissible sets
of size µ, assuming that the users are sufficiently dispersed

across the network and not concentrated in a few dense ar-
eas. In fact, the number of admissible sets of size µ will be
overwhelmingly large compared to the number of admissi-
ble sets of smaller size. By virtue of random-admissible set
scheduling, one of the admissible sets of size µ will then be
selected with high probability. Thus, the expected number
of removed packets will exceed the expected number of ar-
riving packets, provided λβ < µ, implying a reduction in the
expected number of packets in the system, and preventing
the number of packets from growing without bound.

As the above heuristic explanation indicates, it is crucial
for the users to be sufficiently spread out and not be clus-
tered in a few hot spots. In order to obtain a rigorous proof,
it will hence not suffice to just consider the total number of
users, but in fact be necessary to keep track of their individ-
ual locations.

Also, while the spatial dispersion of users under random
admissible-set scheduling is intuitively plausible, it is cer-
tainly not obvious. This is perhaps best illustrated by the
fact that the result of Theorem 1 may not necessarily hold
for seemingly similar but subtly different scheduling disci-
plines.

As an example consider a unit circle to which users arrive
according to a spatial Poisson process with parameter λ.
Every user has exactly one packet to transmit, i.e. β = 1.
Further, take the protocol model with reuse distance r as the
model for interference, with r such that 1/r is non-integer.
For random-admissible set scheduling we see by Theorem 1
that this system is stable if λ < b1/rc.

Instead of selecting an admissible set at random, now con-
sider the scheduling discipline that gives priority to users
that have minimal distance, in anticlockwise direction, to
a certain point ζ on the circle. Obeying this priority rule,
we select as many users as possible to transmit in a certain
time slot. That is, the user closest to the given point gets
to transmit, the user closest to the point and at least a dis-
tance r away from the first user gets to transmit, and so on
until no user can be selected anymore. We call this service
discipline maximal scheduling with priorities.

Figure 1 shows a simulation result for both scheduling
disciplines with ζ = 0.5, r = 0.49 and λ = 1.95 start-
ing from an empty configuration and running for 106 time
slots. That is, the figure gives a realization of Y (t,1) for
t = 1, . . . , 106 given that Y (0,1) = 0. We see that at the
start of the simulation the number of packets in the system
with random-admissible set scheduling grows faster than the
number of packets in the system with maximal scheduling
with priorities. This is because maximal scheduling with
priorities always selects a subset of maximum size obeying
the priority rules, whereas random-admissible set schedul-
ing may select admissible sets of a small size with a certain
probability, which gets lower as the number of packets in
the system grows. More importantly, after some time the
number of packets in the system with random-admissible
set scheduling settles around an equilibrium value whereas
the number of packets in the system with maximal schedul-
ing with priorities keeps on growing linearly. This suggests
that maximal scheduling with priorities is not stable while
random-admissible set scheduling is stable for the chosen
parameters. The latter will be proven in the next section.

Figure 2 shows the terminal configuration of the simula-
tion of Figure 1, i.e. it gives a realization of Y (106, s) for
0 < s ≤ 1 given that Y (0,1) = 0 for both scheduling dis-

59



Figure 1: Random-admissible set scheduling and
maximal scheduling with priorities for ζ = 0.5, r =
0.49 and λ = 1.95.

Figure 2: Terminal configuration of the simulation
of Figure 1.

ciplines. For random admissible-set scheduling we see that
the number of packets in the interval [0, s) is roughly lin-
ear in s, indicating that the packets are evenly spread out
over the circle. For maximal scheduling with priorities we
observe that the number of packets in [0, s) slowly increases
with s up to approximately s = 0.48, after which the num-
ber of packets in the system steeply rises up to s = 0.5. For
s ≥ 0.5 = ζ the number of packets in the interval [0, s) is
(almost) constant, implying that virtually no packets are lo-
cated in the interval [0.5, 1). Note that users in the interval
[0.48, 0.5) have the lowest priority and hence will, whenever
they are allowed to, almost always transmit simultaneously
with other users, as there are quite some users in the sys-
tem and outside this interval. However, the users that are
allowed to transmit simultaneously with users in [0.48, 0.5)
are also allowed to transmit simultaneously with some users
in [0.5, 0.52), who have the highest priority. So we infer that
the packets in this system are clustered in [0.48, 0.5), and
that too high a fraction of the time (larger then 0.02λ) no
user in this interval is allowed to transmit a packet, making
the system unstable.

4. PROOF OUTLINE
In this section we provide an outline of the proof of Theo-

rem 1. As mentioned earlier, the proof relies on the Foster-
Lyapunov criteria and involves the identification of a func-
tion which has negative drift for all but a small set of states.
Appendix A contains several useful definitions and prelim-
inaries that are needed to apply the Foster-Lyapunov ap-
proach for our specific Markov chain. The proofs of the

various lemmas in this section are deferred to Appendix B.
In order to define the Lyapunov function, we partition

the torus using Kn hypercubes of size 1/K × · · · × 1/K.
We choose K such that K is a multiple of µ and such that
D(x,w) < δ for x,w inside the same hypercube of size 1/K×
· · · × 1/K. Here δ > 0 is chosen such that Assumption 1
holds. Using hypercubes is not strictly necessary here, and
any other partitioning having the same properties could be
used as well. However, using hypercubes is convenient as we
modeled the torus by the unit hypercube.

We will assume that interference is modeled by the pro-
tocol or SINR model and that the parameters of the models
are chosen such that there exists a δ > 0 for which Assump-
tion 1 holds. Note that for both the protocol model and the
SINR model it holds that no two users can transmit simul-
taneously in the same hypercube in the same time slot.

Let xk(y) be the number of packets residing in the k-th
region given configuration y ∈ Ψ, where the k-th region is
the hypercube

Hk =

[
k − 1 mod K

K
,

(k − 1 mod K) + 1

K

)
×

· · · ×

[⌊
k−1
Kn−1

⌋
mod K

K
,

(⌊
k−1
Kn−1

⌋
mod K

)
+ 1

K

)
,

for k ∈ K, where K = {1, . . . ,Kn}.
Let Ω = P(K) be the collection of all subsets of {1, . . . ,Kn}

and let Ω(y) be the subsets containing packets, i.e. Ω(y) =
{S ∈ Ω : xk(y) ≥ 1,∀k ∈ S}. A subset S ∈ Ω is called ‘guar-
anteed’ if any subset of packets, with exactly one packet
residing in each of the regions contained in S, is admis-
sible, regardless of the exact locations within each of the
regions. Let Θ ⊆ Ω be the collection of all ‘guaranteed’
subsets and, again, let Θ(y) be the subsets containing pack-
ets, Θ(y) = {S ∈ Θ : xk(y) ≥ 1,∀k ∈ S}. Further, denote
by qS(y) the probability that the packets that get removed
belong to the subset of regions S ∈ Ω given that the system
is in state y, with pk(y) =

∑
S∈Ω:S3k qS(y) the probability

that a packet in the k-th region gets removed given config-
uration y ∈ Ψ.

For any S ∈ Ω, denote

wS(y) =
∏

k∈S:xk(y)≥1

xk(y).

Further define

B(ε) =

{
y ∈ Ψ : w(y) ≥

(
2|Ω|
ε

)2/ε
}
,

where ε > 0 and

w(y) = max
S∈Θ(y)

wS(y).

The next lemma shows that the value of
∑
k∈S log(xk), for

the set of users S selected with random admissible-set schedul-
ing, is close to the maximum possible value over all admis-
sible sets with high probability for all states y ∈ B(ε) if
interference is modeled by the protocol or SINR model.

Lemma 2. For all states y ∈ B(ε) we have∑
S∈Ω(y)

qS(y) log(wS(y)) ≥ (1− ε) log(w(y)).
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For all i ∈ K define the set Si ∈ Θ such that i ∈ Si, j ∈ Si
if and only if i ∈ Sj and |Si| = µ. Note that such a set
exists for some i ∈ K by Assumption 1 and the definition of
K. Further note that for both the protocol model and the
SINR model for interference such a set then exists for all
i ∈ K as for these models moving all packets in a set in the
same direction over the same distance does not change the
classification of that set. Further define Si(y) = {j ∈ Si(y) :
xj(y) ≥ 1} and note that Si(y) ∈ Θ(y).

Also define the nonnegative function V : Ψ→ R by

V (y) =
∑

k:xk(y)≥1

xk(y) log(xk(y))

and the function G : Ψ→ R by

G(y) =
∑

k:xk(y)≥1

log(xk(y))
[ λβ
Kn
− pk(y)

]
.

Note that

V (y) =

Kn∑
k=1

xk(y) log(max(xk(y), 1))

and

V (y) =
∑

k:xk(y)≥2

xk(y) log(xk(y)).

Further observe that the function V (·) only depends on y
through the values of xk(y). However, the xk(y)’s do not
constitute a Markov chain, and hence we need to treat V (·)
as a function of the full state description y in order for the
Foster-Lyapunov approach to apply.

We now first find the relation between the drift of V (y)
and G(y), where the drift of V (y) is defined by

∆V (y) = E {V (Y (t+ 1))|Y (t) = y} − V (y).

After that we will find an upper bound for G(y).

Lemma 3. ∆V (y) = G(y)+G2(y), with G2(y) a bounded
function.

Lemma 4. Assume λβ < µ. Then, for all states y ∈ B(ε)
with ε = 1

2
(1− λβ

µ
),

G(y) ≤ − εµ

Kn

∑
k:xk(y)≥1

log(xk(y)).

By Lemma 3 we know that ∆V (y) ≤ G(y) +Gmax
2 , where

Gmax
2 = supy∈Ψ G2(y) < ∞. Now consider the set C where

the drift of V (y) might be bigger than −1, i.e. consider

C = {y ∈ Ψ : G(y) ≥ −Gmax
2 − 1}.

The next lemma shows that this set is small (see Defini-
tion 3).

Lemma 5. Assume λβ < µ. Then, the set C is small.

Using the previous lemmas we can now show stability.

Theorem 6. Assume λβ < µ. Then the Markov chain
(Y (t))t∈N is positive Harris recurrent with invariant proba-
bility measure π and

π(f) =

∫
π(dx)f(x) <∞,

where

f(y) =

{
−G(y)−Gmax

2 for y 6∈ C,
1 for y ∈ C,

Moreover,

lim
t→∞

E {g(Y (t))|Y (0) = y} =

∫
π(dx)g(x), ∀y ∈ Ψ,

for any function g satisfying |g(x)| ≤ c(f(x) + 1) for all x
and some c <∞.

Proof. In Lemma 9 we have proven that the Markov
chain satisfies the irreducibility and aperiodicity properties
of Theorem 7. Further, we have proven in Lemma 5 that
the set C is small. Thus, as f ≥ 1 by construction and V is
nonnegative and finite everywhere, we need to show that

∆V (y) ≤ −f(y) + bIC(y), ∀y ∈ Ψ, (3)

for some constant b ∈ R, in order to prove our claim.
For y 6∈ C we get

∆V (y) ≤ G(y) +Gmax
2 ,

which holds as we have shown in Lemma 3.
For y ∈ C we get

∆V (y) ≤ −1 + b.

We therefore take b ≥ 1 + supy∈C ∆V (y), so that the in-
equality holds by construction.

Hence we have shown that (3) holds for all y ∈ Ψ, proving
our claim.

Remark 1. Remember that at the beginning of this sec-
tion we assumed Assumption 1 to hold and that interfer-
ence is modeled by the protocol or SINR model, introduced
in Subsections 2.1 and 2.2, respectively. Further note that
Lemma 9 shows that the Markov chain is ϕ-irreducible,
where ϕ is the Dirac measure on Ψ assigning unit mass to the
empty configuration y0. Hence, by Definition 2, ψ({y0}) >
0. Theorem 1 then follows by the definition of a Harris re-
current chain, see Definition 5.

Remark 2. The Foster-Lyapunov approach may also be
leveraged to derive an upper bound for the expected value
of functions of the total number of packets in the system.

Specifically, define J(y) =
∑
k:xk(y)≥1 log(xk(y)), and de-

note Gmax
1 = supy∈B(ε)c G(y) + J(y) < ∞. By virtue of

Lemma 4 we then have G(y) ≤ Gmax
1 − εµ

Kn
J(y).

Using Lemma 3 and taking expectations yields

E {V (Y (t+ 1))} − E {V (Y (t))}

≤ − εµ

Kn
E {J(Y (t))}+Gmax

1 +Gmax
2 ,

for all t = 1, 2, . . . .
Summing over t = 1, . . . , T , we obtain

εµ

Kn

T∑
t=1

E {J(Y (t))} ≤ E {V (Y (1))}+ T (Gmax
1 +Gmax

2 ),

and thus

lim
T→∞

εµ

TKn

T∑
t=1

E {J(Y (t))} ≤ Gmax
1 +Gmax

2 .
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5. CONCLUDING REMARKS
We examined the stability of wireless networks whose users

are distributed over a torus. Users arrive at spatially uni-
form locations with intensity λ and each have a random
number of packets to transmit with mean β. In each time
slot, an admissible subset of users is selected uniformly at
random to transmit one packet, as governed by the prevail-
ing interference constraints. We considered the SINR model
and the protocol model as two canonical models for interfer-
ence, and showed that the necessary condition λβ < µ is also
sufficient for random admissible-set scheduling to achieve
stability, with µ denoting the maximum number of users in
an admissible subset.

We observed that the critical property of these interfer-
ence models was that moving all packets in a set in the same
direction over the same distance does not change the classifi-
cation of that set, so that random admissible-set scheduling
achieves stability, if feasible to do so at all, for other inter-
ference models satisfying this property as well.

In the present paper we focused on a torus and assumed
the arrival process to be spatially uniform. Extensions to
more general spaces and non-uniform arrival densities are
subjects of current research.

For the sake of convenience, we assumed that the schedul-
ing procedure selects uniformly at random among all admis-
sible subsets of packets. A similar approach can however be
applied to prove maximum stability of various modifications
of the selection mechanism. We did also demonstrate though
that the necessary condition is not sufficient to achieve sta-
bility for seemingly similar but subtly different scheduling
disciplines such as maximal scheduling with priorities. An
interesting topic for further research is to further demarcate
the class of scheduling disciplines for which the necessary
condition is also sufficient for stability.
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APPENDIX
A. DEFINITIONS AND PRELIMINARIES

As mentioned, the stability proof relies on a Foster-Lyapunov
approach. In this appendix, we first recall various relevant
definitions and a result from Meyn and Tweedie [8]. After
that, we prove that our Markov chain (Y (t))t∈N introduced
in Section 2 satisfies all technical conditions for the Foster-
Lyapunov approach to apply.

Let (Ŷ (t))t∈N be a Markov chain with state space Ψ̂. Fur-

ther, let B(Ψ̂) be the σ-field of subsets of Ψ̂. This σ-field is
assumed to be countably generated, i.e. it is generated by
some countable class of subsets of Ψ̂.

Definition 1. (Ŷ (t))t∈N is said to be ϕ-irreducible if there

exists a measure ϕ on B(Ψ̂) such that, whenever ϕ(C) > 0,
we have

P
{

min(t : Ŷ (t) ∈ C) <∞|Ŷ (0) = ŷ
}
> 0, ∀ŷ ∈ Ψ̂.

Let Pm {ŷ, C} denote the m-step transition probability to

go from state ŷ to the set C ∈ B(Ψ̂) Further define the
transition kernel

K 1
2
(ŷ, C) =

∞∑
m=0

Pm {ŷ, C} 2−(m+1), ŷ ∈ Ψ̂, C ∈ B(Ψ̂).

Definition 2. (Ŷ (t))t∈N is said to be ψ-irreducible if it is
ϕ-irreducible for some ϕ and the measure ψ is a maximal
irreducibility measure, i.e. it satisfies the following condi-
tions:

1. For any other measure φ′ the chain is φ′-irreducible if
and only if ψ(C) = 0 implies φ′(C) = 0.

2. If ψ(C) = 0, then

ψ({ŷ : P
{

min(t : Ŷ (t) ∈ C) <∞|Ŷ (0) = ŷ
}
> 0}) = 0.

3. The probability measure ψ is equivalent to

ψ′(C) =

∫
Ψ̂

ϕ′(dŷ)K 1
2
(ŷ, C),

for any finite measure ϕ′ such that the chain is φ′-
irreducible.

Note that by [8, Thm. 4.0.1] we know that if there exists a
measure ϕ such that the chain is ϕ-irreducible, then there
exists an (essentially unique) maximal irreducibility measure
ψ.
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Definition 3. A set C ∈ B(Ψ̂) is called ξm-small if there

exists an m > 0 and a non-trivial measure ξm on B(Ψ̂), such
that

Pm {ŷ, D} ≥ ξm(D), ∀ŷ ∈ C,D ∈ B(Ψ̂).

A set is called small if it is ξm-small for some m > 0 and
some non-trivial measure ξm.

Definition 4. Suppose (Ŷ (t))t∈N is ϕ-irreducible. The chain
is called strongly aperiodic when there exists a ξ1-small set
C with ξ1(C) > 0.

Definition 5. A ψ-irreducible chain (Ŷ (t))t∈N is said to be

Harris recurrent if for all C ∈ B(Ψ̂) such that ψ(C) > 0 we
have

P

{
∞∑
t=1

IC(Y (t)) =∞|Ŷ (0) = ŷ

}
= 1, ∀ŷ ∈ C,

where IC(y) denotes the indicator function of the set C.
If a Harris recurrent chain admits an invariant probability

measure it is called positive Harris recurrent.

The following theorem follows from Chapter 14 in [8].

Theorem 7. Suppose that the chain (Ŷ (t))t∈N is
ψ-irreducible and strongly aperiodic. If there exists some
small set Ĉ, a function f̂ ≥ 1 and some nonnegative function
V̂ that is finite everywhere such that

∆V̂ (ŷ) ≤ −f̂(ŷ) + b̂IĈ(ŷ), ∀ŷ ∈ Ψ̂, (4)

then (Ŷ (t))t∈N is positive Harris recurrent with invariant
probability measure π and

π(f̂) =

∫
π(dx)f̂(x) <∞.

Moreover,

lim
t→∞

E
{
ĝ(Ŷ (t))|Ŷ (0) = ŷ

}
=

∫
π(dx)ĝ(x), ∀ŷ ∈ Ψ̂,

for any function ĝ satisfying |ĝ(x)| ≤ ĉ(f̂(x) + 1) for all x
and some ĉ <∞.

To prove that our Markov chain fulfills the conditions in
Theorem 7, we first show that our σ-field, B(Ψ), is countably
generated.

Lemma 8. B(Ψ) is the Borel σ-field. Furthermore, B(Ψ)
is countably generated.

Proof. In this proof we will use some definitions and
results in measure theory, see [4] and [6] for more details.

First note that H endowed with the topology generated
by the open orthotopes defines a complete separable metric
space. Then it follows by [4, Thm. A2.6.III] that the Borel
σ-field of Ψ is the smallest σ-field with respect to which the
map y → y(B) is measurable for any Borel set B ⊆ H.
Further it follows that Ψ endowed with the vague topology
is a complete separable metric space. The vague topology is
the topology generated by the mappings φ → φg =

∫
gdφ,

with φ a measure on Ψ, for all continuous functions g : H →
R+ with compact support.

Since the space is separable, there exists a countable dense
set D in this space. Let S0 be the class of all finite intersec-
tions of all open sets {x ∈ H : D(x, d) < r}, with d ∈ D and
r ∈ Q+. Then, by [4, Lemma A2.1.III], S0 is countable and
generates the Borel σ-field, B(Ψ).

We will now prove that our Markov chain satisfies the
irreducibility and aperiodicity properties of Theorem 7.

Lemma 9. (Y (t))t∈N is ϕ-irreducible and strongly aperi-
odic, where ϕ is the Dirac measure on Ψ assigning unit mass
to the empty configuration y0. Moreover, the level sets of the
form Lm = {y ∈ Ψ : y(H) ≤ m},m > 0, are small.

Proof. The proof proceeds along similar lines as in [7].
Consider an initial configuration y with y(1) = n ≤ m

packets, so y ∈ Lm. Then the probability that the system
is empty after m time slots is greater than the probability
that no packets arrive during the first m time slots times the
probability that the n packets are served in the first m time
slots. Thus, as in a non-empty configuration the probability
that at least one packet is served in a time slot is at least 1

2
,

Pm {y, {y0}} ≥ P {A = 0}m
(

1

2

)m
,

which is greater than zero as P {A = 0} > 0. This proves
that (Y (t))t∈N is ϕ-irreducible in this case, because ϕ(D) >
0 only when y0 ∈ D.

Now, define the measure ξm = P {A = 0}m
(

1
2

)m
ϕ. For

this measure we have Pm {y,D} ≥ ξm(D) for all D ∈ B(Ψ).
So we see that Lm is ξm-small. Further, {y0} is ξ1-small and
ξ1({y0}) > 0, thus (Y (t))t∈N is strongly aperiodic.

B. PROOF DETAILS
In this appendix we provide the full proof details of the

various lemmas used in establishing the main stability result
as stated in Theorem 1.

Proof of Lemma 2
The proof proceeds along similar lines as in [2], [9].
For all states y ∈ B(ε) define

Υ(y) = {S ∈ Ω(y) : log(wS(y)) ≥ (1− ε

2
) log(w(y))}.

Then,∑
S∈Ω(y)

qS(y) log(wS(y)) ≥ (1− ε

2
) log(w(y))

∑
S∈Υ(y)

qS(y).

(5)
For any S ∈ Ω, let vS(y) be the number of admissible

subsets of packets of size |S| with exactly one residing in
each of the regions contained in S, with the convention that
v∅(y) = 1 for all y ∈ Ψ as the empty set is admissible for
interference modeled by the protocol or SINR model. Be-
cause every admissible subset can have at most one element
residing in each region, there is exactly one S ∈ Ω for which
this subset is counted in vS(y). Thus the total number of
admissible subsets of packets is given by

∑
T∈Ω vT (y) and,

as an admissible subset of packets is selected uniformly at
random,

qS(y) =
vS(y)∑
T∈Ω vT (y)

=
vS(y)∑

T∈Ω(y) vT (y)
.

Further observe that vS(y) ≤ wS(y) for all S ∈ Ω(y), with
equality for all S ∈ Θ(y). Thus,∑

S 6∈Υ(y)

qS(y) =

∑
S 6∈Υ(y) vS(y)∑
T∈Ω(y) vT (y)

≤
∑
S 6∈Υ(y) wS(y)∑
T∈Θ(y) wT (y)

≤ |Ω|w(y)1−ε/2

w(y)
= |Ω|w(y)−ε/2.
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The latter quantity is less than ε/2 for all states y ∈ B(ε),
and thus ∑

S∈Υ(y)

qS(y) ≥ 1− ε

2
. (6)

Combining the lower bounds (5) and (6), we obtain∑
S∈Ω(y)

qS(y) log(wS(y)) ≥ (1− ε

2
) log(w(y))(1− ε

2
)

≥ (1− ε) log(w(y))

for all states y ∈ B(ε).

Proof of Lemma 3
Remember that at most one packet can be removed from

each region in every time slot. We thus get, with uk =
xk(y) +Ak(t),

E {V (Y (t+ 1))|Y (t) = y}

= E
{Kn∑
k=1

xk(Y (t+ 1)) log(max(xk(Y (t+ 1)), 1))
∣∣∣Y (t) = y

}

=

Kn∑
k=1

E
{
xk(Y (t+ 1)) log(max(xk(Y (t+ 1)), 1))

∣∣∣Y (t) = y
}

=
∑

k:xk(y)≥2

pk(y)E {(uk − 1) log(uk − 1)}

+
∑

k:xk(y)≥2

(1− pk(y))E {uk log(uk)}

+
∑

k:xk(y)=1

pk(y)P {Ak(t) ≥ 1}E {Ak(t) log(Ak(t))|Ak(t) ≥ 1}

+
∑

k:xk(y)=1

(1− pk(y))E {(1 +Ak(t)) log(1 +Ak(t))}

+
∑

k:xk(y)=0

P {Ak(t) ≥ 1}E {Ak(t) log(Ak(t))|Ak(t) ≥ 1} ,

where Ak(t) denotes the number of packets arriving in the k-
th region during the t-th time slot. Remember that E {Ak(t)} =
λβ/Kn and E {Ak(t) log(Ak(t))|Ak(t) ≥ 1} < ∞. We fur-
ther have∑

k:xk(y)≥2

pk(y)E {(uk − 1) log(uk − 1)}

+
∑

k:xk(y)≥2

(1− pk(y))E {uk log(uk)}

=
∑

k:xk(y)≥2

pk(y)E
{

(uk − 1)
(

log(xk(y)) + log
(uk − 1

xk(y)

))}

+
∑

k:xk(y)≥2

(1− pk(y))E
{
uk
(

log(xk(y)) + log
( uk
xk(y)

))}

=
∑

k:xk(y)≥2

(xk(y) +
λβ

Kn
− pk(y)) log(xk(y))

+
∑

k:xk(y)≥2

pk(y)E
{

(uk − 1) log
(uk − 1

xk(y)

)}

+
∑

k:xk(y)≥2

(1− pk(y))E
{
uk log

( uk
xk(y)

)}
.

Now notice that for constants a ≥ 0, b ≥ 0, c > 0

E
{

(a+Ak(t)) log
(
b+

Ak(t)

c

)}
= E {(a+Ak(t))(log(bc+Ak(t))− log(c))}
≤ E {(a+Ak(t))(log(bc+Ak(t))− log(c))|Ak(t) ≥ 1)}
≤ E {(a+Ak(t))(bc+ log(Ak(t))− log(c))|Ak(t) ≥ 1)}
= a(bc− log(c)) + E {bcAk(t) + a log(Ak(t))|Ak(t) ≥ 1)}

+E {Ak(t) log(Ak(t))|Ak(t) ≥ 1}

≤ a(bc− log(c)) +
abcE {Ak(t)}

1− P {Ak(t) = 0}
+E {Ak(t) log(Ak(t))|Ak(t) ≥ 1} .

Thus, as E {Ak(t)} and E {Ak(t) log(Ak(t))|Ak(t) ≥ 1} are
bounded, we find

E
{

(a+Ak(t)) log
(
b+

Ak(t)

c

)}
<∞. (7)

Hence ∆V (y) = G(y) +G2(y), with

G2(y) =∑
k:xk(y)=1

pk(y)P {Ak(t) ≥ 1}E {Ak(t) log(Ak(t))|Ak(t) ≥ 1}

+
∑

k:xk(y)=1

(1− pk(y))E {(1 +Ak(t)) log(1 +Ak(t))}

+
∑

k:xk(y)=0

P {Ak(t) ≥ 1}E {Ak(t) log(Ak(t))|Ak(t) ≥ 1}

+
∑

k:xk(y)≥2

pk(y)E
{

(uk − 1) log
(uk − 1

xk(y)

)}

+
∑

k:xk(y)≥2

(1− pk(y))E
{
uk log

( uk
xk(y)

)}
,

which is a bounded function by (7) and as K <∞.

Proof of Lemma 4
Since ε = 1

2
(1− λβ

µ
) > 0 we have

G(y) =
∑

k:xk(y)≥1

log(xk(y))
[ (1− 2ε)µ

Kn
− pk(y)

]
.

Now note that, for all states y ∈ B(ε), we may write

∑
k:xk(y)≥1

log(xk(y))pk(y)

=
∑

k:xk(y)≥1

log(xk(y))
∑

S∈Ω:S3k

qS(y)

=
∑
S∈Ω

qS(y)
∑

k∈S:xk(y)≥1

log(xk(y))

=
∑

S∈Ω(y)

qS(y) log(wS(y)).
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Likewise, we may write∑
k:xk(y)≥1

log(xk(y))

=
1

µ

∑
k:xk(y)≥1

log(xk(y))
∑

i:Si(y)3k

1

=
1

µ

Kn∑
i=1

∑
k∈Si(y)

log(xk(y))

=
1

µ

∑
i:Si(y)

log(wSi(y)(y)).

Substitution of these two equalities in G(y) gives

G(y) = − εµ

Kn

∑
k:xk(y)≥1

log(xk(y))

+ (1− ε)
[ ∑
i:Si(y)

1

Kn
log(wSi(y)(y))

]
−

∑
S∈Ω(y)

qS(y) log(wS(y)).

Then, using Lemma 2 and recalling the fact that Si(y) ∈
Θ(y), so that wSi(y)(y) ≤ w(y) for all i = 1, . . . ,Kn, yields

G(y) ≤ − εµ

Kn

∑
k:xk(y)≥1

log(xk(y))

+(1− ε)
∑
i:Si(y)

1

Kn
log(wSi(y)(y))− log(w(y))

≤ − εµ

Kn

∑
k:xk(y)≥1

log(xk(y)),

for all states y ∈ B(ε).

Proof of Lemma 5
Consider the sets

B̂(ε) =

{
y ∈ Ψ : xk(y) ≤

(
2|Ω|
ε

)2/ε

, ∀k ∈ K

}
,

with ε = 1
2
(1− λβ

µ
) > 0 and

Ĉ =

{
y ∈ Ψ : log xk(y) ≤ (Gmax

2 + 1)Kn

εµ
, ∀k ∈ K

}
.

We see that B(ε)c ⊆ B̂(ε) as subsets of one region are guar-
anteed and thus w(y) ≥ xk(y), for all k ∈ K. Further we

see that C \B(ε)c ⊆ Ĉ, as follows from the upper bound for
G(y) found in Lemma 4. Hence,

C ⊆ B(ε)c ∪ (C \B(ε)c) ⊆ B̂(ε) ∪ Ĉ.

Thus, as

B̂(ε) ∪ Ĉ = {y ∈ Ψ : xk(y) ≤M,∀k ∈ K}

with

M = max
(

e
(Gmax

2 +1)Kn

εµ ,
(2|Ω|

ε

)2/ε)
,

we find C ⊆ LKnM , where Lm is the level set, Lm = {y ∈
Ψ : y(1) ≤ m}. We know by Lemma 9 that LKnM is small
and hence, by definition, C is small.
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