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ABSTRACT
Queueing systems with Poisson arrival processes and Hypo-
exponential service time distribution have been widely stud-
ied in literature. Their steady-state analysis relies on the
observation that the infinitesimal generator matrix has a
block-regular structure and, hence, matrix-analytic method
may be applied. Let πnk be the steady-state probability of
observing the k-th stage of service busy and n customers in
the queue, with 1 ≤ k ≤ K, andK the number of stages, and
let πn = (πn1, . . . , πnK). Then, it is well-known that there
exists a rate matrix R such that πn+1 = πnR. In this paper
we give a symbolic expression for such a matrix R. Then,
we exploit this result in order to address the problem of ap-
proximating a M/HypoK/1 queue by a model with initial
perturbations which yields a product-form stationary distri-
bution. We show that the result on the rate matrix allows us
to specify the approximations for more general models than
those that have been previously considered in literature and
with higher accuracy.

Categories and Subject Descriptors
C.4 [PERFORMANCE OF SYSTEMS]: Modeling tech-
niques

General Terms
Performance

Keywords
Queueing theory, Product-form solutions.

1. INTRODUCTION
The analysis of queueing systems in which customers arrive
according to a Poisson process and are served according to a
general distributed service time (M/G/·) plays a pivotal role
in queueing theory. Under a set of assumptions, several anal-
ysis techniques have been developed for their transient and
steady-state solution. For instance, in [8] a detailed analysis

of M/G/1 queues is carried on. In this context, matrix ana-
lytic methods [12, 14] exploit the regular structure of the in-
finitesimal generator of the Continuous Time Markov Chain
(CTMC) underlying a class of M/G/1 queues (even with
non-homogeneous arrival processes) in order to efficiently
derive their steady-state probabilities. In this paper, we fo-
cus our attention on queueing systems of type M/HypoK/1
and M/EK/1, i.e., whose arrivals occur according to a Pois-
son process, and service times are distributed according to a
Hypo-exponential or Erlang distribution withK exponential
stages of service. Furthermore, we assume uncorrelated ser-
vice times and independence between service times and the
arrival process. This class of queues has a great importance
in queueing theory and is characterised by the property of
having a coefficient of variation of the service time that is
less than 1. In literature, the analysis basically relies on the
application of the Matrix Geometric technique or the appli-
cation of the matrix explicit formula given in [13, 9]. Both
these methods state the solution for the steady-state proba-
bilities in terms of the matrix-blocks which the infinitesimal
generator consists of.

Matrix Geometric has proved to be a powerful method for
analysing many classes of queueing systems with very gen-
eral arrival processes and service time distributions. The
computation of the steady-state probabilities strongly de-
pends on the knowledge of the rate matrix R whose analyt-
ical expression is known only for few cases. In general, ma-
trix R must be computed by applying the iterative scheme
presented in [12] or, for Quasi Birth and Death (QBD) pro-
cesses, the one presented in [10]. The termination criterion
for these iterative schemes depends on the definition of the
desired numerical precision. We briefly review this method
(especially to introduce the notation) in Section 2.1.

Alternatively, in [13, 9] the authors prove an efficient ap-
proach for the computation of matrix R that applies to
queues which exhibit a specific block structure. According
to this result, it suffices to compute the numerical inversion
of an efficiently computable matrix (see Section 2.3 for a
more detailed review).

The main contribution of this paper consists in giving an
analytical expression for the rate matrix R required by the
matrix analytic method applied toM/HypoK/1 (and, hence
also M/EK/1) queues. The knowledge of such an analyti-
cal expression is not only interesting from a theoretical point
view, but allows also for a more efficient computation of ma-
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trixR (and, hence, of the steady-state probabilities) without
the need of setting a tolerance criterion or without incurring
the possible numerical problems due to a matrix-inversion
operation. Furthermore, we exploit these results to provide
a product-form approximation of M/HypoK/1 queues in a
similar fashion of [4, 1]. We consider a M/HypoK/1 queue
feeding an infinite capacity queue in a tandem configuration.
If the M/HypoK/1 queue has only one stage of service, then
Burke’s theorem can be applied to derive a product-form
solution, because the behaviour of the first queue is inde-
pendent of the state of the second one. However, if the first
queue has more than one stage of service, to the best of
our knowledge, no product-form solutions are known in lit-
erature. In fact, it can be easily shown that M/HypoK/1
queues, K > 1, are neither quasi-reversible nor satisfy the
Reversed Compound Agent Theorem (RCAT) conditions [3,
11] and these may be considered the main results that can
be used to derive the product-form solution of a stochastic
model. It is worthwhile noting that product-form solutions
(even though approximated models) are important because
they allow one to efficiently derive a set of average perfor-
mance indices such as the mean number of customers in a
queue, the mean response time, etc., but also detailed ones
such as the response time distribution. In particular, in [4]
the authors prove a very efficient approach to the computa-
tion of the response time distribution that may be applied
also to the approximations given here. In this paper, we
show that the knowledge of the expression of matrix R al-
lows for the definition of more general approximations than
those proposed in these papers and the non-linear optimiza-
tion approach adopted in [1] is not needed anymore. When
possible, the product-form approximations obtained in this
paper are compared with that obtained in [4] and with the
non-approximated queue.

The paper is structured as follows. Section 2 gives the basic
notions and notations to keep the paper self-contained: Sec-
tion 2.1 introduces the Matrix Geometric approach for the
solution of QBD processes, Section 2.2 shows its applica-
tion to M/HypoK/1 queues, and Section 2.3 briefly reviews
the explicit matrix-formula for the computation of matrix R
presented in [13, 9]. Section 3 gives the symbolic expression
for matrix R in case of M/HypoK/1 queues and proves the
correctness of this result. An application to product-form
analysis is presented in Section 4. Finally, Section 5 is de-
voted to some final remarks.

2. THEORETICAL BACKGROUND
In this part we recall the fundamental notions required to
keep this paper self-contained. We briefly present Neuts’
Matrix Geometric method and then we illustrate its stan-
dard application to M/HypoK/1 queues. In Section 2.3 we
illustrate the (probably overlooked) result stated in [13] as
clearly presented in [9].

2.1 Neuts’ Matrix Geometric method
Matrix Geometric [12, 14] is an analysis technique that al-
lows the efficient computation of the steady-state solution
of structured Markov chains. In this paper we refer to the
case of CTMCs whose infinitesimal generators Q are infinite

block tridiagonal matrices with the following structure:

Q =





















B00 B01 0 0 0 0 . . .
B10 A1 A2 0 0 0 . . .
0 A0 A1 A2 0 0 . . .
0 0 A0 A1 A2 0 . . .

. . .
. . .

. . .
...

...
...

...
...

...
...





















, (1)

where:

• A0,A1,A2 are square matrices with the same dimen-
sion α,

• B00 is a square matrix with dimension β,

• B10 is a α× β matrix,

• B01 is a β × α matrix.

Let π be the stationary distribution (assuming it exists) of
the CTMC, i.e., πQ = 0 with the normalising condition
π1⊤ = 1, where 1 = (1, 1, 1, . . .). According to the struc-
ture of Q, we consider π = (π0,π1,π2, . . .) where π0 =
(π01, . . . , π0β) has dimension β, while πn = (πn1, . . . , πnα),
n > 0, has dimension α. Vector π may be iteratively com-
puted with the following scheme:

πn+1 = πnR n > 1, (2)

and π0 and π1 are defined as the solutions of:

(π0,π1)

(

B00 B01

B10 A1 +RA0

)

= (0,0), (3)

under the normalizing constraint:

π01
⊤ + π1(I−R)−11⊤ = 1, (4)

where I is the identity matrix. In these expressions, matrix
R plays a pivotal role and it must be the solution of the
following equation:

A2 +RA1 +R2A0 = 0, (5)

with spectral radius strictly less than 1. The numerical com-
putation of R is an interesting problem which has been ad-
dressed by Neuts is his seminal work with the definition of
an iterative scheme which has been proved to converge to
the correct solution. This is straightforwardly derived from
Equation (5). Let R(s) be the matrix at the s-th iteration
step, with R(0) = 0, then:

R(s+1) = −A2A
−1
1 −R2

(s)A0A
−1
1 , s ≥ 0. (6)

Neuts’ scheme terminates when two successive iterations are
close enough with respect to a given tolerance criterion. A
faster iterative approach for the computation of R in case of
QBD processes is described in [10]. However, finding explicit
(symbolic) expressions for matrix R is often an important
topic of research. Indeed, in general, the explicit computa-
tion of R is more efficient than the iterative schemes and
does not suffer from numerical stability problems. Further-
more, the expression for R provides a deeper view on the
relations among the steady-state probabilities of the consid-
ered model.
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2.2 Matrix Geometric applied to M/Hypo/1

queues
In this section we apply the Matrix Geometric method to
compute the steady-state solution of M/HypoK/1 queues.
Although an explicit matrix formula which allows the ef-
ficient solution of this class of Markovian queues is avail-
able [13, 9], Matrix Geometric approach seems to be the
favourite choice of many authors (see [6, 15] as an exam-
ple). This is probably due to the fact that this approach is
very versatile and can be easily applied to the case of phase-
type distributed inter-arrival times. In M/HypoK/1 queue,
stochastically identical customers arrive from the outside ac-
cording to a homogeneous Poisson process with rate λ. At
the arrival epoch the service starts immediately if the sta-
tion is empty, or the customer waits in the queue according
to First Come First Served policy, otherwise. We assume a
hypo-exponential service time distribution with K exponen-
tial stages, independent of the arrival process and uncorre-
lated (see [8] for a review of the properties of this random
variable applied to queueing systems). Each stage of service
has rate µk, with 1 ≤ k ≤ K (see Figure 1). The stability
condition of such a queue is well-known:

1

λ
>

K
∑

k=1

1

µk
. (7)

Hereafter, we consider stable systems. If µ1 = µ2 = . . . =

0 1/1

1/2

1/K

2/1

2/2

2/K

3/1

3/2

3/Kλλ

λλ

λλλ

µ1µ1µ1

µK−1µK−1µK−1

µKµKµKµK

Figure 1: CTMC of a M/HypoK/1 queue with K
exponential stages.

µK = µ then the service time distribution is modelled by
an Erlang random variable with K stages and rate µ/K,
i.e., the system becomes a M/EK/1. It is well-know that
this class of queueing systems has an underlying QBD pro-
cess [14] that may be conveniently studied by the Matrix
Geometric technique described in Section 2.1. Specifically,
the structures of the matrices are the following (consult Fig-
ure 1):

B00 = −λ
(B01)1j = [j = 1]λ, 1 ≤ j ≤ K
(B10)i1 = ([i = K]µK), 1 ≤ i ≤ K
(A1)ij = −[i = j](λ+ µi) + [j = i+ 1]µi, 1 ≤ i, j ≤ K
(A0)ij = [i = K][j = 1]µK , 1 ≤ i, j ≤ K
(A2)ij = [i = j]λ, 1 ≤ i, j ≤ K

where (M)ij denotes the element in row i and column j
of matrix M and the square brackets denote the Iverson

operator [5] applied to proposition P :

[P ] =

{

1 if P

0 else.
(Iverson brackets)

For the M/EK/1 queue, closed expression of the inverse of
A1 is available, hence the iterative method for the compu-
tation of Neuts’ matrix R may be simplified. The cases of
queues with initial perturbations (e.g., with state-dependent
arrival rates that yield a non-homogeneous Poisson process
when the queue is in its initial states) differ only for the
definition of matrices B01, B10, B00.

2.3 Direct computation of matrix R
Queueing theorists have traditionally directed many efforts
in the analysis of M/HypoK/1 queues. A great improve-
ment in the analysis methods of this class of queues is given
in [13], where an explicit matrix-formula for the computa-
tion of matrix R is given. In this section we briefly review
this result as stated in [9, Th. 8.5.1]. Let us consider a
recurrent QBD process with the block-regular structure (1)
and suppose that block A0 has rank 1. We can express
A0 as the product of (row) vectors c and r: A0 = c⊤r.
For M/HypoK/1 queues we have c = (0, . . . , 0, µK) and
r = (1, 0, . . . , 0) (both vectors have size K). In this case,
matrix R is given by:

R = −A2(A1 +A21
⊤r)−1. (8)

Remark 1. Note that in [9, Th. 8.5.1] the authors con-
sider discrete-time QBD processes, whereas we consider con-
tinuous-time ones. Moreover, the theorem provides a char-
acterization of the G matrix from which equation (8) can be
easily derived.

3. SYMBOLIC SOLUTION OF M/HYPO/1

QUEUES
In this section we define matrixR and prove that it is exactly
the matrix obtained by the iterative algorithm based on re-
cursive Equation (6) and that given by matrix-equation (8).

Definition 1 gives the symbolic expression for matrix R. Ta-
ble 1 provides some example of matrices obtained by the
application of such a definition.

Definition 1. Let R = (rij), 1 ≤ i, j ≤ K, be the matrix
defined as follows:

rij =
λ

µj

i−1
∏

k=j+1

(

1 +
λ

µk

)

·







K
∏

k=max{i,j+1}

(

1 +
λ

µk

)

− [i > j]







.

Table 1 shows the structure of matrix R for K = 2, 3, 4.
In what follows, we prove that matrix R yields a set of
important properties. Specifically, Lemma 1 introduces the
expression for the inverse of matrix R, and from this its
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Table 1: Examples of matrix R for M/HypoK/1 queues.

• K = 2

R =

(

λ(λ+µ2)
µ1µ2

λ
µ2

λ2

µ1µ2

λ
µ2

)

(9)

• K = 3

R =







λ(λ+µ2)(λ+µ3)
µ1µ2µ3

λ(λ+µ3)
µ2µ3

λ
µ3

λ2(λ+µ2+µ3)
µ1µ2µ3

λ(λ+µ3)
µ2µ3

λ
µ3

λ2(λ+µ2)
µ1µ2µ3

λ2

µ2µ3

λ
µ3






(10)

• K = 4

R =













λ(λ+µ2)(λ+µ3)(λ+µ4)
µ1µ2µ3µ4

λ(λ+µ3)(λ+µ4)
µ2µ3µ4

λ(λ+µ4)
µ3µ4

λ
µ4

λ(λ3+λ2(µ2+µ3+µ4)+λ(µ2µ3+µ3µ4+µ2µ4))
µ1µ2µ3µ4

λ(λ+µ3)(λ+µ4)
µ2µ3µ4

λ(λ+µ4)
µ3µ4

λ
µ4

λ(λ+µ2)(λ+µ3+µ4)
µ1µ2µ3µ4

λ2(λ+µ3+µ4)
µ2µ3µ4

λ(λ+µ4)
µ3µ4

λ
µ4

λ2(λ+µ2)(λ+µ3)
µ1µ2µ3µ4

λ2(λ+µ3)
µ2µ3µ4

λ2

µ3µ4

λ
µ4













(11)

determinant may be easily derived as done in Corollary 1.
The former Lemma, although interesting in itself, plays a
pivotal role in the proof of the main result of the paper,
Theorem 1 (and also Theorem 2).

Lemma 1 (Inverse of R). Matrix R−1 = (qij), where
1 ≤ i, j ≤ K, which is defined as:

qij = −[j = 1] + [i = j]
(

1 +
µi

λ

)

− [j = i+ 1]
µi

λ

is the inverse of R.

Proof. First, we prove that:

rij − r(i+1)j =
λ

µi
([i = j] + r1j − rij) . (12)

The expression of r1j − rij in the right-hand-side is:

r1j − rij =
λ

µj

K
∏

k=j+1

(

1 +
λ

µk

)

− λ

µj

i−1
∏

k=j+1

(

1 +
λ

µk

)

·







K
∏

k=max{i,j+1}

(

1 +
λ

µk

)

− [i > j]







=
λ

µj

i−1
∏

k=j+1

(

1 +
λ

µk

)

[i > j].

The left-hand-side of Equation (12) can be written as fol-
lows:

rij−r(i+1)j =
λ

µj

i−1
∏

k=j+1

(

1 +
λ

µk

)

{

K
∏

k=i

(

1 +
λ

µk

)

[i > j]

+

K
∏

k=j+1

(

1 +
λ

µk

)

[i ≤ j]−[i > j]−
((

1 +
λ

µi

)

[j < i] + [j ≥ i]

)

·
(

K
∏

k=max{j+1,i+1}

(

1 +
λ

µk

)

− [i ≥ j]

)}

.

By the properties of Iverson brackets, this reduces to:

λ

µj

i−1
∏

k=j+1

(

1 +
λ

µk

)

{

[i > j]

(

K
∏

k=i

(

1 +
λ

µk

)

− 1

−
(

1 +
λ

µi

) K
∏

k=i+1

(

1 +
λ

µk

)

+

(

1 +
λ

µi

)

)

+ [i = j]

}

=
λ

µj

i−1
∏

k=j+1

(

1 +
λ

µk

)(

λ

µi
[i > j] + [i = j]

)

.

After some algebra, we obtain:

λ

µi





λ

µj

i−1
∏

k=j+1

(

1 +
λ

µk

)

[i > j] + [i = j]





=
λ

µi
([i = j] + r1j − rij),

as required to prove Equation (12). In order to conclude the
proof of the Lemma, we show that R−1R=I, where I is the
identity matrix. Let (R−1R)ij , with 1 ≤ i, j ≤ K, denote
the i, j element of R−1R, then we have:

(R−1R)ij =

K
∑

ℓ=1

qiℓrℓj

=
K
∑

ℓ=1

{

− [ℓ = 1] + [i = ℓ]
(

1 +
µi

λ

)

−[ℓ = i+ 1]
µi

λ

}

rℓj

= −r1j +
(

1 +
µi

λ

)

rij −
µi

λ
r(i+1)j

= rij − r1j +
µi

λ

(

rij − r(i+1)j

)

= [i = j] .

From R−1 we may easily derive the determinant of R as
proved by the following corollary:
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Corollary 1 (Determinant of R). The determinant
of R is:

det(R) =
K
∏

k=1

λ

µk
.

Proof. We proceed by finding the determinant of R−1,
which has a simpler form than R. Its inverse will then pro-
vide us with the determinant of R.

Let B = (bij) be the matrix defined as bij = [i ≤ j]. This is
an upper triangular matrix with determinant 1. Then,

(R−1B)ij =
K
∑

ℓ=1

qiℓ[ℓ ≤ j]

= −[j ≥ 1] +
(

1 +
µi

λ

)

[i ≤ j]− µi

λ
[i+ 1 ≤ j]

= −1 +
(

1 +
µi

λ

)

[i ≤ j]− µi

λ
([i ≤ j]− [i = j])

= −1 + [i ≤ j] +
µi

λ
[i = j] = tij .

Note that matrix T = (tij) is a lower triangular matrix with
ith diagonal element given by µi/λ. The determinant of T
is thus simply given by

det(T) = det(R−1B) = det(R−1) =

K
∏

i=1

µi

λ
.

The result follows as

det(R) = det(R−1)−1 = det(T)−1 =
K
∏

i=1

λ

µi
.

The following theorem is fundamental because it shows that
matrix R given by Definition 1 coincides with that obtained
by the iterative computation (6) and by Equation (8). Its
proof relies on showing that matrix R given by Lemma 1 is
identical to the expression in Equation (8).

Theorem 1. The matrix R from Definition 1 is the rate
matrix for M/HypoK/1 queues.

Proof. The result follows from [9, Th. 8.5.1] by showing
that Equation (8) holds when R is defined as in Definition 1.
For simplicity, however, we will equivalently show that R−1,
i.e., the inverse of R from Lemma 1, satisfies

R−1 = −(A1 +A21
⊤r)A−1

2 .

This can be straightforwardly seen by writing it in terms of
the Iverson bracket notation. Indeed,

(R−1)ij =
1

λ
([i = j](λ+ µi)

−[j = i+ 1]µi − λ[j = 1]) = qij .

Additionally, in appendix we provide an alternative and self-
contained proof showing that the expression of R given by
Definition 1 satisfies Equation (5) and is that with spectral
radius strictly lower than 1.

4. APPLICATION TO PRODUCT-FORM
In this section, we apply the results on M/HypoK/1 queues
to carry out an approximate product-form analysis. It is
well-known thatM/HypoK/1 queues are not quasi-reversible
[7] when K > 1 and, hence, an exact product-form solution
is not known in literature. However, as observed in [4], we
may consider a modified version ofM/HypoK/1 queues that
yields the quasi-reversibility property. In [4] the authors con-
sider a tandem of a M/E2/1 queue with a ·/M/1 queue (see
Figure 2) and show that providing a product-form approxi-
mation of such a system allows for the derivation of both av-
erage and detailed performance indices (specifically, the pa-
per presents an efficient novel technique for the computation
of the response time distribution). In this example we show

Arrivals

Two stages

Erlang service time

distribution

Exponential

service time

distribution

QUEUE 1 QUEUE 2

Figure 2: Tandem of a queue with Erlang service
time distribution (Queue 1) and a queue with expo-
nential service time distribution (Queue 2).

how it is possible to extend the product-form approximation
approach of [4] to queues with Hypo-exponential service time
distributions with arbitrary number of stages. Consider the
underlying stochastic process of a M/HypoK/1 queue as
depicted by Figure 3 in which the dotted arcs represent the
perturbations introduced to obtain a product-form model
from the original one. The goal of the analysis consists in
finding the correct rates of λ1, . . . , λK (where K is the num-
ber of stages of the hypo-exponential queue), ν, µ11, . . . ,
µ1K , σ and σ0 in order to have that the reversed rates of
the transitions corresponding to customer departures (those
with rates µK) are independent of the departure/arriving
state (i.e., they are constant). Let d be this reversed rate.
The model depicted by Figure 3 satisfies the structural and
rate conditions of the Reversed Compound Agent Theorem
(RCAT) [3] and, hence, its composition with other models
yielding the same properties has product-form stationary
distribution.

Remark 2. Note that, according to the methodology de-
veloped in [4] the arrival events at Queue 2 are synchronised
with the transitions with rate µk and with the self-loops with
rate σ. In this paper we have also added a self-loop in state 0
with rate σ0 and this implies that this state has two incoming
transitions which synchronise with the arrivals at the second
queue. It has been proved in [11] that in this cases the sum
of the reversed rates coming into state 0 must be equal to d.
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0 1/1

1/2

1/K

2/1

2/2

2/K

3/1

3/2

3/K

σ0

λ1

λ2

λK

σσσ

σσσ

ν

λλ

λλ

λλ

µ1µ1

µK−1µK−1

µKµKµKµK

µ11

µ1K

Figure 3: Perturbations on M/HypoK/1 queues in
order to yield product-form conditions stated by
RCAT.

Let us consider the general problem of finding the conditions
on the free rates λ1, . . . , λK , ν, µ11, . . . , µ1K in order
to have a state-independent reversed rate for the departure
transitions. By [7, 3], the reversed rate of the departure
transition from state (n+ 1,K) to state (n, 1) is:

d(n) =
π(n+1)K

πn1
µK , n ≥ 0,

where π01 ≡ π0. We require that:

d(n) = d for all n > 0 ∧ d(0) + σ0 = d . (13)

By Theorem 2 we have πn+1 = πnR and, since R is non-
singular we straightforwardly have πn = πn+1R

−1. Hence:

d = µK
π(n+1)K

π(n+1)1
µ1

λ
−
∑K

j=2 π(n+1)j

= µK
αK(n+ 1)

µ1

λ
−
∑K

j=2 αj(n+ 1)
, n > 0, (14)

where αj(n) = πnj/πn1. A sufficient condition for Equa-
tion (13) to hold is that for all n > 0:

αj(n) = αj . (15)

Therefore, we can write:

αj =
πnj

πn1
=

−π(n+1)(j−1)
µj−1

λ
+ π(n+1)j

(

1 +
µj

λ

)

π(n+1)1
µ1

λ
−
∑K

i=2 π(n+1)i

for n > 0 and j > 1. Dividing both numerator and denomi-
nator by π(n+1),1, after some algebra we obtain the following
system of equations on αj :














α1 = 1

λα2
j + αj

(

λ
∑K

i=1
i 6=j

αi + µj − µ1

)

−αj−1µj−1 = 0, 2 ≤ j ≤ K .

(16)

This system of quadratic equations can be easily solved nu-
merically as stated by Lemma 2 or, in case of few stages
(and, hence, unknowns), even symbolically via the compu-
tation of the Gröbner basis [2].

Lemma 2. Let t0 = µ1 − minj=1...K µi and consider the
following single-variate function

f(t) = −t+ λ
K
∑

i=1

i
∏

j=2

µj−1

t+ µj − µ1
. (17)

The following propositions hold:

1. f(t) is continuous and monotonically decreasing in the
interval (t0,+∞);

2. f(t) has a unique zero t∗ in the same interval;

3. the unique feasible solution of System (16), i.e., such
that αj > 0 for all j = 1 . . .K, can be computed
through the recursive formula:

αj =

{

αj−1
µj−1

t∗+µj−µ1
2 ≤ j ≤ K ,

1 j = 1 .
(18)

Proof. We start by proving the first proposition. Func-
tion f(t) is trivially continuous in (t0,+∞) since all discon-
tinuities are located at values of t ≤ t0. Moreover, it is
monotonically decreasing because

f ′(t) = −
[

1 + λ
K
∑

i=1

i
∑

ℓ=2

1

t+ µℓ − µ1

i
∏

j=2

µj−1

t+ µj − µ1

]

< 0 ,

for t > t0.

The second proposition follows from the observation that
lim

t→t+
0

f(t) = +∞ and limt→+∞ f(t) = −∞. Indeed, this

fact combined with the first proposition implies the existence
of a unique zero t∗ in the interval (t0,+∞).

Finally, we prove the third proposition. Let us write:

t = λ
K
∑

i=1

αi . (19)

By considering this relation, we can derive from System (16)
the following recursive formula for the α’s:

αj =

{

αj−1
µj−1

t+µj−µ1
2 ≤ j ≤ K ,

1 j = 1 .
(20)

By unfolding the recursion we obtain

αj =

j
∏

i=2

µi−1

t+ µi − µ1
,

and by substituting this into (19) we end up with the fol-
lowing equation in t:

−t+ λ
K
∑

i=1

i
∏

j=2

µj−1

t+ µj − µ1
= 0 .

Note that f(t) in (17) is the left-hand side of this equation
and that any zero τ of it allows us to recover a solution of
System (16) by applying (20) (with t replaced by τ). How-
ever, in order to have a feasible solution, i.e., which guaran-
tees to have positive α’s, a necessary and sufficient condition
for the zero is to lie in the interval (t0,+∞). The proof now
follows from the first and second propositions.
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Remark 3. Notice that the desirable properties of func-
tion f(t) proved in Lemma 2 allow for an efficient numerical
computation of the solution of System (16). For instance,
one may employ section search algorithms over the interval
(t0,+∞) with a convergence guarantee to the correct solu-
tion.

Note that, once the values of α1, . . . , αK are known, one
may easily compute the reversed rate d by Equation (14):

d =
λαKµK

µ1 − λ
∑K

j=2 αj

. (21)

We may also express the steady-state probabilities for n ≥ 2
as stated by the following Lemma.

Lemma 3. The steady-state probabilities for the perturbed
M/HypoK/1 queue satisfying Condition (15) -and, hence,
also Condition (14)- for n ≥ 2 are given by the following
expression:

πnk = αk

(

λ

µ1 − λ
∑K

j=2 αj

)n−1

π11.

Proof. We proceed by induction on n considering as the
base case n = 1. We have:

π1k = αkπ11.

Note that αk(1) = π1k/π11 and by hypothesis αk(1) = αk.
Let us consider n > 1, we can write:

πnk =
πnk

πn1

πn1

πnK

πnK

π(n−1)1

π(n−1)1

π(n−1)K

π(n−1)K

=
αk

αK

d

αKµK
π(n−1)K

Now, by applying the inductive hypotheses, we obtain:

πnk =
αk

αK

d

αKµK
αK

(

λ

µ1 − λ
∑K

j=2 αj

)n−2

π11

= αk

(

λ

µ1 − λ
∑K

j=2 αj

)n−1

π11,

as required.

In order to find the correct parametrisation of the model,
i.e., a set of values for λ1, . . . , λK , µ11, . . . , µ1K and ν that
satisfies Condition (13), we must solve the system of equa-
tions (3) under its normalising constraint combined with the
equations π1k = αkπ11 for k = 2, . . . ,K. Note that the num-
ber of parameters allows one to choose among different ap-
proximated models. In order to satisfy RCAT conditions we
must have σ = d and σ0 = d−µKπ1K/π0 since the reversed
rate of a self-loop is identical to its forward rate [3].

4.1 A numerical example
We consider a queue under homogeneous arrivals generated
according to a Poisson process and independent service time
distributed according to a hypo-exponential random vari-
able with 5 stages (numerical values are given in Table 2).

Parameter Value
λ 0.33333
µ1 2.0000
µ2 2.5000
µ3 1.0000
µ4 6.0000
µ5 3.0000

Table 2: Numerical instances of the queue parame-
ters studies in Section 4.1.

System of polynomial equations (16) can be easily solved nu-
merically, e.g., by applying the result in Lemma 2. Figure
4 shows the plot of function f(t) for this numerical exam-
ple. As one can see there is a zero after the last asymptote,
which is indeed unique as stated by the lemma. From this
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)
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Plotting of function f(t) for the numerical example with K = 5

f(t)

Figure 4: Plotting of function f(t) as defined by
Equation (17) for the numerical example of Section
4.1.

we obtain the unique feasible solution shown in Table 3.

Parameter Value
α1 1.0000
α2 0.84624
α3 2.4503
α4 0.41791
α5 0.87569

Table 3: Numerical solution of System (16) for the
example of Section 4.1.

We can now compute the reversed rate d by Equation (14),
which turns out to be 1.86339. Now, we find the definition
of the initial perturbation. We set λ2 = . . . = λK = ν = 0.
We also add as a constraint π0 = 1−λ(µ−1

1 + . . .+µ−1
5 ), i.e.,

in the modified model satisfying RCAT, the probability of
observing the empty queue must not be changed. Therefore,
by solving linear system (3) -combined with the normalizing
condition- we obtain the set of parameters of Table 4, and
the steady-state probabilities π1 of Table 5.

Figure 5 shows a comparison between the steady-state prob-
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Parameter Value
µ11 4.1571
µ12 4.5791
µ13 1.2481
µ14 6.9847
λ1 0.54643
σ0 1.3170

Table 4: Parameters of the product-form model.

Component Stationary probability
π11 0.041600
π12 0.035204
π13 0.10193
π14 0.017385
π15 0.036428

Table 5: Steady-state probabilities π1 of the modi-
fied model.

ability of observing j customers (πj =
∑K

k=1 πjk, j > 0) in
the M/HypoK/1 queue and its product-form approxima-
tion. As one can see the product-form model obtained by
applying the described approximation technique is very tight
to the corresponding non-approximated M/HypoK/1 queue
in terms of the distribution of the total number of customers.
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0.2

0.25

1 2 3 4 5 6 7 8 9 10

π
j

Number of customers j

Aggregated steady-state probabilities of the queue
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Figure 5: Comparison between the aggregated (for
total number of customers) steady-state probabili-
ties of the M/HypoK/1 queue and its product-form
approximation.

4.2 Application to the case of K = 2 stages
In our framework the case of K = 2 stages becomes trivial
because the system of polynomial equations (16) reduces to
one quadratic equation:

λα2
2 + α2(λ+ µ2 − µ1)− µ1 = 0

whose unique positive solution is:

α2 =
−(λ+ µ2 − µ1) +

√
∆

2λ
,

where ∆ = (λ + µ2 − µ1)
2 + 4λµ1. We may also derive the

expression for the reversed rate of the departure transitions
by applying Equation (21), that is:

d =
1

2

(

λ+ µ1 − µ2 +
√
∆
)

.

Notice that the result is coherent with that provided in [4]
under the assumption µ1 = µ2 = µ 1. Nevertheless, we can
consider this result as a generalisation of the approximation
presented in [4] because it holds even if µ2 6= µ1 (notice
also that our approach does not require the solution of a
third degree equation as in the previous one). Also in this
case we aim to solve the boundary equation for the initial
states in order to find a correct parametrisation of the initial
perturbation. We impose the constraint that the steady-
state probability of the empty queue in the original and in
the approximated model must be the same, and this gives
the following solution:

λ1 =
λ(µ1 + µ2)(λ− µ1 − µ2 +

√
∆)

2(λ(µ1 + µ2)− µ1µ2)

µ11 = (λ+ µ2)α2

σ0 =
µ1

(

λ(2µ1 + µ2) + µ2

(

−µ1 + µ2 −
√
∆
))

2(λ(µ1 + µ2)− µ1µ2)

π0 = 1− λ

(

1

µ1
+

1

µ2

)

π11 = π0λ(µ1 + µ2)

(

λ− µ1 − µ2 +
√
∆
)

4µ1µ2(λ(µ1 + µ2)− µ1µ2)

·
(

λ− µ1 + µ2 +
√
∆
)

π12 = π0λ(µ1 + µ2)
λ− µ1 − µ2 +

√
∆

2µ2(λ(µ1 + µ2)− µ1µ2)

Figure 6, 7, 8 show a comparison among the aggregate steady-
state probabilities (i.e., the probability of observing n cus-
tomers in the queue despite to the stage of service) in the
original model, in the approximation proposed in this paper,
and in that proposed in [4] under different scenarios. The
figures suggest that the perturbation method proposed here
for M/HypoK/1 queues provides a tighter approximation
than the previous one presented in [4].

4.3 Final considerations
It should be clear that the symbolical derivation of the product-
form approximation may result computational expensive as
the number of stages of service (and, hence, the model pa-
rameters) grows. We have experimented that the case of
M/E3/1 queue is still fully tractable symbolically. For this
case System (16) becomes:







α1 = 1
λα2

2 + λ(α1 + α3)α2 − µ = 0
λα2

3 + λ(α1 + α2)α3 − α2µ = 0

On the other hand, a fully numerical approach results very
efficient. It is worthwhile noting that the method we pre-
sented allows the modeller to specify the values only for some

1In [4] the authors derive the expression for κ = π12/π0 =

(λ+ (λ2 + 4λµ)1/2)/(2µ). Note that κµ is the reversed rate
of the job-completion transition.
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Figure 6: Comparison of aggregated steady-state
probabilities of the M/E2/1 queue with its product-
form approximations. Parameters are λ = 0.3 and
µ = 2.

of the queue parameters and then derive the approximations.
This may be useful in case of sensitivity analysis.

5. CONCLUSION
In this paper we have given the symbolic expression for ma-
trix R which plays a pivotal role in matrix-analytic methods
for the analysis of M/HypoK/1 queues. In literature, the
analysis of this class of queueing systems relies on the appli-
cation of the Matrix Geometric method with the opportune
iterative algorithm [12, 10, 15] or on a matrix inversion as
proposed in [13, 9]. Although both these methods are effi-
cient and present good numerical properties, the explicit ex-
pression for rate matrix R may be useful in proofs in which
the symbolic expression for steady-state probabilities are re-
quired. As an example we have shown how this theoretical
result may be applied to the definition of product-form ap-
proximations of M/HypoK/1 queues. Specifically, we have
generalised the results proposed in [4, 1] and shown how the
exact solution for the parameter values may be efficiently
derived without the need of non-linear optimisation tech-
niques.
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APPENDIX
In this part we show an alternative proof of Thorem 1 that
relies on the analysis of a M/HypoK/1 queue with homo-
geneous arrival process.
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probabilities of the M/E2/1 queue with its product-
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Theorem 2. The steady-state probability distribution of
a stable M/HypoK/1 queue is:















π0 = 1−
∑K

k=1
λ
µk

π1k = π0
λ
µk

∏K
z=k+1

(

1 + λ
µz

)

k = 1, . . . ,K

πn+1 = πnR, n ≥ 1

, (22)

where R is the matrix given by Definition 1.

Proof. The proof is structured as follows: first, we derive
the vector of the un-normalised steady-state probabilities π′

assuming π′
0 = 1 by solving the system of GBEs. Then, we

compute the normalising constant.

Let us prove that matrix R is a solution of Equation (5).
This implies that the GBEs for states (n, k) with n > 1 and
1 ≤ k ≤ K are satisfied. Since matrix R has an inverse
by Lemma 1, Equation (5) can be conveniently rewritten as
follows:

R−1A2 +A1 +RA0 = 0, (23)

where matrices Ai, i = 0, 1, 2, have been defined in Sec-
tion 2.2. We observe that R−1A2 = λR−1 and that the
elements of matrix RA0 are:

(RA0)ij = [j = 1]rinµn = [j = 1]λ.

Hence, element zij of the matrix defined by the left-hand
side of Equation (23) is:

zij = λ
(

−[j = 1] + [i = j]
(

1 +
µi

λ

)

− [j = i+ 1]
µi

λ

)

−[i = j](λ+ µi) + [j = i+ 1]µi + [j = 1]λ

= −[j = 1]λ+ [i = j](λ+ µi)− [j = i+ 1]µi

−[i = j](λ+ µi) + [j = i+ 1]µi + [j = 1]λ = 0.

The GBEs for states 0 and (1, k) with 1 ≤ k ≤ K can be
written as in Equation (3) and we assume π′

0 = 1. It is easy
to prove that:

(A1 +RA0)ij = [j = 1]λ− [i = j](λ+ µi) + [j = i+ 1]µi ,

which leads to the following system of equations:










−λ+ π′
1KµK = 0

−µ1π
′
11 + λ

(

∑K
j=2 π

′
1j

)

+ λ = 0

µk−1π
′
1(k−1) − (λ+ µk)π

′
1k = 0 2 ≤ k ≤ K .

(24)
The first equation of System (24) straightforwardly gives
π′
1K = λ/µK . The last K − 1 ones can be recursively solved

obtaining the following expression for π′
1k:

π′
1k =

λ

µk

K
∏

z=k+1

(

1 +
λ

µz

)

. (25)

The last step consists in showing that the expression for
π′
1k given by Equation (25) satisfies the second equation of

System (24) that can be simplified to:

1 +
K
∑

k=2

λ

µk

K
∏

z=k+1

(

1 +
λ

µz

)

=
K
∏

z=2

(

1 +
λ

µz

)

.

We proceed by induction on K. The base case, given for
K = 1, is trivial. Let us assume K = t+ 1, with t ≥ 1. The
left-hand side can be rewritten as:

1 +
t
∑

k=2

λ

µk

t+1
∏

z=k+1

(

1 +
λ

µz

)

+
λ

µt+1

=

(

1 +
λ

µt+1

)

{

1 +

t
∑

k=2

λ

µk

t
∏

z=k+1

(

1 +
λ

µz

)

}

=

(

1 +
λ

µt+1

) t
∏

z=2

(

1 +
λ

µz

)

=

t+1
∏

z=2

(

1 +
λ

µz

)

,

where the inductive hypothesis has been applied.

Note that as a consequence of Theorem 2 we know that ma-
trix R has spectral radius strictly less than one (under sta-
bility assumption) and this implies that it is also the unique
desired solution of matrix-equation (5) and, hence, Theo-
rem 1 is proved.
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