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ABSTRACT
In this paper we investigate a bi-level economic model of
wireless communications. We take into account the user’s
demand and also the QoS offered by the network. We deter-
mine with our model when a provider can make more profit
by investing into new technology. We consider a Stackelberg
game approach where the provider decides the price per rate.
In fact, users have to pay for the throughput they have con-
tracted with the service provider in their SLA. Then, pricing
for throughput is more realistic then pricing for power as it is
suggested in several papers in the literature. Our approach
is general as we have important results for general user’s
utility function with only natural assumptions on them. We
also study next an incomplete information case in which
the provider has no perfect information about the user de-
mands in network and its quality. To deal with it we apply
a Bayesian approach. We demonstrate that the expectation
on the increasing user demand can induce jumping reduction
of the optimal tariff meanwhile impairs expectation about
increasing in user activity can lead to jumping increasing in
the optimal tariff. This jumping nature of tariff tells about
importance of marketing research for provider to correctly
estimate user’s demand in his intention of using network and
how he personally values the service. Finally, we consider
the multiuser case and obtain a closed form expression of
the Stackelberg equilibrium in that case. In particular we
show that the provider cannot essentially increase its profit
by simple increasing number of users.

1. INTRODUCTION
In this paper we study pricing mechanism based on user’s
capability, quality of the network and the user’s demand to
such quality. We also consider how incomplete information
about user’s and mutual interference of user’s impacts this
problem. Along with investigation these plots we suggest an
answer to the question when it is reasonable for a provider to
invest into new technology to improve the quality of service.
To deal with all these questions we introduce a Stackelberg
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game for throughput pricing. Why pricing for throughput?
First we would like to note that Stackelberg game approach
is very popular among researchers dealing with pricing in
networks (see, for example, [6, 3, 4, 5, 10, 7, 9, 8, 11]). All
these papers deal with power pricing. In this paper we in-
troduce the other kind of pricing, throughput pricing, which
measures the transmitted information per second in wireless
network and so, it could serve as a simple measure for using
network and charging for it the users by provider. Namely,
in this paper we consider a tariff game between a provider
and a user or many users. Of course the value of the tariff
has an impact on user’s behaviour. If tariff is small then
user tends to exploit the network as much as possible or
even abuse the network. On the other hand large tariff can
cut user off the network at all. A natural question arises for
the provider: which tariff the provider has to assign to get
the maximal profit. This situation is modelled by a Stack-
elberg game with provider as a leader and a user or users
as followers. We consider that the payment of the user to
the provider is proportional to the throughput. The user
capability is measured by the total power the user could use
for transmission. The quality of the network is presented by
the fading channel gain and noise interference. The user’s
demand on the quality of the network is presented by util-
ity of his throughput. In multi-user plot different users can
have different utilities. Through different utility functions
several QoS requirements can be modelled.

We deal with the Stackelberg game in three scenarios.
First, as basic one, we study the particular case with one user
and a provider game. The second one is the case where the
provider does not have a complete information on the user’s
demand. This happens in the real world where the provider
has only some statistic data. To deal with this plot, we
apply Bayesian equilibrium approach which allows us to find
a threshold value telling the provider which possible demand
has to be satisfied in full, and which has to be satisfied only
partially. Finally, we consider multi-user scenario where user
can have either the same or different utilities like different
class of users.

1.1 Organization of the paper
The rest of this paper is organized as follows. In Sec-

tion 2, we describe the system model with a user and a
provider, state the assumptions, and give the mathematical
formulation for the problem under consideration. Also, we
supply the solution of the problem and result of numerical
modelling. In Section 3, we treat a generalization of the
problem for the case where the total power is unknown by
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the provider. In Section 4 we develop our model for the case
of one provider and N users case with different and equal
user utilities. In Section 5 discussions of the obtained result
aregiven.

2. ONE PROVIDER AND ONE USER
In this section we consider the following basic tariff game
which will be generalized in the next sections. A user intents
to use a network for transmission a signal. We consider
that there is no externalities cost, i.e. the mobiles do not
interfere each other. The network is not a public one so
user has to pay for its usage. The tariff is charged to the
user based on the attained throughput. A natural question
arises for provider: which tariff the provider has to assign to
get the maximal profit. This situation can be modeled by a
Stackelberg game with provider as a leader and a user as a
follower, so as two steps game where

• on the first step for a fixed tariff, users decide in which
size to exploit the network,

• on the second step the provider decides, knowing user’s
behaviour, what tariff to assign to get the maximal
profit.

Those steps are described here to explain how we compute
the best action for the provider (the leader of the game). It
has no link with the sequence of the players in a stackelberg
game.

2.1 Stackelberg game
We assume that the payment of user is proportional to his
throughput, so the provider assigns tariff C per unit of user’s
throughput.

On the first step of the Stackelberg game the tariff C is
fixed. It is natural to consider that the strategy of the user
is the transmitted power T ∈ [0, T ] with T is the maximal
power the user has in his mind to apply to. The user’s payoff
is the difference between his satisfaction of the network ser-
vice which is an utility U on his throughput and how much
it costs him, i.e.

v(T ) = U(R(T ))− CR(T ), (1)

where R = R(T ) is the throughput which can be approxi-
mated valued as the Shannon capacity, i.e. ln(1 + hT ). We
consider several natural assumptions on the utility function
mostly considered in wireless network.

• U(x) is strictly increasing and positive in (0,∞),

• U ′(x) is strictly decreasing,

• U(0)=0, U(+∞) = +∞, U ′(0+) > 0 and let C =
supU′(C)>0 C.

As examples of the user utility, it is reasonable to consider
either a logarithmic one, or α-fairness or shifted α-fairness:

log(1 + x),
1

1− αx
1−α,

1

1− α ((1 + x)1−α − 1) (2)

with α ∈ (0, 1). Note that the utility 1
1−α ((1 + x)1−α − 1)

called the shifted SINR in [2]. It was introduced for an
α-fairness problem in order to joint in the same scale the

SINR’s utility (α = 0) and the Shannon capacity (α = 1).
It is clear that C = 1 for logarithmic and shifted α-fairness
utilities and C =∞ for α-fairness utility. Also note that the
throughput R(T ) also is a strictly increasing function such
that R(0) = 0.

In this section we assume that the maximal signal T and the
fading channel gains h are known to the user.

On the second step of the Stackelberg game, the provider
looks after the optimal tariff C in order to maximize its
payoff which is given as follows:

vP (C) = CR(T (C)).

2.2 Optimal strategies
Now, we look first for the optimal power strategy of the
user depending on the price of the provider. Second, given
that reaction function, the best-response of the follower, we
compute the optimal price C determine by the provider in
order to optimize his payoff. In order to find the optimal
user strategy, we note that

dv

dT
=
(
U ′ (R(T ))− C

)
R′(T ).

Thus, the optimal user strategy is defined by

T (C) = min

{[
R−1

(
(U ′)(−1) (C)

)]
+
, T

}
which is equivalent to

T (C) =


0, U ′(0) ≤ C
R−1

(
(U ′)(−1) (C)

)
, U ′(R(T )) < C < U ′(0)

T , C ≤ U ′(R(T )).

(3)
Now we have to find the optimal tariff C from the provider
point of view. The payoff of the provider is given by vP (C) =
CR(T (C)). Then, by (3), we have

vP (C) =


0, C ∈ I0
C(U ′)(−1) (C) , C ∈ I1
CR(T ), C ∈ I2,

(4)

where

I0 = [U ′(0),∞), I1 = (U ′(R(T )), U ′(0))

and

I2 = [0, U ′(R(T ))].

It is clear that vP (C) is increasing on the interval I2. Then
we can deduce the following result on the optimal tariff of
the provider.

Theorem 1. The optimal tariff of the provider in the
Stackelberg tariff game is

C∗ = argmaxC∈[U′(R(T )), U′(0)]C(U ′)(−1) (C) .

Proof: Depending on the tariff C, the payoff of the provider
is first increasing on the interval I2 and finally constant on
the interval I0. Then, as it is a continuous function, it at-
tains his maximum at:

C∗ = argmaxC∈I1C(U ′)(−1) (C) ,

where I1 = [U ′(R(T )), U ′(0)].
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For the particular cases of the α-fairness functions we have
a more precise result which follows:

Theorem 2. The optimal tariff C∗ of the service provider,
when the utility functions are α-fairness, is

C∗ = U ′(R(T ))

which brings to the provider the total profit

vP = U ′(R(T ))R(T ).

Proof: We consider the α-fairness utility functions de-
picted in (2):

1

1− αx
1−α and

1

1− α ((1 + x)1−α − 1).

(i) For U(x) = 1
1−αx

1−α we have that for C ∈ I1 the user’s
optimal strategy and the provider’s payoff are given as
follows:

T (C) =
exp

(
C−1/α

)
− 1

h
,

vP (C) = C1−1/α,

where

I1 =
[ 1

lnα(1 + hT )
,∞
)
.

Since 0 < α < 1, vP (C) is decreasing in I1.

(ii) for U(x) = 1
1− α ((1+x)1−α−1) and so, as a particular

case with α = 1, for U(x) = log(1+x), we have that for
C ∈ I1 the user’s optimal strategy and the provider’s
payoff are given as follows:

T (C) =
exp (1/C − 1)− 1

h
,

vP (C) = C1−1/α − C,

where

I1 =

[
1

(1 + ln(1 + hT ))α
, 1

]
.

Note that

dvP (C)

dC
=
α− 1

α
C−1/α − 1 < 0 for C < 1.

Thus, vP (C) is decreasing in I1.

So, we have proved that the payoff of the service provider
is stricly decreasing over the interval I1. Then, the optimal
tariff C∗ of the service provider is given by:

C∗ = U ′(R(T )).

2.3 Numerical illustrations
In this section we perform some numerical illustrations of the
previous results for the optimal tariff of the service provider.

• For shifted α-fairness utility with α = 0.1, 0.5 and 1
(so, for logarithmic utility also, since shifted α-fairness
utility coincides with logarithmic one for α = 1). In-
creasing α means that the user is less demandable to
the network quality since he assigns larger value in his
utility to the same throughput.

Figure 1: The optimal tariff C

Figure 2: The optimal user payoff vP

• For two values of fading channel gain h = 0.3 and 3.
Bigger fading channel gain means that the network has
better quality.

• For the total power T evaluating from 0 to 10. The
larger total power T means larger capability of the user
to consume the network service. Why just intention?
Because high tariff can reduce his real consuming of
the network service.

The results of the numerical modelling are given on Fig-
ure 1 (for the optimal tariff) and Figure 2 (for the optimal
provider profit).

• It shows that the less demandable user (with bigger α)
rises up tariff and the provider’s profit.

• It demonstrates the improving quality of the network
puts down up tariff and increasing the provider’s profit.
So, investing into new technologies that can improve
service are always good for the provides as well as to
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the user. Of course, there is a question what cost of
the technology has to be so that it would be profitable
for provider to install it. Figure 1 also gives answer on
this question. Say, the cost of the new technology is
0.2. Then for the utility with α = 0.1 it is reasonable
for provider to move to the new technology when user
intents to employ the network with T = 6 since for
such T = 6 the providers profit is 0.2 which can covers
his corresponding expenses.

• It shows that bigger intention to employ the network
(T ) by user cuts down tariff and increases the provider’s
profit.

Finally, we note that there exists an important difference be-
tween α-fairness utility from one hand and logarithmic and
shifted α-fairness utilities from the other hand. Namely,
α-fairness assumes that if the user is not going to use the
network (so, T → 0) then the tariff tends to infinity, mean-
while for logarithmic and shifted α-fairness utilities it tends
to 1. Then it makes those utility functions more realistic
and it also supplies extra motivation for employing shifted
α-fairness utility.

3. INCOMPLETE INFORMATION
In this section we consider the plot where the provider does
not know the total power (so. user’s capability) which user
intents to transmit as well as his utility function but just
their distribution. We investigate discrete distribution case,
namely, the provider knows that with probability qmr the
user’s utility is Um and total user power is Tmr where m ∈
[1,M ], r ∈ [1,Mr]. Of course user knows which power and
utility he has. To deal with this situation, we introduce
M =

∑M
m=1Mm types of user indexed by two numbers m

(index of user’s utility) and r (index of user’s total power),
i.e. user has type rm if the total power to transmit is Tmr
and his utility is Um. Thus, we have the following results.

Theorem 3. The optimal tariff of provider in the Stack-
elberg tariff game with incomplete information on total user
power is given as follows

C∗ = argmaxC∈[0,maxr U′r(0)]
θ(C),

where

θ(C) = C

M∑
m=1

θm(C)

and

θm(C) =

=



∑Mm
r=1 qmrR(Tmr), C < U ′m(R(TmMm )),∑k−1
r=1 qmrR(Tmr)

+(U ′m)(−1)(C)
∑Mm
r=k qmr, U ′m(R(Tmk)) < C

and C < U ′(R(Tm,k−1))

with k ∈ [2,Mm],

(U ′m)(−1)(C), U ′m(R(Tm1)) < C

and C < U ′m(0),

0, U ′m(0) ≤ C.

(5)

Proof: On the first stage of the Stackelberg tariff game
with incomplete information, the payoff to user of type mr
is given as follows:

vmr(Tmr) = Um(R(Tmr))− CR(Tmr).

On the second stage of the game the provider is going to

maximize its expected profit, and so, its payoff is given as
follows

vP (C) = C

M∑
m=1

Mm∑
r=1

qmrR(Tmr)

By the previous section the optimal strategy T r = T r(C) of
user of type r on the first stage as function on tariff is:

Tmr(C) =


0, U ′m(0) ≤ C
R−1

(
(U ′m)(−1)

)
(C) , U ′m(R(Tmr)) < C

and C < U ′m(0)

Tmr, C ≤ U ′(R(Tmr)).

(6)
Without loss of generality we can renumber the user of type
mr in non-increasing order by r:

Tm1 ≥ Tm2 ≥ . . . ≥ TmMm .

Then the expected profit of the provider can be obtained as
a function of tariff C as follows:

vP (C) = C

M∑
m=1

Mm∑
r=1

qmrR(Tmr(C)) = C

M∑
m=1

θm(C),

where θm(C) is given by (5).

3.1 A particular case: logarithmic utility
In this section we find in closed form the optimal tariff for
a particular case where each type of user has the same log-
arithmic utility U(x) = ln(1 +x). Then we have M types of
user such that the user of type i intends to use total power
T i. Without loss of generality we can renumber the user of
type i in non-increasing order by r:

T 1 ≥ T 2 ≥ . . . ≥ TM .

Then we have the following result on the optimal tariff of
the service provider.

Theorem 4. Let all user’s type have the same logarith-
mic utility. Then the optimal tariff C∗ is given as follows:

C∗ =
1

1 + ln(1 + hT k∗)
, (7)

where k∗ is the unique integer such that

ϕk∗ < 0 < ϕk∗+1, (8)

and

ϕk =

k−1∑
r=1

qrR(T r)−
M∑
r=k

qr.

Proof: Then, since C(U ′)(−1)(C) = 1−C, by Theorem 3
the optimal expected profit of the provider as function of
tariff C is given as follows:

vP (C) =


ϕkC −

∑M
r=k qr, dk ≤ C < dk−1,

k ∈ [1,M + 1],

0, C ≥ 1.
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where

ϕk =

k−1∑
r=1

qrR(T r)−
M∑
r=k

qr,

and

dr =
1

1 + ln(1 + hT r)

with TM+1 = 0 and T 0 =∞.
Note that, {ϕk} is increasing sequence since

ϕk+1 − ϕk = qk(R(T k) + 1) > 0.

Also,

ϕ1 = −
M∑
r=1

qr < 0, ϕM+1 =

M∑
r=1

qrR(T r).

Then, since vP (C) is increasing (decreasing) in [dk, dk−1]
with positive (negative) ϕk we have the following result sup-
plying the optimal tariff C∗ in closed form given by (7) with
k∗ is the unique integer given by (8).

3.2 Numerical illustration for the incomplete
information

In this section we perform some numerical illustrations which
demonstrate that the optimal tariff and the expected provider
profit can have jumps since θ(C) has switching points {pmk =
U ′m(R(Tmk))}. Its derivative has jumps and switching point
pmk does not depend on the probabilities {qmk} and depends
only on the total power Tmk. So, variation of {qmk} and
Tmk can cause jumps in the optimal tariff.
As numerical examples we deal with two values of fading
channel gain h = 0.3 and 3 (bigger fading channel gain
means that the network has better quality) and the same
and different user utilities separately.

(a) The same utility for all the user types. So, M = 1
and let M1 = 2.

Figures 3 and 4 illustrate how the optimal tariff and the
expected optimal provider profit evaluate while total power
T 2 := T 12 increases from 1 to 3. We assume that total power
T 1 := T 11 is fixed and equals to 1, and T 1 and T 2 take
place with probabilities q1 := q11 = 0.2 and q2 := q12 = 0.8
respectively. We deal here with shifted α-fairness utility
where α = 0.1 and 1 (so, for logarithmic utility also, since
shifted α-fairness utility coincides with logarithmic one for
α = 1). Expectation that user is going to consume more
provider’s service leads to decreasing in tariff and decreasing
in expected provider profit but it happens not so fast as in
case with complete information.

Meanwhile for a fixed T 1 = 1 and T 2 = 3, figures 5 and 6
illustrate how the optimal tariff and the expected optimal
provider profit evaluate while q1 := q11 ∈ [0, 1]. It shows
that impairs expectation about increasing in user activity
(so, when q1 is increasing, and so, q12 = 1 − q11 is decreas-
ing) can lead to jumping increasing in tariff and decreasing
expected provider profit, but of course the expected profit
does it in continuous way.

(b) Different utility functions for all the users. Let
M = 2 and M1 = M2. Also we assume that T̄11 = T̄21 = 1
or 3. We deal here with two shifted α-fairness utility where

Figure 3: The optimal tariff for T2 ∈ [1, 3].

Figure 4: The expected optimal provider profit for
T2 ∈ [1, 3].

Figure 5: The optimal tariff for q1 ∈ [0, 1].
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Figure 6: The expected optimal provider profit for
q1 ∈ [0, 1].

Figure 7: The optimal tariff for α1 = 0.1 and α2 = 1.

α = 0.1 and 1 which can take place with probability q1 and
q2 = 1− q1 respectively
Figures 8 and 9 show how the optimal tariff and the expected
optimal provider profit evaluate while q1 increases from 0 to
1, and so, q2 decreases from 1 to 0. It shows that expectation
about that the user is less demandable (so, α is bigger) could
lead to increasing in tariff jumpily and increasing in expected
provider profit.

This jumping nature of tariff tells about importance of mar-
keting politics for provider to correctly estimate user’s de-
mand in exploiting of network and how he estimate useable-
ness of the service.

4. HETEROGENOUS USERS
In this last section we consider heterogenous users case,
namely, we assume that in network N users and each user i
would like to transmit signal with a power Ti where Ti ≥ 0.
Moreover, we do not assume that there is an upper bound

Figure 8: The expected optimal provider profit for
α1 = 0.1 and α2 = 1

on the restriction transmitting signals. As throughput of
user i we consider the Shannon capacity, i.e.

Ri(T) = ln

(
1 +

LhiTi

σ2 +
∑N
k=1,k 6=i hkTk

)
, (9)

where

• T = (T1, . . . , TN ) is the user’s strategies,

• L (L > 1) is the spreading gain for the CDMA network
which is equal for each user,

• hi is the uplink channel gain of the user i,

• σ2 is the ambient noise in network.

The heterogenous users case gives the following Stackelberg
tariff game where

• On the first stage for a fixed tariff the users compete
with each other trying to maximize selfishly own payoff
where the payoff to user i is given as follows:

vUi(T) = Ui(Ri(T))− CRi(T),

where Ui is the utility of the user i having the same
properties as for the one user plot.

Then for a fixed C the equilibrium user’s strategies
T∗ = (T ∗1 , . . . , T

∗
N ) present a Nash equilibrium, i.e.

vUi(T
∗
i ,T

∗
−i) ≥ vUi(Ti,T∗−i)

for i ∈ [1, N ] and any strategies (T1, . . . , TN ).

• On the second stage of the game the provider, knowing
that the users will be act as it was described on the
fist step, assigns tariff C is going to maximize its total
profit, i.e. the following payoff:

vP (C) = C

N∑
i=1

R(Ti).
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4.1 Equilibrium between users
To find the equilibrium user’s strategies on the first step
of the game we have to find the derivative of vUi on Ti as
follows:

∂vUi(T)

∂Ti
= (U ′i(Ri(T))− C)

∂Ri(T)

∂Ti
.

Then the inside components of equilibrium strategies can be
found as a solution of the equations:

LhiTi −Di(C)

N∑
k=1,k 6=i

hkTk = Di(C)σ2, (10)

where

Di(C) = e(U
′
i)
−1(C) − 1.

We can rewrite (10) in the following form

hiTi =
Di(C)

L+Di(C)

(
N∑
k=1

hkTk + σ2

)
(11)

We assume that (U ′i)
−1(C) = 0 at the same C = C how

it takes place for example with the shifted α-fairness utility.
Thus, Ti > 0 for C ≥ C and we can assume that now C < C.

Let Ir be the set of the inside component of the equilibrium
and r is the number of such components. It is clear that
IN = [1, N ] and Tk(C) = T k for k ∈ [1, N ]\Ir.

Summing up all the equations (11) for i ∈ Ir we can find
that

∑
k∈Ir

hkTk =

∑
k∈Ir

Dk(C)

L+Dk(C)

( ∑
k∈[1,n]\Ir

hkT k + σ2
)

1−
∑
k∈Ir

Dk(C)

L+Dk(C)

. (12)

Substituting (12) into (11) yields that

Ti = Fi(C, I
r) (13)

with

Fi(C, I
r) =

σ2 +
∑
k∈Ir

Dk(C)

L+Dk(C)

∑
k∈[1,n]\Ir

hkT k

1−
∑
k∈Ir

Dk(C)
L+Dk(C)

× Di(C)

(L+Di(C))hi
.

(14)

In a particular context in which all users have the same
utility function, we are able to obtain a closed form expres-
sion of the equilibrium between the users.

Theorem 5. For a fixed tariff C, if all users have the
same utility function U, the equilibrium users strategies Ti(C)
for all user i is given by

Ti(C) =



σ2 +

N∑
j=K+1

hjT j

hi

× D(C)
L− (K − 1)D(C)

, i ∈ [1,K],

T i, i ∈ [K + 1, N ].

(15)

where K is the unique integer in {0, . . . , N} such that

aK+1 ≤ e(U
′)−1(C) − 1 < aK (16)

with

ak =
LhkT k

σ2 +

N∑
j=k+1

hjT j + (k − 1)hkT k

for k ∈ [1, N ] (17)

and

a0 =∞ and aN+1 = 0. (18)

Proof: In this section we consider the case of equal user
utility, so

Ui = U

and

Di(C) = D(C) := e(U
′)−1(C) − 1 for i ∈ [1, N ].

Then, (11) is equivalent to

hiTi =
D(C)

L+D(C)

(
N∑
k=1

hkTk + σ2

)
. (19)

Without loss of generality we can assume the users are renum-
bered in non-increasing order by faded total power, i.e. as
follows:

h1T 1 ≥ h2T 2 ≥ . . . ≥ hNTN . (20)

Then by (19) there is a K ∈ [1, N ] such that

Ti(C)

{
∈ (0, T i), i ∈ [1,K]

= T i i ∈ [K + 1, N ].

So, IK = [1,K]. Then (12) is equivalent to

(L− (K − 1)D(C))

K∑
i=1

hiTi(C)

= KD(C)

(
σ2 +

N∑
i=K+1

hiT i

)
.

(21)

Taking into account the fact that Ti are non-negative implies
that

(K − 1)D(C) < L. (22)

The formula (21) jointly with (19) yields that Ti(C) has to
have the form given by (15).

Now we have to find the switching point K. By the assump-
tion (20) it can be found from the following condition

hKTK ≥ hKTK(C) and hKTK(C) > hK+1TK+1.

Taking into account (15) the last two inequalities turn into
the following ones:(

σ2 +

N∑
j=K+1

hjT j

)
D(C)

L− (K − 1)D(C)
< TKhK

and(
σ2 +

N∑
j=K+1

hjT j

)
D(C)

L− (K − 1)D(C)
≥ TK+1hK+1.
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The last two conditions are equivalent to the following one
for K ∈ [0, N ]:

aK+1 ≤ D(C) < aK (23)

with sequence {ak} given by (17) and (18).
Also, by (16)

D(C) <
LhKTK

σ2 +

N∑
j=k+1

hjT j + (K − 1)hKTK

=
L

K − 1 + (σ2 +

N∑
j=k+1

hjT j)/(hKTK)

<
L

K − 1
.

So, the condition (22) holds and Ti given by (15) are positive.

Also, ak is non-increasing sequence since

ak+1 − ak =
Lhk+1T k+1

σ2 +

N∑
j=k+2

hjT j + khk+1T k+1

− LhkT k

σ2 +

N∑
j=k+1

hjT j + (k − 1)hkT k

= L

(hk+1T k+1 − hkT k)(σ2 +

N∑
j=k+2

hjT j)

σ2 +

N∑
j=k+1

hjT j + (k − 1)hkT k

× 1

σ2 +

N∑
j=k+2

hjT j + khk+1T k+1

≤ 0.

Thus, K given by (16) is uniquely defined. This implies the
following result describing the equilibrium user strategies
given by (15). Where we compute K ∈ [0, N ] using (16)
and the sequence {ak} is defined by (17).

4.2 Discussion: power or throughput pricing?
It is interesting to note that for power tariff cases studied in
[1], [6], the optimal behavior some users or all them at once
can be cut off from the network by high tariff. Meanwhile
for the throughput tariff model, if only one user cut off from
the network than all the users cut off from network. So, in
the throughput tariff model providers has more motivation
to keep all the available users within its service and do not
push them away to switch to the other provider.

Now we answer on the question what makes power and
throughput control different. For power control the user’s
payoff are given as follows:

vUi(T) = Ri(T)− CTi.

To find the equilibrium user’s strategies we have to find the
derivative of vUi on Ti as follows:

∂vUi(T)

∂Ti
=

Lhi

LhiTi +
∑N
k=1,k 6=i hkTk + σ2

− C.

Then the inside components of equilibrium strategies can be
found as a solution of the equations:

(L− 1)hiTi =
Lhi
C
− σ2 −

N∑
k=1

hkTk.

It is clear that these equations do not have the nice property
of the equations (19) for the throughput control turning all
the Ti into zero simultaneously. That is why in power control
some user’s can be cut off from the network meanwhile in
throughput control either everybody has access to network
or nobody.

4.3 Optimal tariff for the service provider
Now turn our attention to the user’s throughput Ri(T).
Since by Theorem 5 we know the user’s equilibrium now
we find it easily as follows in closed form as follows:

Proposition 1. The optimal throughput are given as fol-
lows:
(a) if j ∈ [K + 1, N ] then

Ri(T)

= ln

1 +
LhiT i

(K +D(C))
(
σ2 +

∑N
j=K+1 hjT j

)
L− (K − 1)D(C)

− hiT i

 ,

(b) if j ∈ [1,K] then

Ri(T) = ln (1 +D(C)) = (U ′)−1(C),

where K is given by (16).

It is interesting that the users i, i ∈ [1,K] have the same
throughput meanwhile the throughput the rest users are dif-
ferent. So, the equilibrium for the user5s with big faded total
power hiT i is quite fair since all these users have the same
throughput. Thus, we have proved the following result sup-
plying the optimal tariff.

Theorem 6. The optimal tariff of provider in the Stack-
elberg tariff game with N users is given as follows

C∗ = argmaxC∈[0,C]Θ(C),

where

Θ(C) = C

[
K(C) ln (1 +D(C))

+

N∑
i=K(C)+1

ln

(
1

+
LhiT i

(K(C) +D(C))
(
σ2 +

∑N
j=K(C)+1 hjT j

)
L− (K(C)− 1)D(C)

− hiT i

)]
,

with K(C) ∈ [0, N ] is such that

aK(C)+1 ≤ D(C) < aK(C),

with sequence {ak} given by (17) and (18).
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Proof. By Theorem 5 the optimal Ti(C) has to have
the form given by (15) with K = K(C) given by (16), or,
what it is equivalent, by (23). Then the result follows from
Proposition 1 and the following obvious relation:

vP (C) = C

K(C)∑
i=1

Ri(T) + C

N∑
i=K(C)+1

Ri(T).

Given the theorem, we deduce two particular results where
first, none users choose to transmit with full power, i.e.
Ti(C) < T i for all i, second, where all users transmit with
full power, i.e. Ti(C) = T i for all i.

Proposition 2. In particular, we have the two following
extreme cases:

(a) if

D(C) <
LhNTN

σ2 + (N − 1)hNTN
(24)

then

Ti(C) < T i for any i. (25)

So, under condition (24) the user’s equilibrium is in-
side one,

(b) if

Lh1T 1

σ2 +

N∑
j=2

hjT j

≤ D(C) (26)

then

Ti(C) = T i for any i. (27)

So, under condition (26) in the equilibrium all the users
employ the total power.

Proof. By Theorem 5, (25) holds if and only if D(C) >
aN and the last inequality is equivalent to (24). Similarly,
(27) holds if and only if D(C) > aN and the last inequality
is equivalent to (26).

As a numerical example we considered five users plot (N =
5) with shifted α (α = 0.3, 1)-fairness utility and crosstalk
coefficient L = 2, the background noise σ = 2, the same
fading gain coefficient h = (1, 1, 1, 1, 1) and different total
powers T = (12, 11, 10, 9, T 5) where T 5 ∈ [0, 5]. Figure 8
demonstrates how appearing new user (the case T 5 = 0 is
equivalent to the situation where there is only four users) im-
pacts on tariff politics. Of course, this politics also depends
on the user’s utility.

We have the following result when users are symmetric,
i.e. hi = h and T i = T for all i.

Theorem 7. For symmetrical users (so, if hi = h and
T i = T for any i) the optimal tariff for the service provider
is

C∗ = argmaxC∈[C0,1]
C(U ′)−1(C).

Figure 9: The optimal tariff for T 5 ∈ [0, 5]

In particular, for utilities such that C(U ′)−1(C) is decreas-
ing in [C0, 1] how it takes place for utilities given by (2) the
optimal tariff is

C∗ = C0 := D−1

(
LhT

σ2 + h(N − 1)T

)
. (28)

Then, for α-shifted fairness utility the optimal tariff is

C∗ =
1(

1 + ln
(

1 + LhT

σ2+h(N−1)T

))α ,
which brings the following profit to provider

vP =
N ln

(
1 + LhT

σ2+h(N−1)T

)
(

1 + ln
(

1 + LhT

σ2+h(N−1)T

))α .
Of course the optimal profit of provider is increasing by num-
ber of users, but what it tends to L while N is increasing to
infinity.

Proof: If all the users equal, namely, hi = h and T i = T
for any i then the optimal strategy Ti(C) of user i for a fixed
tariff C is given as follows:

Ti(C) := T (C) =


T , C ≤ C0,

σ2D(C)
h(L− (N − 1)D(C))

, C0 < C < 1,

0, 1 ≤ C,

where C0 is given by (28).
So, the provider’s payoff is given as follows:

vP (C) =


CN ln

(
1 + LhT

σ2 + (N − 1)hT

)
, C ≤ C0,

NC(U ′)−1(C), C0 < C < 1,

0, 1 ≤ C.

Since vP (C) is increasing in (0, C0) and it is constant in
(1,∞) the result follows.
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5. CONCLUSION
In this paper we investigate the pricing mechanism with

the value of the tariff proportional to the throughput. Our
models shows what impact the user’s capabilities, network
quality and the user’s demands have on the tariff formation.
We show that the less demandable user rises up tariff and the
provider’s profit. We also demonstrate that the improving
quality of the network puts down tariff and increases the
provider’s profit. So, investing into new technologies that
can improve service are always good for the provider as well
as for the user. We show that larger user’s capability cuts
down tariff and increases the provider’s profit. We demon-
strate that less demandable user gets more satisfaction from
the network service and, of course, this satisfaction is in-
creasing with the network quality and intention to employ
it. We demonstrate that the expectation on the increasing
user’s capability can induce jumping reduction of the tariff
and increasing expected provider profit. Meanwhile impairs
expectation about increasing in user activity can increase
tariff and decrease expected provider profit. Finally, we ex-
tend our model to N users case and obtain its solution in
closed form. It is interesting to note that for power tar-
iff models [1], [6] lead to inefficient equilibrium behavior of
some users. Indeed, some of them at once can be cut off
from the network by high tariff meanwhile for the through-
put tariff model studied in this paper, it could happen only
for all the users at once. So, in the throughput tariff con-
text, providers have more motivation to keep all the available
users within its service and do not push them away to switch
to the other provider.
Theorem 7 allows to get also quite intriguing result for the
shifted α-fairness utilities. Since the optimal provider’s profit
with increasing number of user has a finite limit, namely, L
it tells that just attracting new users cannot increase profit
to provider essentially. The politics of attracting new users
are important, but to get bigger profit it is not enough. To
do so providers have to present to users new services users
agree to pay for. We are going to investigate this problem in
the future. Also we plan to consider multiuser scenario with
incomplete information and we plan to extend the current
N user model to the case of S-form utilities and a general
case of non-homogeneous utilities.
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