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ABSTRACT
Self-organizing networks (SON) is currently seen as a key
lever to improve network performance and simplify its man-
agement. This paper considers α-fair schedulers in an Or-
thogonal Frequency-Division Multiple Access (OFDMA) net-
work. The convergence of the α-fair scheduler is analyzed.
Closed-form formulas are given for certain cases to calculate
the scheduling gain, as well as a Monte-Carlo method, for
a MIMO channel. A capacity-coverage algorithm based on
the α-fair schedulers using observable Key Performance In-
dicators (KPIs) is proposed. The algorithm is implemented
in a large scale network simulator. It is shown that notable
coverage gains are achieved at the expense of very small ca-
pacity losses.

Keywords
Self-Optimizing Networks, OFDMA, MIMO, scheduling gain,
α-fair.

1. INTRODUCTION
SON receives increasing importance in Next Generation (NG)
Radio Access Networks (RAN) such as Long Term Evolution
(LTE), LTE Advanced and WiMax 802.16m,([2], [1]). SON
mechanisms including self-configuration, self-optimization and
self-healing will allow to simplify network management, re-
duce its cost of operation, and improve its performance. A
detailed description of the requirements for SON mecha-
nisms can be found in [11].

Self-optimization aims at adapting the network to varia-
tions in traffic, in propagation conditions and other oper-
ation conditions such the introduction of a new Base Sta-

∗This work has been partially supported by the Agence Na-
tionale de la Recherche within the project ANR-09-VERS0:
ECOSCELLS.

tion (BS). It is used to dynamically adapt radio resource
management functionalities such as Inter-Cell Interference
Coordination (ICIC), mobility management, and more re-
cently, energy saving [3]. Self-optimization processes can
enhance the perceived Quality of Service (QoS) and net-
work performance, and provide a lever to enforce operator
business strategies.

On-line self-optimization algorithms have to meet strict re-
quirements in terms of processing speed, and must be im-
plemented in the control plane in a distributed and scalable
fashion in order to be in line with the distributed architec-
ture of future RANs. Their stability is also a crucial ques-
tion. Off-line self-optimization algorithms operate on slower
time scales with less constraints: they can be centralized
and use data from both management and control planes.

One of the challenging problems in SON is coverage-capacity
optimization, i.e. designing self-optimizing algorithms that
achieve optimal trade-offs between coverage and capacity. It
can be seen as a form of fairness: we consider a service in
which users have a minimum bitrate requirement to ensure
good QoS, and we try to satisfy the maximum number of
users while minimizing the corresponding capacity losses.

Different mechanisms can be considered to dynamically im-
prove coverage and capacity, such as ICIC ([15], [6]), schedul-
ing [5], and the combination of such mechanisms. In a previ-
ous work, we have shown how the scheduling strategy can be
dynamically adapted to optimize coverage and capacity in
the downlink of a Time Division Multiple Access (TDMA)
network [5]. The α-fairness framework has been considered
for the self-optimization algorithm that optimizes the num-
ber of covered users while minimizing the associated capacity
losses. To evaluate the performance of the scheduler for a
specific α-fair parameter in a network simulator, one needs
to compute the scheduling gain.

The objective of this paper is to provide new results on α-
fair scheduling in the context of OFDMA systems and use
the resulting model to devise a self-optimization algorithm
based on the α-fair scheduler. The paper contributions are
the following:

• the scheduling rule for an α-fair OFDMA scheduler is
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stated;

• the calculation of the scheduling gain is introduced for
a MIMO channel;

• the optimality of the scheduling scheme is demonstrated;

• the self-optimizing algorithm for coverage-capacity op-
timization is presented and is tested on a large scale
network simulator.

The paper is organized as follows: Section 2 presents the α-
fair scheduler for an OFDMA system, including a heuristic
justification for the scheduling rule. Section 3 describes the
fast fading Multiple Input Multiple Output (MIMO) channel
model using the Vertical Bell Labs Space-Time (V-BLAST)
architecture, and an approximation of the asymptotic capac-
ity distribution using the random matrix theory. The main
steps for proving the optimality of the α-fair allocation rule
for an OFDMA system are summarized in Section 4. Section
5 describes the methodology for calculating the scheduling
gain for the α-fair scheduler. Section 6 proposes a coverage-
capacity self-optimization algorithm, followed by simulation
results in Section 7. Section 8 concludes the paper.

2. ALPHA-FAIR SCHEDULING

2.1 Definitions and notations
We consider a cell of an OFDMA network such as LTE or
WiMAX with N users, and the total available bandwidth W
is divided inK Physical Resource Blocks (PRBs). We have a
set of scheduling instants (tm)m∈N, and at each instant tm,
a scheduler chooses a user for transmission on each PRB.
We define the scheduling policy P , with P

(k)
tm

= i if user i is

selected at time tm to transmit on PRB k. We define r
(k)
i,tm

the instantaneous throughput of user i at time tm on PRB

k, and r
(k)
i,tm

the mean throughput allocated to user i during
the time interval [t0, tm] on PRB k. We denote the Signal
to Interference plus Noise Ratio (SINR) of user i on PRB k

by S
(k)
i . Let ǫ > 0 denote a small averaging parameter and

define r
(k)
i,tm

by the following recursive equation:

r
(k)
i,tm+1

= (1− ǫ)r
(k)
i,tm

+ ǫδ
P

(k)
tm+1

,i
r
(k)
i,tm+1

(1)

δ being Kronecker’s delta.

This definition for the mean allocated throughput is better
than the one using an arithmetic mean (by replacing ǫ in (1)
by 1

m
) because it induces a ”decay” of past observed values.

If we assume that r
(k)
i,t0

= 0 ∀(i, k), equation (1) can also be
written:

r
(k)
i,tm

= ǫ
m
∑

j=0

(1− ǫ)m−jδ
P

(k)
tj

,i
r
(k)
i,tj

(2)

Finally, we define ri,tm -the mean throughput allocated to
user i during the time interval [t0, tm] by:

ri,tm =
K
∑

k=1

r
(k)
i,tm

(3)

2.2 α-fair scheduler
We define the α-fair scheduler as in [10]. Let M be a given
number of scheduling periods. The α-fair scheduler is the
allocation strategy that maximizes the following utility func-
tion (with d > 0 a small parameter to avoid singularity at
0):

U =



























N
∑

i=1

log(d+ ri,tM ) , α = 1

N
∑

i=1

(ri,tM + d)1−α − 1

1− α
, α 6= 1

(4)

2.3 Scheduling rule
The maximization problem (4) is a priori non trivial, so we
first give a heuristic justification for the scheduling strategy.
The rigorous proof of the optimality of this rule will be given
in Section 4. Choosing user i for transmitting at time tm+1

on PRB k results in the following increase of utility:

For α = 1:

log
(

(1− ǫ)ri,tm + ǫr
(k)
i,tm+1

+ d
)

− log(ri,tm + d)

= ǫ
r
(k)
i,tm+1

− ri,tm

ri,tm + d
+ o(ǫ) (5)

The utility decrease for the other users is:

log ((1− ǫ)ri,tm)− log(ri,tm) = −ǫ ri,tm
ri,tm + d

+ o(ǫ) (6)

We add (5) and (6):

(∆U)i = ǫ(
r
(k)
i,tm+1

ri,tm + d
−

N
∑

l=1

rl,tm
rl,tm + d

) + o(ǫ) (7)

If α 6= 1, the utility increases by:

1

1− α

[

(

(1− ǫ)ri,tm + ǫr
(k)
i,tm+1

+ d
)1−α

− (ri,tm + d)1−α

]

= ǫ
r
(k)
i,tm+1

− ri,tm

(ri,tm + d)α
+ o(ǫ)

(8)

And the other utilities decrease by:

1

1− α

[

((1− ǫ)ri,tm + d)1−α − (ri,tm + d)1−α
]

= −ǫ ri,tm
(ri,tm + d)α

+ o(ǫ) (9)

We add (8) and (9):

(∆U)i = ǫ

[

r
(k)
i,tm+1

(ri,tm + d)α
−

N
∑

l=1

rl,tm
(rl,tm + d)α

]

+ o(ǫ) (10)

Therefore, for ǫ small enough, the optimal user to schedule
for transmission at time tm+1 on PRB k is:

i∗(k) = arg max
0≤i≤N

r
(k)
i,tm+1

(ri,tm + d)α
(11)
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In the case of α = 1, the rule becomes the well-known Pro-
portional Fair (PF) scheduler: we choose the user with the
best instantaneous throughput to average throughput ratio.

3. MIMO CHANNEL

3.1 MIMO capacity
MIMO systems have received much attention since the sem-
inal work of Telatar ([13]), and future LTE networks are
expected to feature at least MIMO 2×2 (2 receive antennas
and 2 transmit antennas). We use the following notations:
let nt denote the number of transmit antennas, nr - the num-
ber of receive antennas, Inr - the nr×nr identity matrix, H
- the nr × nt channel matrix. We assume that all entries of
H are standard complex normal random variables and are
all independent. We consider the V-BLAST architecture
in which the transmitter does not know the instantaneous
channel realization, but knows its distribution. With the
model we are considering for H, the instantaneous capacity
of user i on PRB k for a given channel realization H is then
(see [14](p337)):

C
(k)
i = log2

[

det

(

Inr +
S

(k)
i

nt

HH∗
)]

(12)

The ergodic capacity is then E[C
(k)
i ].

3.2 Asymptotic distribution of the capacity
It has been shown in [8] that with the previous assump-
tions the capacity is asymptotically normal when nmin =
min(nt, nr)→ +∞, with the following mean and variance:

(C
(k)
i − ntµ

C
(k)
i

)→ N (0, σ2

C
(k)
i

) (13)

β =
nr

nt

α =
1

2






1 + β +

1

S
(k)
i

−

√

√

√

√

(

1 + β +
1

S
(k)
i

)2

− 4β







µ
C

(k)
i

=
1

log(2)

[

β log(1 + S
(k)
i − S

(k)
i α)

+ log(1 + S
(k)
i β − S

(k)
i α)− α

]

σ2

C
(k)
i

= −
log
(

1− α2

β

)

log(2)2

We now compare the distribution of the capacity of a MIMO
channel with its asymptotic distribution given by (13), for
nt = nr = 2. We draw the H matrix 10000 times and cal-
culate the corresponding capacity distribution with formula
(12), which we compare to the Gaussian distribution with
mean and variance given by (13). Figure 1 shows the com-
parison of the mean of the two distributions for different
values of the SINR. Figure 2 shows the comparison of the
cumulative distribution function (c.d.f) of the two distribu-
tions for a SINR of 5dB. We can see on those two figures
that the values obtained by the Gaussian approximation are
very close to the simulated values obtained by drawing H
matrices. Hence approximating the distribution of the ca-
pacity by a Gaussian distribution is reasonable, even when
nt = nr = 2.
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Figure 1: Mean capacity for a MIMO 2x2, compar-
ison between asymptotic distribution (13) and sim-
ulations.
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Figure 2: c.d.f for a MIMO 2x2, comparison be-
tween asymptotic distribution (13) and simulations,
for SINR 5dB.
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3.3 MIMO and OFDMA
We assume that r

(k)
i,tm

is distributed like C
(k)
i , and that r

(k)
i,tm

is independent of r
(k)
j,tm

∀k, ∀tm and r
(k1)
i,tm

is independent of

r
(k2)
i,tm
∀i, ∀tm.

The independence in time is a valid assumption if the time
interval between two scheduling instants tm+1 − tm is large
enough as stated in [7]. Namely, the autocorrelation of
the channel fading between t and t + τ is J0(ωMτ), where
J0 is the 0-th order Bessel function and ωM the maximum
Doppler shift, and |J0(x)| →

x→+∞
0. Independence between

PRBs holds as long as the Doppler shift v
λ

is very small
compared with the size of a PRB, with λ the wavelength
and v the speed of the mobile. For a frequency of 1GHz,
and v = 10km/h, v

λ
= 9Hz, which is way smaller than the

size of a PRB.

4. CONVERGENCE ANALYSIS

4.1 Stochastic Approximation
In this section we give a convergence analysis of the α-fair
scheduler, based on the demonstration given in [5] for the
TDMA case. We begin by stating stochastic approxima-
tion results that link the α-fair scheduler with the asymp-
totic behavior of a particular Ordinary Differential Equa-
tion (ODE). We consider n users, and use the following
conventions: if (x, y) ∈ R

n × R
n, we say that x ≤ y if

xi ≤ yi, 1 ≤ i ≤ n. We denote by xy the component-wise
product of x and y i.e (xy)i = xiyi, 1 ≤ i ≤ n.

The following notations are used: let (a, b) two vectors of
R

n, Q = {x ∈ R
n|a ≤ x ≤ b} and ΠQ[x] = argmin

y∈Q

||x − y||
the projection on Q with respect to the Euclidean norm. Let
θ ∈ R

n, (ǫtm)m∈N be a sequence of step-sizes, (Ytm(θ))m∈N, a
sequence of random variables in R

n and g a function defined
by E[Ytm(θ)] = g(θ). We then define the sequence (θtm)m∈N

by the following equation:

θtm+1 = ΠQ[θtm + ǫtmYtm(θtm)] (14)

We assume the following: (Ytm(θ))m∈N are independent and
identically distributed (i.i.d), supθ E[Ytm(θ)2] < +∞ and all

solutions to the ODE
.

θ = g(θ) converge to θ∗ in the interior
of Q, for all initial conditions. If those assumptions are
verified we have that ([9] (Theorem 2.1, page 127) and [4]
(Theorem 3, Page 106)):

Theorem 1. If ǫtm > 0 ,
∑

m∈N
ǫtm = +∞ and

∑

m∈N
ǫ2tm < +∞ then θtm →

m→+∞
θ∗ almost surely.

Theorem 2. If ǫtm = ǫ > 0, then there exists a constant

K1 > 0 such that lim sup
m→+∞

E[||θtm − θ∗||2] 12 ≤ K1
√
ǫ

4.2 α-fair scheduling
We can see that the α-fair scheduler is a particular case
of (14), with Q = (R+)n, ǫtm = ǫ > 0, (θtm)i = ri,tm ,

1 ≤ i ≤ n, and Ytm =
∑K

k=1 r
(k)I

argmax( r(k)

(d+θ)α
)
where r(k)

is a random vector distributed like the throughput of all
users at time tm on PRB k and (Ii) the vector in R

n whose

components are all equal to 0 except the i-th which is equal
to 1. The ODE is then:

.

θ = h(θ)− θ (15)

Where h is given by:

h(θ) =
K
∑

k=1

h(k)(θ) =
K
∑

k=1

E[r(k)I
argmax( r(k)

(d+θ)α
)
] (16)

4.3 Convergence of the ODE
We have proved in [5] that h(k)(θ) is globally Lipschitz con-
tinuous, therefore h(θ) is globally Lipschitz continuous as

well. Since x ≤ y and xi = yi implies h(k)(x)i ≤ h(k)(y)i,
it also implies h(x)i ≤ h(y)i. Therefore the exact same
demonstration given in [5] proves that all solutions of the
ODE converge to the same limit θ∗ as described by Theo-
rem 2.

4.4 Optimality
Now let us prove that θ∗ is the unique maximizer of U in the
set of achievable mean throughputs. Differentiating U(θ(t))
with respect to t yields:

.

U (θ(t)) =
n
∑

i=1

∑K

k=1 h
(k)
i (θ(t))− θi(t)

(d+ θi(t))α
(17)

Therefore by the same argument as [5] we have that θ∗ is the
global optimum of U in the set of achievable mean through-
puts.

5. SCHEDULING GAIN
According to the results in Section 4, we now know that the
mean throughput of a user can be calculated by evaluating a
certain integral that depends on the SINR for each PRB and
the distribution chosen for the capacity. We will now show
how to calculate the scheduling gain in a OFDMA system
based on a per PRB approach.

5.1 Link with TDMA scheduling
It is noted that the channel is not frequency selective on
a long-time scale, and that whenever a BS transmits on a
PRB, it transmits at full power, namely we consider a Reuse
1 scheme. Therefore the mean SINR of a user is the same on
all PRBs, S

(k1)
i = S

(k2)
i , ∀i, k1 6= k2. In order to calculate

the mean throughput of the α-fair scheduler, we now in-
troduce a fictive scheduler, the Per Physical Resource Block
Scheduler (PPRBS), which chooses for transmission on PRB
k at time tm+1 the user that maximizes:

i∗ = arg max
0≤i≤N

r
(k)
i,tm+1

(r
(k)
i,tm

+ d)α
(18)

We can see that (18) is significantly different from (11) be-
cause it uses the past allocated throughput by PRB instead
of the sum of the allocated throughputs for all PRBs. In
other words the PPRBS ignores the resources allocated on
other PRBs, and behaves exactly as if we were applying K
TDMA schedulers in parallel, one for each PRB.

We have proved the convergence of the α-fair scheduler so
we can consider the limit of the average throughput it al-

locates on PRB k r
(k)
i,+∞. By symmetry, we also have that:
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r
(k′)
i,+∞ = r

(k)
i,+∞ , ∀k, k′, i. Therefore ri,+∞ = Kr

(k)
i,+∞, and

the scheduling rule (11) becomes:

i∗ = arg max
0≤i≤N

r
(k)
i,tm+1

(Kr
(k)
i,tm

+ d)α
(19)

Therefore, for d sufficiently small, the α-fair scheduler and
the PPRBS behave the same way and we can calculate
the throughput of the α-fair scheduler by summing over all
PRBs the mean throughput allocated by the PPRBS.

5.2 Scheduling gain
We can now calculate the mean throughput allocated by

the α-fair scheduler: equation (13) states that r
(k)
i,tm+1

∼
N (WPRBntµ

C
(k)
i

,W 2
PRBσ

2

C
(k)
i

), where nt is the number of

antennas and WPRB the bandwidth corresponding to one
PRB. It is noted that there is a non-null probability that

r
(k)
i,tm+1

< 0, which does not make sense physically, and is

due to the fact that assuming (13) for nt finite is only an ap-

proximation, and P

[

r
(k)
i,tm+1

≤ 0
]

vanishes when nmin goes

to infinity.

Let ri,+∞,α denote the average throughput allocated to user

i by the α-fair scheduler, and f
(k)
i the probability density

function (p.d.f) of r
(k)
i,tm

. ri,+∞,α obeys the following integral
equation:

ri,+∞,α =
K
∑

k=1

∫ +∞

−∞
zP

[

z

rαi,+∞,α

≥ max
j 6=i

(

r
(k)
j,tm

rαj,+∞,α

)]

f
(k)
i (z)dz

(20)

We also define Gα the scheduling gain of the α-fair scheduler
by:

Gα =
ri,+∞,α

ri,+∞,RR

(21)

where ri,+∞,RR denotes the mean throughput allocated to
user i by a Round Robin (RR) scheduler. We solve (20) with
the following method: we first solve it for K = 1, then we
use the argument exposed previously to say that the α-fair
scheduler and the PPRBS behave the same way, and obtain
the throughput by summing over all PRBs.

5.2.1 Notation
In order to reduce the notational burden, we adopt the fol-
lowing conventions to refer to the quantities defined in (13):

µi = WPRBntµC(Si) (22)

σi = WPRBσC(Si) (23)

Where Si is the mean SINR of user i on a PRB, since we
have assumed that the mean SINR is the same on all PRBs.

5.2.2 PF
We consider the PF scheduler, that is α = 1, and first as-

sume that there is only 1 PRB. Since r
(k)
i,tm

∼ N (µi, σ
2
i ),

the scheduler picks the user that maximizes
r
(1)
i,tm

µi
. Let

F (z) = P[Z ≤ z], Z ∼ N (0, 1). The probability that user i

is chosen can be written:

P

[

z

ri,+∞,1
≥ max

j 6=i

(

r
(k)
j,tm

rj,+∞,1

)]

=
∏

j 6=i

F

(

z
µiσj

µjσi

)

(24)

Replacing in (20) we get (ri,+∞,1)1PRB , the throughput on
one PRB:

(ri,+∞,1)1PRB =
1√
2π

∫ +∞

−∞
(zσi + µi)





∏

j 6=i

F

(

z
µiσj

µjσi

)



 e−
z2

2 dz (25)

Now for the case K 6= 1, we can use the previous argument
that the PPRBS and the α-fair scheduler behave the same
way, and summing over all PRBs yields the result:

ri,+∞,1 =
K√
2π

∫ +∞

−∞
(zσi + µi)





∏

j 6=i

F

(

z
µiσj

µjσi

)



 e−
z2

2 dz

(26)

5.2.3 Max Throughput (MTP)
We now consider the MTP scheduler (α = 0), and we first as-
sume K = 1. The scheduler picks the user with the best in-
stantaneous throughput, therefore the probability to choose
user i is:

P

[

z ≥ max
j 6=i

(

r
(1)
j,tm

)

]

=
∏

j 6=i

F

(

µi − µj + zσi

σj

)

(27)

The throughput for one PRB is then:

ri,+∞,0 =
1√
2π

∫ +∞

−∞
(zσi + µi)





∏

j 6=i

F

(

µi − µj + zσi

σj

)



 e−
z2

2 dz (28)

As previously, we sum over all PRBs to obtain the result:

ri,+∞,0 =
K√
2π

∫ +∞

−∞
(zσi + µi)





∏

j 6=i

F

(

µi − µj + zσi

σj

)



 e−
z2

2 dz (29)

5.2.4 Max-Min Fair (MMF)
The last analytically tractable case is the MMF scheduler
(α = +∞). As done previously we start by K = 1 and the
scheduling rule becomes:

i∗ = arg min
0≤i≤N

ri,tm (30)

First, suppose that there exists i and j such that ri,+∞,+∞ >
rj,+∞,+∞. This means that after a certain time, user i will
never be scheduled for transmission, hence ri,+∞,+∞ = 0
and rj,+∞,+∞ = 0, which contradicts our first hypothesis.
Hence, we have proved that the MMF scheduler gives the
same mean throughput to all users. We also notice that the
scheduling decision does not depend on the instantaneous
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throughput, and so there exists some weights (pi)1≤i≤N so
that:

ri,+∞,+∞ = piµi (31)

N
∑

i=1

pi = 1 (32)

piµi = pjµj ∀i, j (33)

Therefore pi =
1
µi

1
∑

N
j=1

1
µj

, and:

ri,+∞,+∞ =
1

∑N

j=1
1
µj

(34)

We then sum over all PRBs:

ri,+∞,+∞ =
K

∑N

i=1
1
µi

(35)

5.2.5 Monte-Carlo Method
For a general α there is no analytical formula, and we pro-
vide the numerical method described in Table 1. It is noted

1. ri,t0,α = 0 ∀i
For tm from t0 to T :

2. Draw the channel for each user on each PRB

(r
(k)
i,tm

)0≤i≤N,0≤k≤K

3. i(k) = argmax0≤i≤N

r
(k)
i,tm

rα
i,tm,α

For i from 1 to N :

4. ri,tm+1,α = (1− ǫn)ri,tm,α

+ǫn
∑K

k=1 r
(k)
i,tm

1i=i(k)

End For
End For

Table 1: Numerical method for calculating ri,+∞,α

that that step 2 might take two forms: it is either possible
to draw the MIMO channel matrix for each user and each
PRB, or draw a Gaussian random variable with mean and
variance given by (13), which makes the computation con-
siderably faster, if the number of antennas is large. It is
noted that all those random variables are independent ac-
cording to our model. Furthermore, choosing ǫn = ǫ > 0 a
small constant or ǫn = 1

n
both guarantee convergence to the

α-fair allocation.

5.3 Simulation results
We now compare the formulas stated above with the actual
mean throughput obtained by simulating the MIMO channel
and the α-fair scheduler. We choose K = 12, WPRB =
180kHz and a scheduling interval of 1ms, as defined by the
LTE standard. We simulate 1000 scheduling intervals, and
a 95% confidence interval is provided, assuming normality
of the estimates.

Figure 3 shows the throughput per user of a PF scheduler

with S
(k)
i = 5dB, ∀i, k. Figure 4 shows the mean throughput

of the MTP scheduler with 2 users, when one of the two users
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Figure 3: PF scheduler, mean throughput per user,

with S
(k)
i = 5dB, ∀i, k. Comparison between simula-

tions and formula (26).

has a better SINR. We can see that the user with poorer
conditions has a significantly smaller mean throughput, and

gets almost nothing when S
(k)
1 = 5dB and S

(k)
2 = 12dB

∀k. Figure 5 shows the mean throughput of user 1 with a

MMF scheduler when S
(k)
2i−1 = 5dB and S

(k)
2i = 12dB, ∀i, k.

We can see that when a user with good conditions enters
the system, the max-min mean throughput is less affected
than when a user with poor channel conditions enters, since
those users need to be scheduled much more often to give the
same mean throughput to all users. This idea is also relevant
when we consider which users to admit in a network if we
are willing to deliver some minimal QoS to all users. It is
also noted that the analytic formulas are very accurate when
compared to simulations.

6. COVERAGE CAPACITY

SELF-OPTIMIZATION

6.1 Algorithm
Based on the scheduling gain calculation of the previous sec-
tion, we propose a simple and efficient SON algorithm that
optimizes cell-coverage while minimizing capacity losses by
adjusting α dynamically. This algorithm is the adaptation
to OFDMA of the one introduced in [5]. We say that a user
is covered if his mean throughput is higher than a certain
fixed threshold Thmin, which is a parameter of the service
we are considering, for example the minimal throughput to
watch a video with the lowest quality.

First let us state the optimization objective: we consider
a particular service with the corresponding Thmin and we
want to change the α parameter dynamically in order to
cover the maximum number of users, using the above def-
inition for coverage. However, we have to be careful since
increasing α can potentially increase the number of covered
users, but also diminishes the global cell throughput. There-
fore we want to find the minimal α that covers the maximum
number of users.
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Figure 4: MTP scheduler, 2 users, S
(k)
1 = 5dB, ∀k.

Comparison between simulations and formula (29).
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Figure 5: MMF scheduler, mean throughput of user

1 with S
(k)
2i−1 = 5dB and S

(k)
2i = 12dB, ∀i, k.

To this end, the formula for the scheduling gain with α =
+∞ is of particular interest: if α = +∞ results in covering
all users, this means that we can cover everyone providing
that α is large enough. If nobody is covered, namely the
users with bad SINR will never be covered, and we should
not allocate any resource to them.

In order to determine the users that can be covered with
large enough α, we ignore the user with the worst SINR,
recalculate the α = +∞ throughput and keep doing so until
we are able to cover everyone.

The algorithm proceeds the following way: at each iteration
it observes the number of covered users, then it determines
the users that can be covered using the technique stated
above, and finally the α is adjusted. If some of the users
that could have been covered were not covered, the α is
increased, and if all coverable users have been covered, the α
is diminished with a small probability Pǫ, and stays the same
with probability 1 − Pǫ. The idea is that the environment
might have changed, and that the current α might not be
the lowest that enables us to cover all coverable users. Pǫ

therefore shall be chosen to reflect the speed at which the
environment changes.

The following notations are used: we consider BS s; αs is
the value of α for s, Ns - the number of users that s can
cover and Ñs - the number of users effectively covered at
the last period. (α(j))1≤j≤Jmax is the allowed set of values
of α, e.g. {1, ..., 5} in the present work. js is the index of the

current α, namely αs = α(js). The algorithm is described in
Table 2.

For each BS s:
Initial phase:
1. Calculate Ns using (Table 3)

2. Try every αs ∈ (α(j))1≤j≤Jmax once

3. Choose the minimal js so that αs = α(js)

that covers Ns users.
Repeat:
4. Calculate Ns using (Table 3)

5. Set αs = α(js) and observe resulting Ñs

If Ñs < Ns:
6. js ← min(js + 1, Jmax)

If nk = Nk:

7. js ←
{

max(js − 1, 1) with probability Pǫ

js with probability (1− Pǫ)

Table 2: Capacity coverage algorithm

It is noted that in Table 3 it is sufficient to calculate the
throughput of a user in i ∈ {1, ..., N} \ I since the MMF
scheduler allocates the same throughput to all users in i ∈
{1, ..., N} \ I and allocates 0 to users in I.

It is noted that this algorithm has all the necessary fea-
tures to be a robust and implementable SON algorithm: it
is decentralized since each station adjusts its own parame-
ters according to its own KPIs without any communication
with neighboring cells; it is not computationally demanding;
and it is scalable since the introduction of new base stations
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Initial phase:
1. I = ∅
2. Calculate ri,∞,∞ for a certain

i ∈ {1, ..., N} \ I using (35)
While ri,∞,∞ < Thmin:

3. i∗ = argmini∈{1,...,N}\I Si

4. Add i∗ to I
5. Calculate ri,∞,∞ for a certain i ∈ {1, ..., N} \ I

ignoring users in I, using (35)
Result:
6.Nk = N − |I|

Table 3: Calculation of Nk

does not disturb its functioning.

6.2 Admission Control
It shall be noted that formula (35) is also useful to define
an admission control rule. Given the SINR of the users in a
cell, if a new user arrives, we can calculate the throughput
of the MMF scheduler with (35) and determine whether we
are able to cover this user with α sufficiently large. If it
is not the case the new user shall not be admitted. The
benefit of such an admission rule over traditional methods
is that we can be sure that we will always be able to cover all
users if they do not move too fast, so that their SINR does
not change too drastically over time. Furthermore since (35)
simply involves looking at most N times in a table of values,
N being the number of users in the cell, this is a practically
implementable admission rule.

6.3 System Model
We now describe the propagation model used for calculating
the mean SINR.

6.3.1 Path Loss
Let Li,s denote the path loss between user i and BS s. We
assume that Li,s does not depend on the PRB we are con-
sidering, and is given by the following formula:

Li,s = A
1

(di,s)ν
(36)

with di,s - the distance (in km) between user i and BS s,
and A, ν - two constants that depend on the environment.

6.3.2 Shadowing
Let χi,s denote the shadowing between user i and BS s.
We assume that χi,s does not depend on the PRB we are
considering, and will be modeled by a log-normal random
variable:

χi,s = 10
aǫ1+bǫ2

10 (37)

with ǫi ∼ N(0, σ2) , i ∈ {1, 2} and a = b = 1√
2
.

6.3.3 Interference
We define S(i) the serving BS for user i, and N (i) the set of
all neighboring BS for user i. We consider neighboring base
stations as the only source of interference, and we denote

by P
(k)
s the power transmitted by BS s on PRB k. Let I

(k)
i,s

denote the interference to user i caused by neighboring BS
s on PRB k, which we model by the following:

I
(k)
i,s = P (k)

s A
1

dνi,s
χi,s (38)

the total interference on PRB k is then:

I
(k)
i =

∑

s∈N (i)

I
(k)
i,s (39)

6.3.4 SINR
We can now calculate the average SINR for user i on PRB
k by the following formula:

S
(k)
i =

P
(k)

S(i)χi,S(i)Li,S(i)

I
(k)
i + σN

2
(40)

σN
2 being the thermal noise.

7. SIMULATION

7.1 Simulator
We implement the coverage-capacity algorithm described
above in a realistic OFDMA network simulator with 33 sta-
tions to observe its average performance. We use a semi-
dynamic network simulator with time resolution of 1s (see
[12] for a detailed description of a semi-dynamic simulator).
For each interval of simulator time, the following operations
are performed:

• Computation of the mean throughput of each user

• Calculation of the new positions of mobiles

• Handovers

• Departure of users, due to end of transmission or lack
of coverage

• Arrival of users according to a Poisson process and
admission control

• Observation of Key Performance Indicators (KPIs) and
adjustment of the α

Admission control is done with the algorithm described pre-
viously. We consider a streaming service where a user quits
the service if he is not covered during 10 consecutive seconds.
The number of users that quit the service in such a way is
a measure of coverage, and we will show that the proposed
algorithm reduces it appreciably.

We compare the proposed algorithm to a reference scenario
in which BSs apply a PF scheduler all the time, that is
αs = 1, ∀s. It is noted that admission control is the same
for both algorithms so that the comparison between the pro-
posed algorithm and the reference one, hence the coverage
improvement is not related to the admission control strategy.
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Figure 6: Evolution of α as a function of time for a
BS.
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Figure 7: Number of users in a BS as a function of
time.
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Figure 8: Number of users leaving because of lack
of coverage as a function of arrival rate.
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Figure 9: Average BS throughput as a function of
arrival rate.
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Simulator parameters
Spatial resolution 25m× 25m
Time resolution 1s
Simulation time 10000s
User speed 5km/h
File length 120s
Coverage threshold 256kb/s

Network parameters
Number of PRBs 12
Size of a PRB 180kHz
Number of stations 33
Cell layout 11 eNB’s × 3 sectors
Average intercell distance 1km
Type of service Streaming

Propagation
Thermal noise −174dBm/Hz
Path loss(d in km) 128 + 37.6 log10(d) dB
Shadowing standard deviation 6 dB
Antenna configuration MIMO 2× 2

Table 4: Model parameters

7.2 Simulation Results
Figure 6 shows the evolution of α during the simulation for
a particular BS, and Figure 7 the number of users served by
this BS. We can clearly see that the algorithm keeps α low
when the number of users is small, in order not to loose ca-
pacity, and increases α when the number of users increases
in order to keep all users covered. Figure 8 shows the per-
centage of users that have left the network because of a lack
of coverage, namely because they did not receive the min-
imal bitrate for 10 consecutive seconds as described above.
The proposed algorithm allows to reduce the percentage of
users leaving the network from 4% which is generally consid-
ered unacceptable in terms of QoS to less than 1%. Figure 9
shows the average BS throughput. The capacity loss caused
by the coverage improvement is on average 4%, which is
a relatively small price to pay for the important reduction
of calls dropped because of coverage loss. It is noted that
from a QoS point of view, it is generally much more impor-
tant to serve more users than to improve the global system
throughput.

8. CONCLUSION
This paper has presented a simple and efficient SON algo-
rithm that uses α-fair schedulers to achieve optimal coverage-
capacity trade-offs in an OFDMA network. Several formulas
for calculating the scheduling gain have been derived based
on an approximation of the capacity of a MIMO channel.
A Monte-Carlo method for calculating an OFDMA α-fair
scheduler throughput is also provided with a proof of con-
vergence. Scheduling gain calculation is necessary in order
to implement the algorithm in a network simulator. The al-
gorithm has then been tested on a realistic 33 cells network
simulator. Important coverage gains have been achieved at
the expense of small capacity losses. The algorithm is scal-
able and computationally efficient, making it a good candi-
date for practical implementation.
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