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ABSTRACT
We introduce the Hybrid Automata Stochastic Logic (HASL), a
new temporal logic formalism for the verification of discrete event
stochastic processes (DESP). HASL employs Linear Hybrid Au-
tomata (LHA) as machineries to select prefixes of relevant exe-
cution paths of a DESP. The advantage with LHA is that rather
elaborate information can be collected on-the-fly during path se-
lection, providing the user with a powerful means to express so-
phisticated measures. A formula of HASL consists of an LHA
and an expression Z referring to moments of path random vari-
ables. A simulation-based statistical engine is employed to obtain a
confidence-interval estimate of the expected value of Z. In essence
HASL provides a unifying verification framework where temporal
reasoning is naturally blended with elaborate reward-based analy-
sis. We illustrate the HASL approach by means of some examples
and a discussion about its expressivity. We also provide empirical
evidence obtained through COSMOS, a prototype software tool for
HASL verification.

1. INTRODUCTION
From model checking to quantitative model checking. Since its
introduction [EC80], model checking has quickly become a promi-
nent technique for verification of discrete-event systems. Its suc-
cess is mainly due to three factors: (1) the ability to express spe-
cific properties by formulas of an appropriate logic, (2) the firm
mathematical foundations based on automata theory and (3) the
simplicity of the verification algorithms which has led to the de-
velopment of numerous tools. While the study of systems requires
both functional, performance and dependability analysis, originally
the techniques associated with these kinds of analysis were differ-
ent. However, in the mid nineties, classical temporal logics were
adapted to express properties of Markov chains and a decision pro-
cedure has been designed based on transient analysis of Markov
chains [BHHK03].
∗partially supported by French research project ANR-06-SETI-
002.

From numerical model checking to statistical model checking.
The numerical techniques for quantitative model checking are rather
efficient when a memoryless property can be exhibited (or recov-
ered by a finite-state memory), limiting the combinatory explosion
due to the necessity to keep track of the sampling of distributions.
Unfortunately both the formula associated with an elaborated prop-
erty and the stochastic process associated with a real application
make rare the possibility of such pattern. In these cases, statis-
tical model checking [YS06] is thus an alternative to numerical
techniques. Roughly speaking, statistical model checking consists
in sampling executions of the system (possibly synchronized with
some automata corresponding to the formula to be checked) and
comparing the ratio of successful executions with a threshold speci-
fied by the formula. The advantage of the statistical model checking
is the small memory requirement while its drawback is its inability
to generate samples for execution paths of potentially unbounded
length.

Limitations of existing logics. However, a topic that has not been
investigated is the suitability of the temporal logic to express (non
necessarily boolean) quantities defined by path operators (mini-
mum, integration, etc.) applied on instantaneous indicators. Such
quantities naturally occur in standard performance evaluation. For
instance, the average length of a waiting queue during a busy pe-
riod or the mean waiting time of a client are typical measures that
cannot be expressed by the quantitative logics based on the concept
of successful execution probability like CSL [ASSB00].

Our contribution. We introduce a new formalism called Hybrid
Automaton Stochastic Logic (HASL) which provides a unified frame-
work both for model checking and for performance and depend-
ability evaluation. A HASL formula evaluates to a real number
which is defined by the expectation of a path random variable con-
ditioned by the success of the path. The concept of conditional ex-
pectation significantly enlarges the expressive power of the logic.
The proposed temporal logic is indeed a quantitative logic permit-
ting both to check if probability thresholds are met and to evaluate
complex performability measures. A formula of HASL consists of
an automaton and an expression. The automaton is a Linear Hy-
brid Automaton (LHA), i.e. an automaton with clocks, called in
this context data variables, where the dynamic of each variable
(i.e. the variable’s evolution) depends on the model states. This
automaton will synchronize with the DESP, precisely selecting ac-
cepting paths while maintaining detailed information on the path
through data variables. The expression is based on moments of path
random variables associated to path executions. These variables
are obtained by operators like time integration on data variables.
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HASL extends the expressiveness of automaton-based CSL like
formalisms as CSLTA [DHS09] and its extension to multi-clocks
[CHKM09] with state and action rewards and sophisticated update
functions especially useful for performance and dependability eval-
uation. On the other hand it extends reward enriched versions of
CSL, (CSRL [BHHK00]) with a more precise selection of path exe-
cutions, and the possibility to consider multiple rewards. Therefore
HASL makes it possible to consider not only standard performabil-
ity measures but also complex ones in a generic manner.

A statistical verification tool COSMOS has been developed for this
logic. We have chosen generalized stochastic Petri nets (GSPN)
as high level formalism for the description of the discrete event
stochastic process since (1) it allows a flexible modeling w.r.t. the
policies defining the process (choice, service and memory) and (2)
due to the locality of net transitions and the simplicity of the firing
rule it leads to efficient path generation.

Organization. In section 2 we describe the class of stochastic mod-
els we refer to (i.e. DESP). In section 3 we formally introduce the
HASL logic and we provide an overview of the related work, where
the expressiveness of HASL is compared with that of existing log-
ics. In section 4, we recall the basic principles of statistical model
checking, we detail COSMOS, a prototype software tool for HASL
verification and report about experimental evidence. Finally, in sec-
tion 5, we conclude and give some perspectives.

2. DESP
We describe the class of stochastic models that are suitable for
HASL verification, namely Discrete Event Stochastic Processes
(DESP). Such class includes Markov chain models, the (only) type
of stochastic models targeted by existing stochastic logics. The def-
inition of DESP we introduce resembles that of generalized semi-
Markov processes [Gly83] as well as that given in [ACD91].

Syntax. DESPs are stochastic processes consisting of a (possibly
infinite) set of states and whose dynamic is triggered by a set of
discrete events. We do not consider any restriction on the nature
of the distribution associated with events, in the sequel dist(A)
denotes the set of distributions whose support is A.

DEFINITION 1. A DESP is a tuple
D = 〈S, π0, E, Ind, enabled, target, delay, choice〉 where:

• S is a set of states,

• π0 ∈ dist(S) is the initial distribution on states,

• E is a set of events,

• Ind is a set of functions from S to R called state indicators
(including the constant functions),

• enabled : S → 2E are the enabled events in each state with
for all s ∈ S, enabled(S) 6= ∅.

• target : S×E → S is a partial function describing state
changes through events defined for pairs (s, e) such that s ∈
S and e ∈ enabled(s).

• delay : S ×E → dist(R+) is a partial function defined for
pairs (s, e) such that s ∈ S and e ∈ enabled(s).

• choice : S × 2E → dist(E) is a partial function defined
for pairs (s, E′) such that s ∈ S and E′ ⊆ enabled(s) and
such that the possible outcomes of the corresponding distri-
bution are restricted to e ∈ E′.

Before giving the semantics of a DESP, we informally describe its
items. Given a state s, enabled(s) is the set of events enabled in
s. For an event e ∈ enabled(s), target(s, e) denotes the target
state reached from s on occurrence of e and delay(s, e) is the dis-
tribution of the delay between the enabling of e and its possible
occurrence. Furthermore if we denote E′ ⊆ enabled(s) the set of
events with same earliest delay in some configuration of the process
with state s, choice(s, E′) describes how the conflict is randomly
resolved: for all e′∈E′, choice(s, E′)(e′) is the probability that e′

will be selected among E′. We define the subset Prop ⊆ Ind of
state propositions taking values in {0, 1}. The sets Ind and Prop
will be used in the sequel to characterize the information on the
DESP known by the LHA of a formula. In fact the LHA does not
have direct access to the current state of the DESP but only through
the values of the state indicators and state propositions.

Semantics. The following paragraphs give an intuition of the DESP
semantics (see [BDD+10] for the formal version). In order to de-
fine the semantics of this class of DESPs, we consider the follow-
ing policies: choice is driven by the race policy (i.e. the event with
the shortest delay occurs first), the service policy is single server
(at most one instance per event may be scheduled) and the memory
policy is the enabled memory one (i.e. a scheduled event remains so
until executed or until it becomes disabled). Other policies could
have been selected (resampling memory, age memory, etc.). We
have stuck to the most usual policies for the sake of simplicity.

A timed execution of a DESP is an infinite sequence σ = s0
e0,τ0−−−→

s1
e1,τ1−−−→ · · · where for any i, si ∈ S is the (i + 1)th state of

the sequence, ei ∈ E is the event which corresponds to the state
change from si to si+1 and τi ∈ R≥0 is the occurrence time of
event ei.

A configuration of a DESP is described as a triple (s,τ ,sched) with
s being the current state, τ ∈R+ the current time and sched : E →
R+ ∪{+∞} being the function that describes the occurrence time
of each scheduled event (+∞ if the event is not yet scheduled).
The semantics of DESP can be described as follows: the initial
configuration of a DESP is (s0 ,0,sched0), with sched0(e)=+∞,
∀ e∈E and s0 chosen according to the initial distribution π0. From
a current configuration (s, τ, sched), the execution of a DESP is a
succession of steps where each step consists of:

• For all e∈enabled(s) such that sched(e)=+∞ generate δ,
a sample from distribution delay(s, e) and set sched(e) :=
τ + δ.

• Determine the set E′ = {e′ ∈ E | ∀e ∈ E, sched(e′) ≤
sched(e)} of enabled events with minimal schedule.

• Randomly choose in E′ the next event e from distribution
choice(s, E′).

• Execute event e which updates the current configuration of
the DESP as follows: s := target(s, e), τ := sched(e),
sched(e) :=+∞ and sched(e′):=+∞ for all e′ /∈enabled(s).

Note that because of their definition the evolution of a DESP is
naturally suitable for discrete event simulation. Furthermore ob-
serve that several higher-level formalisms commonly used for rep-
resenting Markov chain models (e.g. Stochastic Petri Nets and/or
Stochastic Process Algebras), can straightforwardly be adapted for
representation of DESPs. It suffices that the original formalisms
are provided with formal means to represent the type of delay dis-
tribution of each transition/action (function delay of Definition 1)
as well as means to encode the probabilistic choice between con-
current events (i.e. function choice of Definition 1).
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In the following we describe an example of DESP expressed in
terms of a Generalized Stochastic Petri Net (GSPN). Such model
will be used in the remainder of the paper: in Section 3, for de-
scribing, through a couple of LHA examples, the intuition behind
Hybrid Automata based verification; in Section 4 for discussing ex-
perimental evidence referred to a case study. Before describing the
running example, we informally outline the basis of GSPN mod-
eling (for a formal account we refer the reader to [AMBC+95]),
pointing out the differences between “original" GSPNs and GSPNs
for representing DESPs (which we refer to as GSPN-DESP).

GSPN models. A GSPN model is a bi-partite graph consisting of
two classes of nodes, places and transitions. Places may contain
tokens (representing the state of the modeled system) while tran-
sitions indicate how tokens “flow” within the net (encoding the
model dynamics). The state of a GSPN consists of a marking in-
dicating the distribution of tokens throughout the places (i.e. how
many tokens each place contains). Roughly speaking a transition
is enabled whenever all of its input places contains a number of
tokens greater than or equal to the multiplicity of the correspond-
ing (input) arc. An enabled transition may fire consuming tokens
(in a number indicated by the multiplicity of the corresponding in-
put arcs) from all of its input places and producing tokens (in a
number indicated by the multiplicity of the corresponding output
arcs) in all of its output places. Transitions can be either timed (de-
noted by empty bars) or immediate (denoted by filled-in bars, see
Figure 1). Generally speaking transitions are characterized by: (1)
a distribution which randomly determines the delay before firing
it; (2) a priority which deterministically selects among the tran-
sitions scheduled the soonest, the one to be fired; (3) a weight,
that is used in the random choice between transitions scheduled the
soonest with the same highest priority. With the GSPN formal-
ism [AMBC+95] the delay of timed transitions is assumed expo-
nentially distributed, whereas with GSPN-DESP it can be given by
any distribution. Thus whether a GSPN timed-transition is charac-
terized simply by its weight t≡w (w∈ R+ indicating an Exp(w)
distributed delay), a GSPN-DESP timed-transition is characterized
by a triple: t≡ (Dist-t,Dist-p, w), where Dist-t indicates the type
of distribution (e.g. Unif), dist-p indicates the parameters of the
distribution (e.g [α, β]) and w ∈ R+ is used to probabilistically
choose between transitions occurring with equal delay1

Arrive1 Exp(λ1)

Request1

(pri1 : w1)Start1

Access1

End1 Unif [α1, β1]

Free

Request2

Arrive2Exp(λ2)

(pri2 : w2) Start2

Access2

End2Unif [α2, β2]

Figure 1: The SPN description of a shared memory system.

Running example. We consider the GSPN model of Figure 1 (in-
spired by [AMBC+95]). It describes the behavior of an open sys-
tem where two classes of clients (namely 1 and 2) compete to
access a shared memory (resource). Class i-clients (i ∈ {1, 2})
enter the system according to a Poisson process with parameters
λi (corresponding to the exponentially distributed timed transition
Arrivei with rate λi). On arrival, clients cumulate in placesRequesti
1a possible condition in case of non-continuous delay distribution

where they wait for the memory to be free (a token in place Free
witnessing that the memory is available). The exclusive access to
the shared memory is regulated either deterministically or proba-
bilistically by the priority (prii) and the weight (wi) of immediate
transitions Start1 and Start2. Thus in presence of a competition
(i.e. one or more tokens in both Request1 and Request2) a class
i process wins the competition with a class j = (i mod 2) + 1
process with probability Pr(wini) = 1 if prii > prij , and with
probability Pr(wini) = wi/(wi +wj) if prii = prij . The oc-
cupation time of the memory by a class i client is assumed to be
uniformly distributed within the interval [αi, βi] (corresponding to
transitions Endi). Thus on on firing of transition Endi the mem-
ory is released and a class i client leaves the system. Observe that
all timed-transitions in this example have continuous distributions,
so weights and priorities are not necessary for them. Table 1 sum-

Timed-transitions Immediate transitions
Arrival End Start Start

(Exponential) (Uniform) priority weight
class-1 Processes λ1 [α1, β1] pri1 w1

class-2 Processes λ2 [α2, β2] pri2 w2

Table 1: parameters of the shared-memory model

marizes the parameters of the GSPN model of Figure 1 that will
be referred to in later sections while presenting experiments per-
formed by the COSMOS tool.

3. HASL
We intuitively describe the syntax and semantics of HASL before
formally defining them in the next subsections. A formula of HASL
consists of two parts:

• The first component of a formula is a hybrid automaton that
synchronizes with an infinite timed execution of the consid-
ered DESP until some final state is reached or the synchro-
nization fails. During this synchronization, some data vari-
ables evolve and also condition the evolution of this synchro-
nization.

• The second component of a formula is an expression whose
operands are mainly data variables and whose operators will
be described formally later in this section. In order to ex-
press path indices, they include path operators such as min
and max value along an execution, value at the end of a path,
integral over time and the average value operator. Condi-
tional expectations are applied to these indices in order to
obtain the value of the formula.

3.1 Synchronized Linear Hybrid Automata
Syntax. The first component of a HASL formula is a restriction
of hybrid automata [ACHH92], namely synchronized Linear Hy-
brid Automata (LHA). LHA extend the Deterministic Timed Au-
tomata (DTA) used to describe properties of Markov chain mod-
els [DHS09, CHKM09]. Simply speaking, LHA are automata whose
set of locations is associated with a n-tuple X of real-valued vari-
ables (called data variables) and whose rate can vary.

In our context, LHA are used to synchronize with DESP paths.
However they can evolve in an autonomous way: thus the symbol
] denotes a pseudo-event that is not included in the event set E of
the DESP associated with these autonomous changes. The values
of the data variables x1, . . . , xn evolve with a linear rate depend-
ing on the location of the automaton and on the current state of the
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DESP. More precisely the function flow associates with each lo-
cation a n-tuple of indicators (one for each variable), and given a
state s of a DESP and a location l the flow of variable xi in (s, l)
is flowi(l)(s) (where flowi(l) is the ith component of flow(l)). Our
model also uses constraints, which describe the conditions for an
edge to be traversed, and updates, which describe the actions taken
on the data variables on traversing an edge. A constraint of an
LHA edge is a boolean combination of inequalities of the formP

1≤i≤n αixi + c ≺ 0 where αi and c are indicators (i.e. in Ind),
≺ stands for either =, <, >, ≤ or ≥. The set of constraints is de-
noted by Const. Given a location and a state, an expression of the
form

P
1≤i≤n αixi + c evolves linearly with time. An inequality

thus gives an interval of time during which the constraint is satis-
fied. We say that a constraint is left closed if, whatever the current
state s of the DESP (defining the values of indicators), the time at
which the constraint is satisfied is a union of left closed intervals.
We denote by lConst the set of left closed constraints that are used
for the “autonomous” edges (i.e. those labelled by ]). An update
is more general than the reset of timed automata. Here each data
variable can be set to a linear function of the variables’ values. An
update U is then a n-tuple of functions u1, ..., un where each uk
is of the form xk =

P
1≤i≤n αixi + c where αi ∈ Ind and c are

indicators. The set of updates is denoted by Up.

DEFINITION 2. A synchronized linear hybrid automaton (LHA)
A = 〈E,L,Λ, Init ,Final , X, flow,→〉 comprises:

• E, a finite alphabet of events;

• L, a finite set of locations;

• Λ : L→ Prop, a location labelling function;

• Init , a subset of L called the initial locations;

• Final , a subset of L called the final locations;

• X = (x1, ...xn) a n-tuple of data variables;

• a function flow : L 7→ Indn which associates to each lo-
cation one indicator for each data variable representing the
evolution rate of the variable in this location. flowi denotes
the projection of flow on its ith component.

• →⊆ L ×
`
(Const× 2E) ] (lConst× {]})

´
× Up × L, a

set of edges, where the notation l
γ,E′,U−−−−→ l′ means that

(l, γ, E′, U, l′) ∈→.

The edges labelled with a set of events in 2E are called synchro-
nized whereas those labelled with ] are called autonomous. Fur-
thermore A fulfills the following conditions.

• Initial determinism: ∀l 6= l′ ∈ Init ,
Λ(l) ∧ Λ(l′)⇔ false 2.

• Determinism on events: ∀E1, E2 ⊆ E s.t . E1 ∩ E2 6= ∅,
∀l, l′, l′′ ∈ L, if l′′

γ,E1,U−−−−→ l and l′′
γ′,E2,U

′
−−−−−−→ l′ are two

distinct transitions, then either Λ(l) ∧ Λ(l′) ⇔ false or
γ ∧ γ′ ⇔ false2.

• Determinism on ]:3 ∀l, l′, l′′ ∈ L, if l′′
γ,],U−−−→ l and

l′′
γ′,],U′−−−−→ l′ are two distinct transitions, then either Λ(l) ∧

Λ(l′)⇔ false or γ ∧ γ′ ⇔ false2.

2These equivalences must hold whatever the interpretation of the
indicators occurring in Λ(l), Λ(l′), γ and γ′.
3Note that our two notions of determinism allow an autonomous
and a synchronised edges to be simultaneously fireable

• No ]-labelled loops: For all sequences

l0
γ0,E0,U0−−−−−−→ l1

γ1,E1,U1−−−−−−→ · · ·
γn−1,En−1,Un−1−−−−−−−−−−−−→ ln such

that l0 = ln, there exists i ≤ n such that Ei 6= ] 4.

Discussion. The motivation for the distinction between two types
of edges in the LHA is that the transitions in the synchronized sys-
tem (DESP + LHA) will be either autonomous, i.e. time-triggered
(or rather variable-triggered) and take place as soon as a constraint
is satisfied, or synchronized i.e. triggered by the DESP and take
place when an event occurs in the DESP. The LHA will thus take
into account the system behavior through synchronized transitions,
but also take its own autonomous transitions in order to evaluate
the desired property. In order to ensure that the first time instant at
which a constraint is satisfied exists, we require for the constraints
on autonomous transitions to be left closed. It should also be said
that the restriction to linear equations in the constraints and to a
linear evolution of data variables can be relaxed, as long as they
are not involved in autonomous transitions. Polynomial evolution
or constraints could easily be allowed for synchronised edges for
which we would just need to evaluate the expression at a given time
instant. Since the best algorithms solving polynomial equations op-
erate in PSPACE [Can88], such an extension for autonomous tran-
sitions cannot be considered for obvious efficiency reasons.

The automata we consider are deterministic: given a path σ of a
DESP, there is exactly one synchronization with the linear hybrid
automaton. This constraint ensures the synchronized system is still
a stochastic process. In the above definition, the first three con-
ditions ensure the uniqueness of the synchronization. At last, the
fourth disables “divergence” of the synchronization, i.e. the possi-
bility of an infinity of consecutive autonomous events without syn-
chronization.

Notations. A valuation ν maps every data variable to a real value.
The value of data variable xi in ν is denoted ν(xi). Let us fix a val-
uation ν and a state s. Given an expression exp =

P
1≤i≤n αixi+

c related to variables and indicators, its interpretation w.r.t. ν and s
is defined by exp(s, ν) =

P
1≤i≤n αi(s)ν(xi) + c(s). Given an

update U = (u1, . . . , un), we denote by U(s, ν) the valuation de-
fined byU(s, ν)(xk) = uk(s, ν) for 1 ≤ k ≤ n. Let γ ≡ exp ≺ 0
be a constraint, we write (s, ν) |= γ if exp(s, ν) ≺ 0. Let ϕ be a
state proposition we write s |= ϕ if ϕ(s) = true.

Semantics. The role of a synchronized LHA is, given an execu-
tion of a corresponding DESP, to first decide whether the execution
is to be accepted or not, and also to maintain data values along
the execution( see [BDD+10] for the formal semantics of the syn-
chronized stochastic process). Here we describe how a timed path
σ = s0

e0,τ0−−−→ s1
e1,τ1−−−→ . . . of a DESP D is synchronized with an

LHA A. First there are two kinds of configurations for a synchro-
nization:

• Non final configurations: (si, l, ν, τ) with l /∈ Final, si |=
Λ(l) where τ (≤ τi) is the current time.

• Final configurations: (si, l, ν, τ) with l ∈ Final, si |= Λ(l)
and τ ≤ τi or the implicit final rejecting configuration ⊥.

Given a non final configuration (si, l, ν, τ), some time elapses until
an autonomous transition or a synchronized transition of A can be
taken. So we describe the effect of a time step 0 ≤ δ ≤ τi − τ on
a configuration: the new configuration is (si, l, ν

′, τ + δ) with for
every 1 ≤ k ≤ n, ν′(xk) = ν(xk) + flowk(l)(si)δ.
4This condition is sufficient to avoid an infinite behavior ofAwith-
out synchronization.
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An autonomous transition l
γ,],U−−−→ l′ is fireable after letting elapse

δ if (si, ν
′) |= γ and si |= Λ(l′). In this case the configuration

potentially reached is (si, l
′, U(si, ν

′), τ + δ). Since we forbid
non determinism, for every potentially fireable autonomous transi-
tion, we determine its earliest firing (which exists since we allow
only left closed constraints) and choose the autonomous transition
that can fire the earliest. Due to the determinism on ] only one
autonomous transition is fireable at a time.

If no autonomous transition is fireable for any δ ∈ [0, τi − τ ],
we fix δ = τi − τ and we consider the synchronized transitions

l
γ,E′,U−−−−→ l′ such that ei ∈ E′, (si, ν

′) |= γ and si+1 |= Λ(l′).
Due to the determinism ofA, there is at most one such transition. If
there exists one, we reach the configuration (si+1, l

′, U(si, ν
′), τi).

Otherwise we reach the final configuration ⊥.

It remains to start the synchronization. If there is some l0 ∈ Init
such that s0 |= Λ(l0) the initial configuration is (s0, l0, ν0, 0)
where for all xi, ν0(xi) = 0. Note that, by initial determinism,
there is at most one l ∈ Init such that s0 satisfies Λ(l). Otherwise
the synchronization starts and immediately ends up in state⊥. Ob-
serve that there are two possible behaviors for the synchronization.
Either it ends up in some final state leading to a finite synchronizing
path or the synchronization goes over all states of the path without
ever reaching a final configuration. We discuss this point in the next
section.

Example. The two LHA of figure 2 and 3 intend to illustrate the
expressiveness of HASL’s LHAs. They are meant to synchronize
with the shared memory system of figure 1. The one in figure 2
uses two variables. x0 has a null flow in every location and is used
to count the number of memory accesses granted. x1 expresses
the difference of memory usage between processes of class 1 and
2. It has thus flow 1 (resp. -1) when the memory is used by class
1 (resp. 2) processes, and 0 when the memory is not used. As
soon as k processes have been given a memory access, the system
terminates in state l3 or l4 depending on which process type has
used the memory for the longest cumulated period. In the figure, ]
labels for autonomous transitions are omitted and label E denotes
synchronization with any event.

Init
ẋ0:0
ẋ1:0

noacc

l1
ẋ0:0
ẋ1:1

acc1

l2
ẋ0:0
ẋ1:−1

acc2

E
E E

E,x0++

E
E,x0++

E

l3

l4

x
0
=
k

∧
x
1 ≥

0

x0=k∧x1≥0
x0=

k

∧x1≥
0

x
0
=
k

∧
x
1
<

0

x0=
k

∧x1<
0

x0=k∧x1<0

Figure 2: An LHA to compute the difference of memory usage

The example of figure 3 uses indicator dependent flows. x1 counts
the cumulated waiting time of processes of class 1 before k of them
have been served. The flow nbreq1 corresponds to the number of
tokens in place Request1 in the current marking whereas event
Serv1 corresponds to the firing of the bottom left transition of the
SPN of figure 1. x2 is the number of served processes of class 1
which is updated due to event Serv1.

l0
ẋ1:nbreq1
ẋ2:0

l1

Serv1,x2:=x2+1

E\{Serv1}

x2≥k,]

Figure 3: An LHA to compute the average waiting time

3.2 HASL expressions
The second component of a HASL formula is an expression related
to the automaton. Such an expression, denoted Z, is based on mo-
ments of a path random variable Y and defined by the grammar:

Z ::= E(Y ) | Z + Z | Z × Z
Y ::= c | Y + Y | Y × Y | Y/Y | last(y) |min(y)

|max(y) | int(y) | avg(y)

y ::= c | x | y + y | y × y | y/y

(1)

y is an arithmetic expression built on top of LHA data variables (x)
and constants (c). Y is a path dependent expression built on top
of basic path random variables such as last(y) (i.e. the last value
of y along a synchronizing path), min(y)/max(y) (the minimum,
resp. maximum, value of y along a synchronizing path), int(y)
(i.e. the integral over time along a path) and avg(y) (the average
value of y along a path). Finally Z, the actual target of HASL
verification, is an arithmetic expression built on top of the first mo-
ment of Y (E[Y ]), and thus allowing for the consideration of di-
verse significant characteristics of Y (apart from its expectation) as
the quantity to be estimated, including, for example, V ar(Y ) ≡
E[Y 2] − E[Y ]2, Covar(Y1, Y2) ≡ E[Y1 ·Y2] − E[Y1] · E[Y2].
Note that for efficiency reasons, in the implementation of the soft-
ware tool, we have considered a restricted version of grammar (1),
where products and quotients of data variables (e.g. x1 ·x2 and
x1/x2) are allowed only within the scope of the last operator (i.e.
not with min, max, int or avg). This is because allowing prod-
ucts and quotients as arguments of path operators such as max,
min requires the solution of a linear programming problem dur-
ing the generation of a synchronized D×A path which, although
feasible, would considerably affect the computation time.

Semantics. Given D a DESP and (A, Z) a HASL formula, we as-
sume that with probability 1, the synchronizing path generated by
a random execution path of D reaches a final state. This semanti-
cal assumption can be ensured by structural properties of A and/or
D. For instance the time bounded Until of CSL guarantees this
property. As a second example, the time unbounded Until of CSL
also guarantees this property when applied on finite CTMCs where
all terminal strongly connected components of the chain include a
state that fulfills the target subformula of the Until operator. This
(still open) issue is also addressed in [SVA05b, HJB+10]. Due to
this assumption, the random path variables are well defined and the
expression Z associated with the formula may be evaluated with
expectations defined w.r.t. the distribution of a random path con-
ditioned by acceptance of the path. In other words, the LHA both
calculates the relevant measures during the execution and selects
the relevant executions for computing the expectations. This eval-
uation gives the result of the formula (A, Z) for D.

Example. Referring to the LHA of figure 2, we can consider path
random variables such as Y = last(x1) (the final difference of
memory usage), or Y = avg(x1) (the average along paths of such
a difference). Furthermore, with a slight change of the automaton
(setting x0 to 0 (resp. 1) when reaching l4 (resp. l3)), E(last(x0))
will give the probability to reach l3. With the LHA of figure 3,
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we can express (an overestimation of) the average waiting time by
means of Y = last(x1/x2). An underestimation can also be com-
puted counting the overall number of requesting processes instead
of the number of served processes.

3.3 Expressiveness of HASL
In this subsection we first give an overview of related logics. Then
we discuss the expressiveness of HASL and show how it improves
the existing offer to capture more complex examples and proper-
ties, and facilitates the expression and the computation of costs and
rewards.

CSL. In [ASSB00] the logic Continuous Stochastic Logic (CSL)
has been introduced and the decidability of the verification prob-
lem over a finite continuous-time Markov chain (CTMC) has been
established. CSL extends the branching time reasoning of CTL
to CTMC models by replacing the discrete CTL path-quantifiers
All and Exists with a continuous path-quantifier P≺r (≺∈{<
,≤,≥, >}, r ∈ [0, 1]). Thus a CSL formula P≺rϕ expresses that
the probability of CTMC paths satisfying condition ϕ fulfills the
bound ≺r, where ϕ is, typically, a time-bounded Until formula.
In [BHHK03] it has been demonstrated that the evaluation of the
probability measure of a (time-bounded) CSL specification corre-
sponds to the transient analysis of a (modified) CTMC, for which
efficient approximate numerical procedures exist.

CSRL. In the logic CSRL introduced by [BHHK00], CSL is ex-
tended to take into account Markov reward models, i.e. CTMCs
with a single reward on states. The global reward of a path execu-
tion is then the integral of the instantaneous reward over time. In
CSRL, the path operators Until and Next include also an inter-
val specifying the allowed values for accumulated reward. More-
over new operators related to the expectation of rewards are de-
fined. A numerical approach is still possible for approximating
probability measures but its complexity is significantly increased.
This formalism is also extended by rewards associated with actions
[LKKP05]. CSRL is appropriate for standard performability mea-
sures but lacks expressiveness for more complex ones.

asCSL. In the logic asCSL introduced by [BCH+07], the single
interval time constrained Until of CSL is replaced by a regular
expression with a time interval constraint. These path formulas can
now express elaborated functional requirements as in CTL∗ but the
timing requirements are still limited to a single interval globally
constraining the path execution.

CSLTA. In the logic CSLTA introduced by [DHS09], the path for-
mulas are defined by a single-clock deterministic time automa-
ton. This clock can express timing requirements all along the path.
From an expressiveness point of view, it has been shown that CSLTA

is strictly more expressive than CSL and that path formulas of
CSLTA are strictly more expressive than those of asCSL. Finally,
the verification procedure is reduced to a reachability probability
in a semi-Markovian process yielding an efficient numerical proce-
dure.

DTA. In [CHKM09], deterministic timed automata with multiple
clocks are considered and the probability for random paths of a
CTMC to satisfy a formula is shown to be the least solution of a
system of integral equations. In order to exploit this theoretical
result, a procedure for approximating this probability is designed
based on a system of partial differential equations.

Observe that all of the above mentioned logics have been designed
so that numerical methods can be employed to decide about the

probability measure of a formula. This very constraint is at the ba-
sis of their limited expressive scope which has two aspects: first the
targeted stochastic models are necessarily CTMCs; second the ex-
pressiveness of formulas is constrained (even with DTA [CHKM09],
the most expressive among the logic for CTMC verification, prop-
erties of a model can be expressed only by means of clocks vari-
ables, while sophisticated measures corresponding to variables with
real-valued rates cannot be considered). Furthermore observe that
the evolution of stochastic logics seems to have followed two di-
rections: one targeting temporal reasoning capability (evolution-
ary path: CSL → asCSL → CSLTA→ DTA), the other targeting
performance evaluation capability (evolutionary path: CSRL →
CSRL+impulse rewards). A unifying approach is currently not
available, thus, for example, one can calculate the probability of
a CTMC to satisfy a sophisticated temporal condition expressed
with a DTA, but cannot, assess performance evaluation queries at
the same time (i.e. with the same formalism).

HASL: a unifying approach. As HASL is inherently based on sim-
ulation for assessing measures of a model, it naturally allows for
releasing the constraints imposed by logics that rely on numeri-
cal solution of stochastic models. From a modeling point of view
HASL allows for targeting of a broad class of stochastic models
(i.e. DESP), which includes, but is not limited to, CTMCs. From
an expressiveness point of view the use of LHA allows for generic
variables, which include, but are not limited to, clock variables
(as per DTA). This means that sophisticated temporal conditions
as well as elaborate performance measures of a model can be ac-
counted for in a single HASL formula, rendering HASL a unified
framework both for model-checking and for performance and de-
pendability studies. Note that the nature of the (real-valued) expres-
sion Z (1) (characterizing the outcome of a HASL formula) gen-
eralizes the common approach of stochastic model checking where
the outcome of verification is (an approximation of) the mean value
of a certain measure (with CSL, asCSL, CSLTA and DTA a measure
of probability). Cost functions. It is also worth noting that the use
of data variables and extended updates in the LHA enables to com-
pute costs/rewards naturally. The rewards can be both on locations
and on actions. First using an appropriate flow in each location of
the LHA, possibly depending on the current state of the DESP we
get “state rewards”. Then by considering the update expressions on
the edges of the LHA we can model sophisticated “action rewards”
that can either be a constant, depend on the state of the DESP and/or
depend on the values of the variables. It thus extends the possibili-
ties of CSRL and its extensions [LKKP05] where only one reward
function (on states and actions) is considered.

Finally we briefly discuss on the issue of nesting of probabilis-
tic operators. Nesting of probabilistic operators, which is present
in all stochastic logics discussed above, is meaningful only when
an identification can be made between a state of the probabilis-
tic system and a configuration (comprising the current time and
the next scheduled events). Whereas this identification was natural
for Markov chains, it is not possible with DESP and general dis-
tributions, and therefore this operation has not been considered in
HASL. A similar problem arises for the steady state operator. The
existence of a steady state distribution raises theoretical problems,
except for finite Markov chains, but with HASL we allow for not
only infinite state systems but also non Markovian behaviors. How-
ever, when the DESP has a regeneration point, various steady state
properties can be computed by defining the regeneration point as a
final state. For the expressiveness of HASL, we can state that when
we omit nesting and steady state properties, HASL is at least as ex-
pressive as CSRL and DTA : Every non nested transient CSRL or
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DTA formula can be expressed with HASL.

4. SOFTWARE SUPPORT
We have been developing a prototype software tool for HASL ver-
ification, named COSMOS. COSMOS employs a (simulation-based)
statistical approach to estimate measures of interest of the consid-
ered DESP model. We first give a brief summary of the basic prin-
ciples behind statistical model checking approaches, outlining how
the approach supported by COSMOS compares with that of exist-
ing statistical model checkers. Then we report about an empiri-
cal experience regarding the application of COSMOS to the analy-
sis of the shared memory model previously introduced (Figure 1).
This includes a comparative evaluation of the performances, where
the execution time of COSMOS is confronted with that of a popular
probabilistic model checker, namely PRISM [PRI].

4.1 Statistical model checking
Model checking by statistical techniques [YS06, SVA05a, HLP06]
constitutes an (increasingly spreading) alternative to common prob-
abilistic model checking based on numerical methods [ASSB00,
HCH+02, BCH+07, DHS09, CHKM09]. The basic principle of
statistical verification of probabilistic models is one of employing
discrete-event simulation combined with statistical techniques in
order to reason-about/estimate the likelihood of relevant proper-
ties. Hypothesis testing combined with stochastic simulation can be
used whenever the considered problem concerns deciding whether
the probability of a property φ fulfills a certain bound Pr(φ)∼ p
(p∈ [0, 1], ∼∈{<,≤,≥, >}) [YS06, SVA05a]; on the other hand
whenever the focus is on estimation of Pr(φ) simulation is com-
bined with confidence intervals methods to obtain arbitrarily ac-
curate estimates of Pr(φ) [KZ09, HLP06, PRI]. The main appeal
of statistical approaches is that they allow one to assess very large
models which cannot be treated otherwise (i.e. through, memory
demanding, numerical methods). The downside lies in the execu-
tion time which blows up with the accuracy chosen for the esti-
mated outcome. Notably with existing model checkers supporting
statistical verification (e.g. [SVA05b, You05, KZ09, HLP06, PRI])
the focus is (exclusively) on the estimation of measures of proba-
bility (which is to say, estimating the first moment of a Binomial
random variable corresponding to the number of simulated paths
satisfying φ). To the best of our knowledge estimation of more gen-
eral quantities, involving moments of generic random variables, it
is not supported by existing tools featuring statistical verification of
stochastic models.

4.2 The COSMOS tool
COSMOS extends existing statistical model checking approaches in
two respects: it provides the modeler with the ability to consider
generic random variables (including binomial ones) as the quantity
the estimation depends upon; secondly, it allows to target the esti-
mation of functions of (generic) moments of random variables and
not only the first moment of a Bernoulli variable. Thus, whereas
existing statistical model checkers are concerned with estimating
E[Y ] (where Y is Bernoulli and depends on φ), COSMOS is con-
cerned with estimating generic expressions such as, for example,
E[Y ], V ar(Y )≡E[Y 2]− E[Y ]2, Covar(Y1, Y2)≡E[Y1 ·Y2]−
E[Y1] · E[Y2] (where Y, Y1 and Y2, are generic random variables
depending on φ). In practice COSMOS takes three inputs: a DESP,
expressed in terms of an (extended) GSPN model N , an LHA A,
representing the random variables of interest and an expression Z
(obtained through the grammar (1)) based on moments of the ran-
dom variable represented by A. The tool outcome is an estimation

of the value of Z obtained by repeated sampling of the considered
random variables where each sample is obtained by execution of
an independent simulation run of the N ×A product process. At
present no graphical user interface is supported thus both the model
N and the automaton A are described in a formatted textual form.

Implementation details. COSMOS is implemented in C++ and uses
the BOOST libraries for generating the random numbers necessary
for stochastic simulation. Furthermore COSMOS code compilation
is optimized through the LLVM compiler infrastructure [llv].
Events are generated according to the corresponding delay distri-
bution and maintained in a time-ordered fashion in the event queue
(EQ) which is stored through a binary-min-heap structure. Us-
ing a binary-heap structure for maintaining the EQ guarantees a
O(log(n)) worst-case cost for insertion/deletion operations, how-
ever it also poses some non-trivial issues when it comes with han-
dling of concurrent events. Since delays are governed by not nec-
essarily continuous distributions (e.g. deterministic delay are al-
lowed) then simultaneous events are possible. To disambiguate
simultaneous events while adopting a binary-min-heap for main-
taining the EQ we have developed the following solution: when
a transition t : (distt, prit, weightt) (where distt is the type of
delay-distribution, while prit ∈N∪{∞} and weightt ∈R>0 are
the priority, respectively, the weight of t) becomes enabled the cor-
responding event et = (dt, prit, wt) is created where dt, wt ∈R+

are generated5 according to dt, a random variable with distribu-
tion distt and wt, a random variable with an exponential distri-
bution whose rate is weightt and representing, respectively, the
firing time of t and a disambiguating value (stochastically) propor-
tional toweightt. The valuewt serves for ordering equally delayed
events as they are inserted in the (binary-heap) EQ. In particular, on
insertion of et in the EQ the following ordering schema is adopted
when et is compared with an event et′ = (dt′ , prit′ , wt′) already
present in the EQ: et<et′ (meaning that et will occur before et′ )
iff (dt < dt′) or (dt = dt′ ∧ prit > prit′) or (dt = dt′ ∧ prit =
prit′ ∧ wt<wt′). With respect to the efficiency the cost for sup-
porting non-continuously distributed delays, while keeping the low
maintenance cost of a binary-heap EQ, is paid in terms of an extra
random number generation operation (the generation of wt) which
is performed on creation of each event. Note that this extra cost
can be avoided for the subclass of DESP such that all delays are de-
scribed by continuous random variables. Finally note that COSMOS

features on-the-fly calculation at two levels: the value of each path
random variable Yi contained in the expression Z = f(Yi) asso-
ciated to an experiment, is updated on-the-fly on generation of a
simulated trajectory; instead the value of the whole expression Z is
updated, on-the-fly, at the end of each simulation run.

4.3 Experiments
We report about experience of application of the COSMOS tool for
assessing measures of quantities referred to a DESP model of the
shared memory system (Figure 1). In particular we consider two
types of experiments: the first one targeted to the estimation of a
measure of probability (Experiment 1); the second one concerned
with the estimation of a real-valued quantity (Experiment 2). The
LHA for the experiments. Both types of experiment are referred
to the LHA of Figure 4 (a variant of the example presented in
Figure 2), which allows for recognizing executions such that “the
memory has been occupied the longer (or as long as) by class 1
processes than by class 2” (within time-bound [0, α], α ∈ R+).
Such automata uses 3 clock variables xt storing the simulation

5if t is immediate (i.e. distt ≡ 0-Dirac), then onlywt is generated.
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Figure 4: an LHA for measures based on the utilization time
divergence between shared memory system of Figure 1

time, x1 and x2 counting the occupation time by class 1, respec-
tively class 2, processes. The initial location l0 corresponds to
states such that the memory is free, thus both x1 and x2 flows are
null. Location l1(l2) corresponds to states such that the memory
is allocated to a class 1(class 2) process, thus the timer x1(x2) is
“on”: i.e flow(x1) = 1(flow(x2) = 1). The accepting location
(l3) is reached through autonomous edges from any other location
as soon as simulation time reaches the bound xt = α and on con-
dition that occupation time difference is x1 − x2 ≥ 0. An extra
(boolean) variable, referred to as xsucc, is used (even if not indi-
cated in Figure 4) for storing the outcome of each simulated trajec-
tory in theN×A process. (i.e xsucc is assigned with xsucc :=1 on
entering an accepting location of the automaton, or with xsucc :=0
if simulation blocks before).
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Figure 5: Probability that the memory is used longer by class 1
processes

Experiment settings. The shared memory model depends on the
parameters listed in Table 1. For our experiments we have cho-
sen to study configurations such that the arrival rate of class 1 pro-
cesses is fixed to λ1 = 1 (i.e. one arrival per time unit, on av-
erage) while those of class 2 processes is varied in the set λ2 ∈
{8/10, 9/10, 1, 11/10, 12/10} (i.e. average arrival frequency vary-
ing between an arrival every eight tenths and twelve tenths of a time
unit). The occupation of the memory is set to a uniform distribution
over the interval [α, β] = [0.4, 0.5] for both classes of clients (i.e.
each client occupies the memory for 0.45 time units, on average).
Note that under these settings the system is stable as the utilization
ρ = (λ1 + λ2)(α+ β)/2<1, for all considered values of λ2 (i.e.
ρmax = 0.99 when λ2 = 12/10, ρmin = 0.81 when λ2 = 8/10).
Finally, priorities and weight of immediate transitions are all set to
1 (i.e. competing clients are equally likely to grant access to the

memory).
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Figure 6: Maximum of the difference for memory occupation
times

Experiment 1 (Z ≡ E[last(xsucc)]): the goal of this experiment is
to measure “the probability that the memory has been occupied the
longer (or as long as) by class 1 processes than by class 2’s" (in
the time-window [0, α], α∈R+). This is achieved by considering
the HASL Expression Z ≡ E[last(xsucc)] (recall that xsucc is an
LHA boolean variable set to 1 on reaching of an accepting location
and to 0 if the synchronization blocks).

Results: Figure 5 reports about the estimation of a 99%confidence-
interval of Z ≡ E[last(xsucc)]. The Y -axis represents (estimated)
probability values, while theX-axis represents the value of the time
bound α. The five plots in Figure 5 correspond to one amongst
the following combinations (λ1, λ2) ∈ {(1, 0.8), (1, 0.9), (1, 1),
(1, 1.1), (1, 1.2)}. All curves converge asymptotically to a con-
stant point corresponding to reaching the of the steady-state of the
model. With the fully symmetric configuration (i.e. λ2 = 1) pro-
cesses of both class are equally likely to occupy the memory for
the majority of time (plot λ2 = 1 tending to 0.5); furthermore
observe that, in symmetric conditions, the probability converges
pretty quickly (i.e. within 10 time units). If class 1 processes ar-
rive at a faster rate than class 2’s (i.e. configurations λ2 = 0.8 and
λ2 = 0.9) they are more likely to occupy the resource the longer
and they will do so with probability 1 at times greater than 300
time units (curves λ2 =0.8 and λ2 =0.9 tending to 1). The dual is
true if class 2 processes arrive at a faster rate then class 1’s (curves
λ2 = 1.1 and λ2 = 1.2 tending to 0). Finally it can be observed
that biased configurations converge later than the fully symmetric
one: curves corresponding to unbalanced settings stabilize at times
greater than (roughly) 300 time units.

Experiment 2 - (Z ≡ E[max(x1−x2)|(x1 ≥ x2)]): the goal of this
experiment is to measure “the maximum of the difference between
the occupation time given that the memory has been occupied the
longer (or as long as) by class 1 processes than by class 2’s" (in
the time-window [0, α], α∈R+). This is achieved by considering
the HASL Expression Z ≡ E[max(x1−x2)] (recall that x1 and x2

are timers counting the occupation of the shared memory by class
1, respectively class 2, processes).

Results: Figure 6 reports about the estimation of a 99%confidence-
interval of Z ≡ E[max(x1−x2)]. Note that, in this case, estimated
values fall well beyond the probability interval [0, 1], which is pos-
sible whenever the estimated quantity is not a probability measure.
Curves in Figure 6 indicate that the maximum of the occupation
time (non-negative) difference (i.e. max(x1−x2)|x1 ≥ x2) is an
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increasing function of time which tends towards linearity as the ar-
rival rate of class 2 processes decreases. Other HASL expressions
examples referred to this model are

• E
ˆ
last(x1)|(x1 ≥ x2)

˜
: Expected occupation time of Res

by class-1 processes whenRes has been used longer by class-
1 processes within T =α

• E
ˆ
avg(x1−x2)|(x1≥x2)

˜
: Expected average of occupation

time difference when Res has been used longer by class-1
processes within T =α

• E
ˆ
var(x1−x2)|(x1 ≥ x2)

˜
: Expected variability of occu-

pation time difference when Res has been used longer by
class-1 processes within T =α

Evaluating the performance of COSMOS. In order to assess the per-
formance of COSMOS we have realized a comparative study with
a popular probabilistic model checker, namely PRISM. We have
considered two well-known CTMC benchmark models: a model
of a tandem queueing system (TQS), which we used for the esti-
mation of a measure of probability, and a model of a cyclic server
polling system (CSPS), which we used for the estimation of a real-
valued quantity6. The TQS consists of a M/Cox2/1-queue sequen-
tially composed with a M/M/1-queue. Both queues are assumed
to have the same capacity given by the model’s parameter C > 0
(note that the dimension of the resulting CTMC depends on C).
For the TQS model we have considered the estimation of the prob-
ability that “both queues become full within time T ", which can
straightforwardly be encoded both in CSL, by the time-bounded
Until formula φ ≡ (true U [0,T ] Q1_full and Q2_full), and in
HASL, by means of a simple LHA with 2 locations. The CSPS rep-
resents a system where a server cyclically pollN clients to provide
them with the service they demand for; each client switches be-
tween an idle-state and a waiting-state where it attends to be polled
by the server. For the CSPS model we have considered the estima-
tion of the “Expected time that station 1 is waiting to be served"
(within a given time-bound T > 0) which can be represented both
in the reward-extended version of CSL supported by PRISM and by
means of a simple LHA consisting of 3 locations in COSMOS. Ta-
ble 2 and Table 3 report about experiments carried out on the TQS,
respectively CSPS, model7. Data in Table 2 (Table 3) are grouped
in two blocks corresponding to different configurations of the mod-
els (i.e. queues capacity C = 5 and C = 7 for the TQS, number
of clients N = 4 and N = 8 for the CSPS). Rows of each block
contains data referred to different values of the time-bound T . The
three columns grouped as probability measure in Table 2 (and as
waiting-time measure in Table 3) report values calculated with 1)
the numerical engine of PRISM 2) the (CSL) statistical method sup-
ported by PRISM and 3) the (HASL) statistical method supported
by COSMOS8. By comparing the results of columns PRISM num
with those in columns PRISM stat and COSMOS we observe that: 1)
estimates of a probability measure obtained with both (statistical)
PRISM and COSMOS are comparably accurate (see Table 2); 2) esti-
mates of the average waiting time (i.e. a non-probability measure)
obtained by COSMOS are significantly more accurate than those ob-
tained by PRISM(see Table 3);. Although we do not know the im-
plementation details of PRISM statistical engine, we believe a pos-
sible explanation for such a lower accuracy is that PRISM is based
6both models can be found under the case-studies section at [PRI].
7Experiments run on a laptop computer with: CPU Intel Core
2 Duo T9400, 2.53GHz, 6MB L2 Cache, 4GB RAM, OS
Linux(fedora 13) 2.6.34.7.
8Statistical estimates have been obtained with the following set-
tings: confidence-level ε=0.99, approximation-level δ=0.01.

on an error-bounding method (i.e. the Chernoff-Hoeffding bound
one), rather than a confidence-interval approach, as the criteria to
drive the estimate of a probability measure and this may lead to a
non-optimal accuracy when the estimated quantity is not a measure
of probability. Columns generated paths compare the number of
paths generated by PRISM statistical engine vs COSMOS’s: note that,
while with PRISM the number of generated paths is constant (and
depends on the chosen level of confidence/accuracy), with COSMOS

the paths required to meet the desired confidence/accuracy is estab-
lished on-the-fly (i.e. path generation stops as soon as the required
level of accuracy is met). Observe that in all our experiments the
number of paths generated by COSMOS is well below that required
by PRISM. Finally data regarding the performance comparison of
the two tools are reported in the remaining columns: column exec-
time compares the total time needed by the statistical engines to
output the estimate; column path avg exec-time compares the av-
erage time to generate a single trajectory (i.e. exec-time/generated
paths); column ratio report the ratio of the the path average ex-
ecution times. This indicates that COSMOS is (on average) about
2.3 times slower than PRISM’s statistical engine, with respect to the
TQS model, and about 2.9 times slower, with respect to the CSPS
model. The lower speed of COSMOS is not surprising considering
that simulation of the synchronizedD×A process, as per HASL, is
inherently more (computationally) demanding than the simulation
of a CTMC, as per CSL.

5. CONCLUSION
We have presented a new logic for expressing elaborated properties
related to stochastic processes. Contrary to previous approaches,
a formula of HASL returns a conditional expectation whose con-
dition is based on acceptance by a linear hybrid automaton. Such
a logic can be employed both for probabilistic validation of func-
tional properties or for elaborated performance analysis as we have
illustrated with examples. We have developed a tool to experimen-
tally validate the feasibility of the statistical based approach. While
the first results are promising, we aim at overcoming the limitations
of this approach namely (1) accelerating the path generation when
faced to difficult acceptance condition via the rare event approach
and (2) analyze the structure of the DESP in order to circumvent
the constraint that almost surely a path is accepted or rejected by
the LHA. With respect to performance improvement of the tool we
are currently working on a version of COSMOS where (optimized)
source code for both the considered model and the considered LHA
is automatically generated and integrated in the tool architecture.
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