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ABSTRACT
Our goal is to achieve deeper understanding of the limita-
tion of queueing models, on one hand, and of common sim-
ulation practice, on the other hand, as tools for predicting
performance of bandwidth sharing between competing TCP
flows. In particular, we (i) present an overview of simulation
problems that are expected to arise due to the very heavy
tail of the distribution of the size of TCP flows, and (ii)
through simulations we show that the average sojourn time
of competing flows are quite sensitive to various network
parameters. The understanding that we get from the first
point allows us to better assess when are the conclusions
from simulation results on bandwidth sharing reliable.

Using simulations in ns2, we study bandwidth sharing un-
der various load factors and show the benefit of using boot-
strap as a post simulation tool for analyzing the simulation
results.

Keywords
M/G/1 queue. Processor Sharing. Simulation. Confidence
interval.

1. INTRODUCTION
In this paper we present a short overview of difficulties in

the evaluation of bandwidth sharing of TCP flows. We first
present an overview on the limitations of analytical tools
based on flow level queueing models. We then highlight the
difficulties in a simulation based approach.

The processor sharing queue has been perhaps the most
common model for bandwidth sharing of flows (having the
same RTT) of data transfer over the Internet [4], along with
the Discriminatory Processor Sharing queue [7] adapted to
the case of unequal round trip times. Several research groups
have examined its validity through simulations [17, 14, 11,
13]. The conclusions of the papers have not always been
encouraging. Indeed,

• Some papers support the modeling of flow level band-
width sharing through PS queues but find a gap be-
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tween the predicted PS model and the simulated model.
For example, in [11] the authors write: “We find that
the average bandwidth share from our model is close
to that obtained from a Processor Sharing (PS) model
assuming that the link speed is 75% of the actual link
speed.”

• In some papers the idea of using a processor sharing
type model is criticized. An example is [14] who study
processor sharing models in overload. The differences
between the simulation and the model’s predicted per-
formance goes up to an order of magnitude.

• A more refined model is presented in [23] with an
M/G/R PS queue: in that model, the flows do not
interact with each other, and the rate at which the
packets of each flow are served is not influenced by
the number of flows as long as their number is smaller
than R. Only when their number exceeds R, the total
capacity of the R servers is split equally among the
flows. For a small size of flows, it is found that the
model underestimates the simulations by a factor of
three.

The fact that different contradicting findings have ap-
peared on bandwidth sharing among competing Internet
flows can be due either to shortcoming related to simula-
tions and to their interpretation, or to shortcoming in the
modeling. As an example for the first possibility, we would
cite the authors of [11] who write concerning the heavy tail
distribution of the file sizes on the internet: “since a substan-
tial part of the distribution is in the tail, if the simulation
is not run for very long the average of the sampled file sizes
would be less than the nominal average, thus leading to a
lower offered load and hence overestimation of the through-
put.”

In order to understand the shortcoming of the processor
sharing queue as a model for bandwidth sharing we need first
to be able to obtain reliable comparisons to simulations or
to real measurements. For that, we need to accompany sim-
ulations with estimation of the confidence interval. The cen-
tral limit based confidence intervals may be quite misleading
or non-informative as the second moment of the number of
flows or of the workload in the system are infinite in station-
ary regime. We apply therefore an alternative approach to
derive confidence intervals and use bootstrap which allows
one to obtain more accurate estimation of the confidence
intervals and at the same time allows one to accelerate the
simulations.

2. BACKGROUND AND RELATED WORK
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In the following subsection we present a brief overview
of queueing based modeling of bandwidth sharing. They
include various papers that identified bad fit when compared
to simulations. The simulations themselves to which these
models are compared may be unreliable due to the heavy
tailed distribution of the flow sizes; this is discussed in the
following subsection. We then state the contribution of this
paper.

2.1 Modeling bandwidth sharing using proces-
sor sharing type queueing models

We have found both good as well as bad fit between the
processor sharing prediction for computing the sojourn times
and the values obtained by simulations. An extreme exam-
ple is [13] where an entire order of magnitude of difference is
reported between the two. Much better fitness is obtained
in some other such as [11], where the differences are of the
order of 10%.

2.1.1 Overload conditions
In [14] the authors study a link during a transient overload

with TCP connections. (Overload occurs during periods at
which the capacity of the bottleneck link is lower than the
rate at which new data is generated for connections that use
the bottleneck. More precisely, if new flows that use the
bottleneck keep arriving at a given rate, say λ per second,
and a flow average size (including overheads such as head-
ers) is s, then overload occurs if the bottleneck’s capacity is
lower than λs.) They consider the case where user behavior
doesn’t change with congestion, i.e., transfers are neither in-
terrupted nor reattempted. In first place they observe that
for different distributions of the size of the transferred file,
the number of concurrent connections to the link after con-
gestion starts, grows linearly in time and their slope grows
inversely with variance. This behavior is also seen in the
rate in which the number of concurrent ongoing flows grows.
Comparisons with the PS model show that TCP simulations
give much higher growth rates. This is explained by packet
retransmissions which affects the effective offered load, and
which are not modeled by the PS model.

In PS the increase rate of population overload is known
to be sensitive to the distribution of the arrival process
only through its mean. The authors show however that
there is some effect of the inter-arrival times distribution in
TCP concurrent connections growth rate, with worst per-
formances given by distributions with higher variances. The
authors say that this behavior can be explained by the slower
service rate of transfers arriving in bursts, which stay longer
in the system.

It is also observed that for normalized sojourn time, TCP
performance degrades at least an order of magnitude faster
than PS when files grow in size. This ratio remains constant
for all sizes evaluated, thus long connections are as affected
as short ones.

For short connections, it is seen for those smaller than
3 packets (packets of 1500 bytes) that sojourn times con-
verge very fast in median to less than 0.5 seconds, but 90%
of the connections are below 3 seconds. For slightly larger
connections (between 4 and 15 packets), the median is ap-
proximately 2.5 seconds while the 90th percentile is more
than 15 seconds. This shows that short connections that
take long to finish should be restarted as they will finish
faster this way.

In the PS model, the normalized transfer time tends to
a deterministic limit that grows exponentially in the size of
the file transferred. In this paper, simulations show that
even after one hour of congestion normalized transfer times
are far from converging, with very high variability specially
in small connections. This means that small transfers do
not take advantage of their size to finish before longer ones
as they do in a PS queue. The authors feel that reducing
the dispersion of transfer times will improve performance,
specially for short connections.

2.1.2 Other models
The M/G/R PS model is used in [23] to study the sojourn

time as a function of the file size for one fixed value of RTT.
This model underestimates the results of simulations by a
quantity that remains quite constant as the size of the file
grows. The relative error is seen to be obtained when the
size of the file is the smallest. In particular, for the smallest
file size considered, the authors find that the model under-
estimates the simulations by a factor of three.

In [17] the authors consider non symmetric RTTs. They
develop a DPS (Discriminatory Processor Sharing) queue
model for TPC in the overload regime and test it with sim-
ulations in ns2. They obtain an agreement between the ex-
pected and the simulated result (with an error of around
10%).

2.2 Simulation involving flows with heavy tailed
size distribution

The expected sojourn time of a customer in a processor
sharing queue is known to be insensitive to the file size dis-
tribution (it depends on the distribution only through the
expectation). Its variance, however, is not insensitive any-
more, and in particular, it is infinite when the service time
of a client (or equivalently in our setting - the size of a file
that is transferred) has an infinite second moment [3].

The size of a data transfer over the Internet is known
to be heavy tailed [12]. (This is the case for both FTP
transfers as well as for the “on” periods of HTTP transfers).
Among several candidates for modeling the distribution of
these transfers, the Pareto distribution with parameter be-
tween 1.05 and 1.5 has been the one that gave the best fit
with experiments for the last twenty years, see [8, 2, 6, 15].

This very heavy tail has been causing various serious prob-
lems for simulations of data transfers.

An important problem is in the reliability of the results.
Standard approach to assess it involve the central limit based
confidence intervals. However, this approach is not directly
applicable whenever the variance is infinite, which is the
case with the stationary sojourn time of a data transfer flow
(having a Pareto distribution with a shape parameter K
lower than 2). A second problem is the very long duration
of simulations needed in order to get good precision.

We present a brief overview of simulation problems en-
countered in the context of bandwidth sharing among TCP
flows

• The authors of [11] write: “since a substantial part of
the distribution is in the tail, if the simulation is not
run for very long the average of the sampled file sizes
would be less than the nominal average, thus leading
to a lower offered load and hence overestimation of the
throughput.”

• Due to the last points one may have problems in inter-
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pretation of simulation results . Indeed, various papers
in which sharing bandwidth is modeled by processor
sharing report differences between the expected theo-
retical value and the simulation value [13, 14, 11, 17]
that vary from around 10% in [11] and go up to a factor
of 10 in some situations in [13]. When such deviations
occur, it is important to know whether they can be
due to the imprecisions in the simulation or to real
phenomena.

• The warm-up time is extremely long, see [9].

• One way to avoid heavy tails is to truncate them. This
is in spirit of the suggestion in the paper “Difficul-
ties in simulating queues with Pareto service” [10] that
says: “Since for any finite simulation run length, there
is always a maximum value of the random variables
generated, we, in actuality, are simulating a truncated
Pareto service distribution. It has also been argued that
there is always a maximum file size or claim amount
so, in reality, we are always dealing with truncated dis-
tributions.” But where should we truncate the distri-
bution? Truncation at some size M would be valid if
the difference between performance with truncation at
any other value L that is greater than M has a negli-
gible impact on performance. Simulating with a trun-
cated Pareto distribution may not be sufficient and
several other tests of truncation at larger threshold
values may be needed. Other approaches are to ap-
proximate Pareto with Lognormal or to treat the data
from heavy-tailed simulations as transient [24].

2.3 Our contributions
We have presented the background and the work related

to the use of processor sharing queues to model bandwidth
sharing at the Internet on the flow level. We have put
forward the disagreements and the debate related to that
model. We also summarized the difficulties in simulating
or in interpreting the simulation results due to the heavy
tail nature of Internet traffic. The contributions of this pa-
per are first in proposing and testing statistical methods for
preprocessing the simulation results that have not been used
much in networking. Indeed,

• Confidence Intervals : We use the quantile based
approach as an alternative to the central limit based
approach for obtaining the confidence intervals. The
central limit approach is not directly applicable when-
ever the variance is infinite, which is the case with
the stationary sojourn time of a data transfer session
(having a Pareto distribution with a shape parameter
K lower than 2).

• We then apply this approach directly to the simulation
of competing non-persistent TCP transfers of files that
have heavy tail distribution. We compare the simula-
tion results to those obtained for the processor sharing
queue. We identify various reasons for the deviation of
the behavior of TCP from the ideal processor sharing
model and manage to quantify the impact of some of
these.

Structure of the paper
In Section 3 we present our approach concerning the use
of simulation to estimate the average number of packets in

the processor sharing queue. We then present in Section 4
simulations of TCP connections that share a common bot-
tleneck link and compare the precision that can be obtained
(with and without the bootstrap approach) to the precision
obtained in simulating the processor sharing queue. We pro-
vide explanations for the differences between the TCP sce-
nario and its corresponding processor sharing model. A con-
cluding section summarizes the paper. An appendix presents
some background on Bootstrap and on quantile based con-
fidence intervals.

3. SIMULATING THE QUEUE SIZE OF A
PROCESSOR SHARING QUEUE

Through a series of simulations performed in JAVA (avail-
able from the authors by request) we exhibit the power of
the bootstrap approach: its ability to increase the precision
of the simulation of Internet traffic that is throttled by some
bottleneck link and at the same time decrease the required
duration of the simulation. In this section we restrict our-
selves to study of the processor sharing queue which had
often been proposed as a model for TCP transfers sharing a
bottleneck link in the Internet. A TCP flow is then repre-
sented by one customer in the PS queue.

Below we used the PS queue with a Poisson arrival pro-
cess with a rate of λ = 1 customers per second. (A customer
represents a file when the processor sharing queue is used to
model file transfers). We consider three service time dis-
tributions: Pareto with shape parameter 1.5, Pareto with
shape 2.5, and exponentially distributed. We vary the aver-
age service time σ so as to obtain an average load ρ = λσ
that takes the values 0.6 and 0.7.

Each one of the figures below correspond to the queue
size of the processor sharing averaging over 100 independent
samples. When considering the PS queue as a model for
bandwidth sharing in the Internet, the queue size should be
interpreted as the number of ongoing flows.

The duration of each simulation is 6·106 sec and there is
a warm up time of 300000 sec. In each one of the scenarios
described in Figure 1, we present:

1. the theoretical steady state expected queue size

2. the value obtained by the simulations

3. the confidence interval corresponding to a 95% per-
centile, obtained using the quantile method, and

4. the confidence intervals corresponding to a 95% confi-
dence level after applying the bootstrap method.

We took 100000 resamples out of our 100 original samples
for the bootstrap.

Figure 1 displays the precision of the simulations with
and without the bootstrap approach for ρ = 0.6 (up) and
ρ = 0.7 (down). The left subfigures are for an exponential
distributed service time, the middle and right ones are for a
Pareto distributed service time with parameter K = 2.5 and
K = 1.5, respectively. The average service time is the same
in the all three sub-figures corresponding to the same ρ. (It
was chosen so that indeed ρ = λ · σ will have the values 0.6
and 0.7, respectively.)

We observe the following points from the simulations:

• The simulations show well the insensitivity of the PS
regime to the service time distribution. Indeed, in each
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Figure 1: Average number of flows with ρ = 0.6 (up) and ρ = 0.7 (down). Exponential distribution (left) and
Pareto distribution with parameter K = 2.5 (middle) and K = 1.5 (right)

set of simulations having the same load ρ, we see con-
vergence to the same average rate for the exponential
case, the Pareto distribution with parameter K = 2.5
and for the Pareto distribution with K = 1.5.

• The 95% confidence interval without bootstrap is around
10 times larger than that of the bootstrap (which es-
tablishes clearly the advantage of using it). This is
seen to hold for any duration of the simulation.

• We see that the confidence interval are around 10 times
smaller in the case of exponential and Pareto with
shape parameter of 2.5 than in the case of Pareto shape
parameter 1.5. This can be expected since the tail of
the latter distribution is much heavier.

• Duration of the simulation: For all three distributions,
and for the different loads, we see that the precision
obtained with bootstrap after already 400000 sec is
more than three times better than that without boot-
strap after we see that even after 6 million seconds.
It thus seems that to get the same precision without
bootstrap, one would need to use simulations much
longer than 15 times as much as with bootstrap.

4. SIMULATING TCP CONNECTIONS
We compare in this section simulations that we performed

with ns2.33 of TCP flows with the simulation of the pro-
cessor sharing queue. The network we simulate is given in
Figure 2.

Figure 2: Network Topology

We took 200 input links, each of speed 100 Mbps. The
packet size was taken to be 1 KByte. The average flow size
was taken to be 200 KBytes. The total round trip delay is
0.4 msec. We simulate the New Reno version without the
delayed Ack option. The maximum window size is of 20
packets, which is the default size of ns2. We later change
this value.

To make comparisons between precision of simulations
that have different event rates and different averages, we
find it convenient to normalize the confidence interval. we
used the estimated relative half-width (ERHW) of the con-
fidence interval defined as half the difference between the
upper and the lower values of the interval divided by the
average value.

4.1 Bootstrap and the confidence interval
We are interested in comparing confidence intervals ob-

tained with bootstrap when simulating a processor sharing
queue, on one hand, and when simulating TCP, on the other
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hand.
Figure 3-5 depict the comparison for ρ = 0.6 and 0.7, the

first Figure reports simulations for the exponential distri-
bution and the other two are for Pareto distribution with
parameter K = 2.5 and K = 1.5, respectively. Each subfig-
ure contains four curves: The precision (ERHW) obtained
by using bootstrap with TCP; The precision (ERHW) ob-
tained in simulating TCP without the bootstrap; The same
for simulating the processor sharing queue.
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Figure 3: ERHW for exponentially distributed flow
size. ρ = 0.6 (left) and ρ = 0.7 (right).
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Figure 4: ERHW for Pareto distributed flow size
with K=2.5; ρ = 0.6 (left) ρ = 0.7 (right)
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Figure 5: ERHW for Pareto distributed flow size
with K=1.5; ρ = 0.6 (left) and ρ = 0.7 (right)

4.2 Some insight on the bias
As already mentioned, many papers already studied the

question of how good a processor sharing queue is able to

model bandwidth sharing by TCP connections, see e.g. [13,
14, 11, 17]. They all reported some differences between the
expected theoretical value predicted by the processor sharing
queue and the simulated value obtained by TCP flows. All
reported that for a given load ρ, the actual TCP throughput
corresponded to a processor sharing queue with a higher
value of ρ. The reported differences vary from around 10%
in [11] and go up to a factor of 10 in some situations in [13].

In this section we try to contribute to understanding where
the differences come from. We list some of our findings and
some recommendations in order to reduce these differences.

4.3 Packet sizes
In ns2, packet sizes are fixed. If we use a probability

distribution that has a continuous support (such as the ex-
ponential or the Pareto distribution) for the file size, then
the actual file size will be a little longer since the last packet
will be rounded up. In some applications (see [1]), the aver-
age TCP transfer size is around 8-12 KBytes, so if packets of
length 1.5 Kbytes are used then the rounding error which is
of 0.75 KBytes in the average, will contribute to an increase
in ρ of around 7-10 %.

A second source of underestimation of ρ is that in many
variants of the ns simulator, when we declare the size of the
packet we wish to use then the actual packet size will get 40
bytes added (representing the extra IP and TCP headers).
With a packet size of 1 KBytes this will contribute to yet
another 4 % underestimation of ρ.

We have incorporated the above considerations in the sim-
ulations reported in this paper.

4.4 Burstiness and vacations
Server vacations: It may occur quite frequently that the

bottleneck queue is empty but there is at least one ongoing
flow. The likelihood of this event increases as the bandwidth
delay product increases. Note that for a given ρ, the proba-
bility that the system is empty (no flows) is expected to be
1-ρ, so due to the PASTA property, the probability that an
arriving flow would find the system empty is also 1-ρ. As
long as the arriving flow is the only one in the system, and
as long as it is in the slow start phase, the queue at the bot-
tleneck is often empty and the server is then not busy. This
can be modeled as a vacation which results in an increase
in the workload in the system (as compared to the case in
which the server is not on vacation).

Burstiness: We have evidence from simulations that TCP
traffic can be quite bursty: many successive packets can be-
long to the same connection [16]. We suspect that the larger
this burstiness is, the less we can use the processor sharing
discipline as a model for the flow level evolution; the lat-
ter becomes closer to the FIFO discipline. Note that with
the Pareto file size distribution with K = 1.5, the expected
number of customers in a FIFO M/G/1 queue is infinite for
every ρ > 0. Thus this could explain a larger number of
flows.

4.5 Maximum window size
TCP is a window based protocol for reliable communi-

cation and congestion control. Each time it has a packet
to send, it stamps the packet with a sequence number. To
ensure reliability it uses Acknowledgements from the desti-
nation to learn about possible losses of packets. The window
size indicates the maximum number of packets it can send
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before receiving an acknowledgement. The larger the win-
dow is, the larger the transmission rate is. In absence of con-
gestion (i.e. as long as Acknowledgements arrive regularly
and losses are not detected) the window size keeps growing,
until it reaches a maximum size. The default value for this
size is 20 packets in ns2. The larger the maximum value is,
the more we can expect the connection to be bursty, so we
can expect to a larger average number of flows as argued in
Section 4.4.
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Figure 6: Average number of ongoing flows as a
function of the max TCP window size.

We have tested through simulations the impact of the
maximum TCP window size on the expected number of on-
going flows and discovered that the latter is indeed sensitive
to the maximum window size. The larger the maximum
window size is, the larger is the average number of ongoing
flows and the average transfer time of a connection. This
could perhaps be explained by the burstiness.

We present below our experiments on the impact of the
maximum window size on the average number of active flows
as well as on other parameters.

Figure 6 reports on the empirical distribution of the aver-
age number of ongoing flows as a function of the maximum
TCP window size.

For each value of maximum window size, we did 20 simu-
lations. Each simulation lasted till 2000000 arrivals of flows
occurred. The 600000 first flows were ignored (this was the
warm up time). The other parameters of the simulations are
as in Section 4.1.

For each value of maximum window size, we give the em-
pirical probability density of the average number of flows.
This is described by the contour of the beanplots (that rep-
resents the histogram). Each white bar inside a beanplot
represents the average size in one of the twenty simulations.
The black bar that traverses each one of the beanplot gives
the average obtained from the set of 20 simulations. The
dotted horizontal line gives the theoretical average number
of customers in the corresponding processor sharing queue.

As we can see, the expected number of ongoing TCP flows
that fully agrees with the processor sharing model is the one
obtained with a maximum window size of 8. All other val-
ues of maximum window size below 20 gave deviations not
greater than 10% with respect to the theoretical value. How-
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Figure 7: Max number of ongoing flows as a function
of the max TCP window size.
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Figure 8: Fraction of arrivals of flows that found the
system non-empty upon arrival

ever, we see that for a maximum size of 100, the expected
number of flows is almost double the theoretical value.

Figure 7 reports on the empirical distribution of the max-
imum number of ongoing flows that were present simultane-
ously at some time during the simulation, as a function of
the maximum TCP window size. Note that unlike the case
of average sizes, in which each sample average takes another
value, the number of different values of the maximum num-
ber of flows that we had within our simulations takes finitely
many values, and some values appear several times during
the simulations. The number of times that a value appears
in the simulations is represented by the length of a white
line (and when this value is so large that the line exceeds
the boundary of the beanplot, then the bar continuous in
black).

Figures 8-9 reports on the empirical distribution of the
fraction of arrivals of flows that found the system non-empty
upon arrival, and the fraction of arrivals that found the bot-
tleneck queue non-empty. The difference between these in-
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Figure 9: Fraction of arrivals that found the bottle-
neck queue non-empty, as a function of the maxi-
mum window size.

dicate that from time to time there are no transmissions and
yet there are ongoing flows. We shall return to that point
towards the end of the section.

4.6 Buffer size
The buffer size at the bottleneck queue turned out to be

yet another factor that has an influence on the average num-
ber of ongoing flows. With a maximum window size of 8 and
with ρ = 0.6, the size of the buffer for which we obtained
full agreement of the average number of flows with the the-
oretical value (of 1.5) given by the processor sharing was 64.
However, we observe that the simulations give good approx-
imations for any larger value of the buffer size, see Figures
10-11. In both figures the largest value of buffer size that
we tested was of 1 million packets. We write “INF” in the
curves for “Infinite buffer” since with the size of 1 million
we had no packet losses, so any buffer of larger size than 1
million would give the same results in this simulation.

The second of these figures uses bootstrap which is seen
to result in a considerably better precision.

To understand the deviations from the theoretical value
we measure the fraction of time that the queue is empty but
there are ongoing flows. We took a maximum window size
of 8, ρ = 0.6, K = 1.3. We obtained around 8% for the case
of buffer size of 12 packets, and 0.36% for a buffer of size 64.

We thus attribute the large deviations from the theoreti-
cal value to many losses that occur and that result in large
periods during which the queue is empty although there are
ongoing flows. During these times, the processor sharing
queue has “service vacations” and the theoretical results for
a queue without vacation are not valid anymore.

This phenomena is countered when using a smaller value
of the window sizes and therefore in spite of small buffers one
gets better agreement with theoretical results if the maxi-
mum window size is smaller.

Note that the “rule of thumb” for selecting buffer size as
the bandwidth delay product would give a value of 2 packets
in our case which gives values of number of flows much larger
than the theoretical value predicted by the processor sharing
queue.

For ρ = 0.7 we obtained very similar results. The theo-
retical average number of flows in a processor sharing queue
is 2.33. For a maximum window size of 8 we obtained the
following values for the average number of flows: 7.41, 3.723
and 2.423 for a buffer of size 12, 24 and 64, respectively.

5. CONCLUSIONS
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Figure 10: Average number of ongoing flows as a
function of the queue size. CI are obtained by the
quantile approach.

We have studied in this paper the benefits that the boot-
strap method can bring to the simulations of internet traffic
sharing a common bottleneck link, and more generally, of
the processor sharing queue with heavy tailed service times,
which has served as a model for TCP sharing common re-
sources. We found out that due to problems which arise
when the central limit theorem cannot be applied, the boot-
strap method to calculate confidence intervals is a practical
alternative that, at the same time, has the aggregated bene-
fit of substantially shortened simulations. We have analyzed
the discrepancy between the results predicted by using the
processor sharing queue and those obtained by simulating di-
rectly the short lived TCP connections that share a common
bottleneck queue. We identified various possible reasons for
the discrepancy and provided some recommendations that
can help understand and minimize them.
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7. APPENDIX: BOOTSTRAP
Bootstrap is a method created by Efron[20] for non para-

metrical estimation. Let θ be a parameter of a completely
unspecified distribution F , for which we have a sample of
i.i.d. observations X1, . . . , Xn, and let θ̂ be the estimation
made of the parameter. From the sample, we will make k
resamples with replacement, X∗

1,j , . . . , X
∗
n,j ∀j = 1, . . . , k,

with each element having probability 1/n of being selected,

and for each resample an estimator θ̂∗j will be calculated.

By Monte Carlo approximation, the distribution of θ̂ is then
estimated by the distribution of θ̂∗. When k →∞, the esti-
mation of θ̂ will be better and, in turn, the real distribution
of θ will also be better estimated. We note that the time and
memory overhead for resampling and performing the boot-
strap algorithm are often much smaller than the ones needed
to create more samples, and can be performed within a very
short amount of time. Singh [22], and Bickel and Freed-
man [19] are good references to understand the asymptotic
characteristics of the bootstrap.

Remark. An alternative way to accelerate the simulations
is the important sampling or more generally, variance re-
duction techniques, see e.g. [25, Chap 4] for a general intro-
duction. They are different than the bootstrap approach in
that they are based on simulating another model (e.g. use a
larger load in order to obtain better estimate of a rare event
of reaching a large queue size). Then some knowledge of the
system is needed in order to transform the simulated results
of the new model to that of the original one. The boot-
strap method that we study is a post-simulation approach:
it concerns statistical processing of simulated traces. It can
be used on top of variance reduction techniques when they
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Algorithm 1 Bootstrap algorithm for estimating the mean
queue size

1. Make n simulations of the queue size and let Xi, ∀i =
1, . . . , n, be the estimation of the parameter of interest
obtained from each simulation.

2. For j = 1, . . . , k do:

(a) Let X∗
1,j , . . . , X

∗
n,j be a resample, with replace-

ment, taken from X1, . . . , Xn.

(b) Let θ̂∗j = n−1 ∑n
i=1X

∗
i,j .

3. Calculate θ̂∗ = k−1 ∑k
j=1 θ̂

∗
j , the Monte Carlo approx-

imation of the bootstrap estimation of θ.

4. Calculate confidence intervals for θ̂∗ using the quantile
method.

are available.

Quantile-based confidence interval
Assume we wish to obtain the confidence interval of the
estimation of some parameter of a simulated process Xt.
The quantile approach to derive confidence intervals is based
on running a number N of i.i.d. simulations (each simulation
corresponds in our case to the queue length process or to
functions of this process). We then use these to compute the
empirical distribution of the function of the random variable.

For (1 − α) · 100% confidence level, the (1 − α) · 100%
confidence interval by the quantile method is the interval
between the (α/2) · 100- th and the (1−α/2) · 100-th points
of the sorted sample.
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