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ABSTRACT

Internet Service Providers’ DNS traffic can be up to 120000
queries per second and increases around 8% every month.
DNSSEC is expected to replace DNS and brings new chal-
lenge to naming resolution with heavy signature check. This
paper provides an architecture, where incoming DNS traffic
is split according to the DNS query rather than to its IP ad-
dress, in order to minimize the number of signature checks.
To split DNS traffic among the different nodes of the plat-
form, k-means clustering algorithms are considered. This
paper proposes an enhancement of the standard algorithm:
an adaptive k-means and compares performance of both me-
thods on simulated data from a Gaussian mixture model and
on real DNS traffic data from the Orange IP network.
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1. INTRODUCTION

Domain Name Server (DNS; [1, 2]) is a global hierarchi-
cal database that associates information to domain names.
A common use case is when DNS binds an IP address to
a domain name, also called Fully Qualified Domain Name
(FQDN). This makes websurfing easier as end users can type
on their web browsers www.orange.com rather than
194.2.208.16. When the end user types www.orange.com,
the web browser sends a DNS query on the Internet to get
the IP address of this website. Once the browser get the DNS
response, it can initiate an HTTP connection and show the
information expected by the end user. This is why we com-
monly say that DNS makes communication between names
possible. DNS is involved in many end users applications
such as web browsing or e-mail but the core nework also re-
lies on DNS mechanisms.

Very popular websites like www.google.com, Content Dis-
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tributed Network (CDN), or Video on Demand (VoD) ser-
vices may use DNS to balance the traffic load between the
servers and redirect the traffic, for example, to either the
closest node or to the least busy one in order to enhance the
Quality of Service (QoS). In fact, in the case of several IP
addresses for one domain, the end user will randomly choose
one or another, and the HTTP traffic will thus be split
between the different servers. Very popular websites with
multiple servers can then provide responses with a subset of
IP addresses, usually those with the least activity, or those
that are closer to the end user so to optimize the network
resources. A consequence of using DNS for traffic manage-
ment is that information is dynamically configured and thus
data are valid only for a limited period of time. This, in
conjunction with an increasing number of end users on the
Internet as well as the increasing number of services avail-
able on the Internet, makes the DNS traffic to grow around
8% per month, with a rush up to 120000 DNS queries per
second.

Moreover, in July 2008, Kaminsky [3] showed that DNS is
sensitive to cache poisoning, and that DNSSEC [4, 5, 6] can
be a long term solution. DNSSEC stands for DNS SECurity
extension and provides mechanisms so that the resolver can
authenticate the DNS data, i.e. can prove that the response
has not been alterated during the network transmission and
is really corresponding to the data hosted by the authorita-
tive entity. This is achieved by transmitting the signature
associated to the DNS data. With the signature and the
public key of the server, the end user is able to authenticate
the DNS data. Since DNS is hierarchical and distributed,
DNSSEC must provide as well mechanisms to build a chain
of trust between servers. In fact, DNSSEC should provide
solutions to transfer the trust from a trusted point to its
sons.

Internet Service Providers (ISP) are using DNS to make
services available to their end users. In this sense, they are
taking advantage of DNSSEC by protecting their services
from cache poisoning attacks, and by protecting their end
users from identity thefts. On the other hand, by providing
Internet access, ISP provides not only IP routing services,
but also naming resolution services. While DNSSEC res-
ponses carry signatures which make them larger than DNS
responses, from the end user point of view, this increases
network latency, and so QoS requirements. On the server
side, manipulating longer responses increases the processing



time, as well as memory consumption. Moreover, DNSSEC
responses may require one or more signature checks. Refer-
ence [7] provides a performance point of view on DNSSEC
migration with different implementations and shows that,
without signature validation, the maximum load of resol-
ving servers can be decreased by up to 14% with no signa-
ture validation and by up to 50% when signature validation
is performed.

DNSSEC clearly impacts performances of resolving plat-
forms, and actually DNSSEC completely makes its characte-
ristics different from DNS. This makes DNSSEC to be con-
sidered more as a new protocol requiring a new design for
resolving platform rather than an extension of DNS. In fact,
DNS has been designed with small and costless responses.
Such assumption has led to the design of current DNS re-
solving platforms, which are designed not to minimize the
number of resolutions over the Internet, but to balance the
traffic load between its nodes. With DNSSEC, signature
checks and longer responses represent the cost of a resolu-
tion. DNSSEC resolving architecture should be designed so
as to minimize the number of resolutions performed by the
resolving platform. One solution presented in this paper is
to consider that each node of the platform is responsible for
resolving a given set of domain names. The traffic is thus
split according to the domain names instead of IP layer in-
formation. In this paper we consider that end users queries
come to a load balancing device that will redirect each query
to its appropriate server node. Such a node is called a res-
ponsible node.

Data mining literature provides multiple methods to clus-
ter data: combinatorial methods [8, 9] (k-means, k-medoids,
hierarchical clustering), mixture modeling [10] (maximum
likelihood or Bayesian inference via the Expectation-Maximi-
zation (EM) algorithm for instance [11, 12]), mode seek-
ing [9]. In this paper we considered the unsupervised k-
means algorithm. We adopted an unsupervised method as
we seek to minimize the decision processes of the load bal-
ancer that redirect queries to the responsible node. Unsu-
pervised methods provides the advantage to configure static
table, whereas supervised methods go through multiple op-
erations. Although the static table may change over time,
we assume that they remain static during a given time and
should be only updated after this period. Furthermore, the
standard k-means algorithm is easily scalable with the large
volume of data we need to process for our application.

In this paper we propose an adaptive extension of this al-
gorithm in order to perform the clustering task. This exten-
sion makes it possible to grasp some latent deep-layer struc-
ture or more complexity in the data which can be critical.
Since the proposed method is an extension of the standard
k-means, it is equivalent to the standard algorithm when
a parameter of the algorithm is appropriately tuned. We
tested and compared these two clustering methods on a set
of simulated data consisting of a two-dimensional Gaussian
mixture with three components, and on a DNS traffic data
timeframe extracted from the Orange IP network.

The paper is thus organized as follows. Section 2 de-
scribes current DNS resolving architecture and designs an
architecture that fits DNSSEC requirements. In section 3
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the k-means algorithm is briefly recalled and its proposed
adaptive extension is presented. The numerical experiments
to illustrate the performance of the algorithms are shown in
section 4. Finally section 5 concludes the paper and provides
perspectives of this work.

2. DNS RESOLVING PLATFORM ARCHI-
TECTURES

2.1 DNS architecture

Figure 1: DNS architecture.

Figure 1 depicts current architectures for a DNS resolving

platform. The traffic is split according to the IP address of
the end user between the different nodes of the platform.
Nodes are independent and proceed to a DNS resolution for
each incoming query. More specifically, the node look first
if the response is in the cache, and if the response is not
proceeds to a resolution over the Internet.
In such architecture, nodes are independent, and there is
no cooperation between the different nodes. Since traffic is
split between the nodes according to the IP layer, popular
domain names are being resolved on almost all the nodes.
More specifically, when a node receives a query and does
not have the response in its cache, it proceeds to a DNS
resolution over the Internet. Alternatives that would avoid
a DNS resolution on the Internet are:

e an unsupervised architecture: the receiving node can
ask whether another node has the response in its cache,
and get the response from it, or forward the query to
that node.

e a supervised architecture: domain names are associ-
ated to nodes, each of them is responsible of a subset
of the domain names. Furthermore, all nodes have to
know for a given domain name which node is respon-
sible for it. With such a rule, queries can be directly
sent to the responsible node, or nodes can forward, or
get the response from the responsible node.

Clearly the unsupervised architecture may avoid DNS re-
solution on the Internet, but would overload the platform.
The supervised method requires additional processing that
may be equivalent as proceeding to a resolution over the



Internet. Furthermore, it does not reduce the number of
exchanges. On the other hand defining a splitting rule and
synchronizing the nodes with such a rule add much more
complexity.

In other words, cooperation between nodes in a resolving
platform should be considered only when the resolution pro-
cess represents a heavy cost compared to message exchanges.
Otherwise, as with DNS, the platform should rather be scal-
able and designed to accept all incoming traffic, rather than
designed to minimize the number of resolutions. This is why
accepting all requests regardless of the domain name is the
architecture that best fit the DNS protocol.

2.2 DNSSEC architecture

With DNSSEC, resolution involves signature checks which
require much more CPU time and memory consumption.
Reference [7] shows that for a DNS traffic involving a sin-
gle signature check per domain name, the signature check
is equivalent to 45% (resp. 70%) of the maximum load for
routine BIND (resp. UNBOUND). This means that if the
responses are stored in the cache, the routine BIND can
treat 1.82 (resp. 3.33) times more queries.

Furthermore, reference [7] shows that the number of added
queries increases exponentially with the Cache Hit Rate
(CHR). For instance, changing the CHR from 0 to 70% in-
creases the number of queries which can be processed by the
platform by 250%.

Thus the benefit of CHR in term of performance motivates
to investigate how we could split the DNS traffic between the
nodes according to the domain name value as presented by
figure 2.

[3] DNS
Response

[2] DNS
Request

[4] DNS
Response

Figure 2: DNSSEC architecture.

2.3 Clustering DNS traffic data

To split the DNS traffic between the nodes of the platform,
we consider the space of all domain names involved in a traf-
fic capture. We assume that this capture is representative
of the running DNS traffic. The basic idea is to associate
different criteria (query rate, length of the query/response,
length, number of signature check to perform among others)
and then derive costs. For each domain name, we can either
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assign one global cost, however, since criteria are quite he-
terogeneous, we might have to derive multiple costs. From
the costs repartition, we define classes of the different costs.
We use the clustering algorithm to define the number of
groups as well as for assigning a group to each domain name.

To illustrate our purpose, let us consider the single crite-
rion case where the query rate is associated to the domain
name. Applying a clustering algorithm to this criterion may
lead to consider the groups HeavilyRequested, RegularlyRe-
quested and RarelyRequested. If we want the resources to
be equally distributed among the different nodes, then we
should attempt to assign to each node an equal number of
domain name from each class.

If we are considering different criteria, we can apply the
clustering algorithm for each criterion, and then consider
all classes intersections. If n; is the number of groups for
criteria k;, and K = (ki,...,Ki,...,kq) the list of criteria
we consider, then the total number of classes to consider is
given by [],  x ni.

Another possibility is to consider domain names as vectors
in R? where d is the number of criteria we consider for each
domain name. When we apply a clustering algorithm to
domain names represented as vectors, we are looking for
domain names with similar characteristics. It becomes then
quite hard to compare the cost between the different groups.
However, by spreading equally the various groups among the
different nodes of the resolving platform, we uniformly dis-
tribute the cost among the different nodes.

All criteria are measured for each Fully Qualified Domain
Name (FQDN). Measured criteria are expected to provide
metrics for cost at the network layer (from the network cards
and drivers) as well as at the application layer (for CPU
processing time and memory consumption). In this paper
we considered the following criteria:

e End User Query Rate (EUQR) measures the number
of DNS queries sent by the end user to the resolving
platform.

e Resolver Query Rate (REQR) measures the number of
resolutions performed on the Internet by the resolver
for a given FQDN. Resolution occurs when a cache
miss occurs.

e Response Time (RT) measures the response time over
the Internet.

e End User Bit Rate (EUBR) measures the number of
bits sent by the end user to the resolving platform.

e Resolver Bit Rate (REBR) measures the number of
bits sent by the platform on the Internet.

e Transfert Bit Rate (TBR) measures the total bit rate
associated to a specific FQDN.

e Client Query Response Time (CQRT) measures the
mean time an end user has to wait before receiving an
answer.

e REsolver OCCupancy time (REOCC) (respectively End
User OCCupancy time (EUOCC) and Total OCCu-
pancy time (TOCC)) measures the time contexts opened
for the associated FQDN.



e Cache Hit Rate (CHR) measures the probability that
the FQDN is already cached.

e OKR (resp. NOKR) measures the rate of correct reso-
lutions (resp. resolutions with error) for the associated
FQDN.

Since these criteria are compactly correlated, which will be
illustrated in the numerical experiments, it is more interest-
ing to consider this latter point of view, i.e. to apply a joint
clustering methodology on our data sets.

3. ADAPTIVE K-MEANS

Cluster analysis is a very practical subject in the rapidly
growing field known as exploratory data analysis and is be-
ing applied in a variety of engineering and scientific dis-
ciplines such as biology, psychology, marketing, computing
science for instance. For our research, we focus on clustering
in data mining. In fact, data mining adds to clustering the
complications of very large datasets with many attributes of
different types.

Clustering is a division of data into groups of similar ob-
jects. Intuitively, patterns within a valid cluster are more
similar to each other than they are to a pattern belonging to
a different cluster. Data mining deals with large databases
that impose on clustering analysis additional severe compu-
tational requirements. Note that different applications make
use of different data types, such as continuous variables, dis-
crete variables, similarities, and dissimilarities. Therefore,
one needs different clustering methods in order to adapt
to the kind of application and the type of clusters sought.
In our case, we tested some clustering techniques such as
k-means, hierarchical clustering, self-organizing maps and
principal component analysis to find out the most efficient
method for our needs. It comes out that the k-means algo-
rithm suits the best our application.

3.1 Standard k-means

Among the clustering methods, k-means is one of the most
widely applied algorithm [8, 9]. The basic idea is that sam-
ples grouped in each cluster are more closely related one to
each other than to those assigned to other clusters. In the
classical k-means algorithm, this similiarity relation between
two samples is defined by the Euclidean distance. Samples
are thus assigned to the cluster whose centroid is the closest
to them, in the sense of the Euclidean distance. Considering
a set of samples {x;,i = 1,2,...N} in the space R?, and a
set of clusters centroids c1, ca, ...ce, then the criteria for as-
signing the sample x; to a cluster is to choose the centroid
¢; minimizing the formula

d

|z = ¢l1* =D (win — csx)” (1)

k=1

The standard k-means algorithm is described in details in
[8, 9]. With similarity function derived from (1), each coor-
dinate has the same importance. However, this may be not
efficient if there is not an appropriate mesurement of each
coordinate. As an illustration, in our application, traffic
samples have multiple dimensions: “end user query num-
ber”, “internet resolution time”, “plateform resolution time”,
etc. A second or a millisecond can be used as the resolu-

tion times measurement unit, and the query number can be
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measured in milliseconds, seconds or in an other time inter-
val (statistically, the query number is proportional to the
measured time). With these different combinations of mea-
surement units above, the results of the standard k-means
algorithm will change for sure because of the variance of the
measurements.

Let us consider for instance a set of data generated from a
three components two-dimensional Gaussian mixture model
[10], where the samples from each component are plotted re-
spectively in red, violet or blue on figure 3. The samples are
firstly measured in their proper units, then we take another
method of measurement such that the vertical coordinate
is compressed by a factor 1/60. Imagine for instance that
the appropriate measurement unit is the second, but for the
moment we use the minute instead, obviously the numeri-
cal value obtained is 1/60 of the original one. Now let us
apply the k-means algorithm to find the three clusters (i.e.
the three components of the mixture), which are represented

respectively by “circle”, “square” and “diamond” symbols.

-10

Figure 3: k-means applied to the samples of a Gaus-
sian mixture model.

Figure 3 depicts the k-means clustering for the original
Gaussian mixture data, and figure 4 depicts the k-means
clustering obtained for the same data but where the vertical
measurement is compressed to 1/60. For a clearer demon-
stration, we trace the separators between the clusters after
plotting. The result of the clustering in the first case is ac-
ceptable, but in the other case when the vertical dimension
is compressed to 1/60, the horizontal dimension absolutely
dominates the clustering, leading to quasi-parallel vertical
separators, which is not pertinent.

Also, even when the variables are measured appropriately,
it is still possible that the k-means clustering does not re-
flect exactly the inherent structures of the data. In such
contexts, the Euclidean distance to the centroids may not
be relevant.

Now, let us consider another approach to tackle this prob-



Figure 4: k-means applied to the samples of a Gaus-
sian mixture model, vertically compressed.

lem. Considering a Gaussian mixture model, determining a
cluster for each sample according to the mixture distribution
demands a more sophisticated method than the classical k-
means algorithm. For example, the EM-type soft k-means
clustering is proposed in [9], which estimates the covariances
and prior probability in the Expectation-Maximization pro-
cedure [11, 12]. In the following we propose a new EM-type
method, inspired from the quadratic discriminant analysis
(QDA) [13] and linear discriminant analysis (LDA) classifi-
cation procedures [14, 15].

3.2 Improved k-means: adaptive k-means

In QDA, data are classified to the nearest center, after
the compensation of the prior probabilities and using some
spheric metric which spheres data according to the covari-
ance matrix. Let 2 denote the within-class covariance. In
QDA data are first sphered with respect to €2 and then the
target sample is classified to the nearest centroid with the
compensation of the prior membership probabilities.

We propose to estimate the within-class covariance Q2 for
each cluster, and then use it to construct a local metric
which approximately behaves as the QDA metric.

The proposed algorithm consists essentially of the follow-
ing steps:

1. Initialization of the clusters. First of all, we compute
the covariance matrix of the sample set ¥, with

1 N

1 a T
Y= N_1 (Z(azz —o)(zi—¢) ) + €1 (3)

=1

Data are sphered with this metric. Initially, several
points are chosen (uniformly) randomly among the
samples, and all samples are divided into groups which
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contain the nearest chosen point. The centroids of each
group are taken as the initial centroids.

2. Expectation. Estimate the covariance with each group’s
covariance matrix. For group G; with the centroid c;,

1

%= gE

S (@i—c)mi—¢)" | e (4)

z;€G;

3. Maximization. Compute the distance between each
point and each centroid with the metric ;.

(zi — ¢;)" Q5 @i — ¢) (5)

Classify the point to the cluster with the nearest cen-
troid. Recompute the centroid for each group.

4. ITterate Step 2 and Step 3.
5. Stop when the centroids do not change anymore.

It should be noted that the covariances matrices men-
tioned above could be singular, which leads to an unstable
result, thus the covariance matrices are amended with reg-
ularization factors e; and es. We should notice that these
regularization factors should not be too important in com-
parison with covariances’ eigenvalues. In fact, when regula-
rization factors tend to infinity, the covariances are negligi-
ble, the method reduces exactly to the standard k-means.

Let us consider the same model and data mentioned above,
applying the adaptive version of the k-means.

10

-10

Figure 5: Samples of Gaussian mixture model, with
adaptive k-means clustering.

Figure 5 is the result under the appropriate measurement,
and figure 6 depicts the result under the condition that the
vertical value is compressed to 1/60. On these two figures,
we still trace the separators of the standard k-means for com-
parison. We get a satisfying result in both the appropriate
measurement and the other case, furthermore, clustering is
enhanced in the first case in the manner that each cluster
corresponds to one component of the Gaussian mixture.



Figure 6: Samples of Gaussian mixture model, verti-
cally compressed, with adaptive k-means clustering.

4. NUMERICAL EXPERIMENTS

In this section, numerical results of the clustering algo-
rithms introduced in section 3 are studied. These experi-
ments consist of two parts, one with simulated data gene-
rated by a Gaussian mixture distribution in a two-dimensio-
nal space, the other with the DNS traffic data extracted from
Orange IP traffic, which is not Gaussian. We introduce an
error model and measure associated error rates only for the
Gaussian case.

4.1 Gaussian mixture model

To compare the standard k-means clustering and the pro-
posed adaptive k-means clustering, we should evaluate the
clusters output from both algorithms. With the simulated
Gaussian mixture data, we propose a performance measure
as an evaluation of our satisfaction for the clustering. Thanks
to the “oracle” model that we consider (components for the
samples are known), we can define two different types of “er-
ror” in the cluster, first let us examine the samples pair by
pair:

e Error of mixture: if two samples from different com-
ponents are grouped in the same cluster, this pair of
samples is an error of mixture.

e Error of separation: if two samples from one com-
ponent are grouped into two different cluster, this pair
of samples is an error of separation.

Otherwise, a pair of samples not satisfying neither of the
two situation mentioned above is considered as correctly
grouped. We can define the sum of Error of mixture and
Error of separation as the total error rate of “misclassifi-
cation”.

From this definition, we can now evaluate the performance
of a clustering algorithm. In our instance, we have N = 1000
samples, so we should check all the N(N — 1) possible pairs
of samples to compute the error rate, which means that the
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so defined error rate will probably be a large number com-
pared to N. If we want to have a more precise idea about
this error rate, and its “relative” level, we should estimate its
upper bound and lower bound corresponding to the worst
and the best clustering. As an illustration, we consider the
following model.

Our N samples data are generated from a three compo-
nent Gaussian mixture distribution, and the objective is to
divide the samples into three groups (ideally the three ori-
ginal components):

Z Wi N (s Xm) (6)

The most naive clustering is when we assign uniformly ran-
domly each sample to a group, which means that a sample
has a propability 1/3 to be assigned to each group. Finally
each group would contain éunN samples from component
1, %ng samples from component 2, and %ng samples
from component 3. We take a sample from component 1 for
example, with any sample from component 2 or from com-
ponent 3 which is assigned to the same group, the so formed
couple will produce a mixture error. Otherwise, with any
sample from component 1 which is assigned to other groups,
such a couple will produce a separate error. The errors due
to this sample are thus as follows:

e mixture error due to a sample from component 1:

%sz —+ %ng (7)
e separate error due to a sample from component 1:
2
—w1 N 8
3w (8)

We can also compute errors due to other samples in the same
way, if we sum them up, we will get the error rates. Since
each pair of samples is counted twice, the sum should be
divided by 2 to obtain the error rates:

mixture error = %(wlwg + wows + wgwl)N2 9)
separate error = é(w% + w3 4 w3i)N? (10)
total error = %(1+w% + w3 + w3)N? (11)

On the other hand, if the clustering corresponds exactly to
the labeled components, which means no error appears, the
error rate will be 0. But here the lower bound is to estimate
an “unperfect” clustering, which means there is at least 1
sample assigned to a “wrong” group. So the lower bound is
estimated by the case where there is only one sample badly
grouped. So the lower bound is estimated by:

min mixture error = min{wi,ws, w3} N (12)
min separate error = min{wi,ws, w3} N (13)
min total error = (1 — max{wi, w2, ws})N (14)

Let us test the algorithms with the following instance for
model (6): prior probability w = (0.3,0.2,0.5), the compo-
nent centroids:

= ((3)-(2)(2)) o



and covariances:

2

Yo =

Y3z =

Case L.

(
(
(

7.07 3.47

3.47 3.09) (16)
13.49  —10.33

~10.33  13.53 ) (17)
1.09  —0.13

~0.13 417 > (18)

Firstly, we examine the results under the appropriate mea-
surement. With the standard k-means procedure and the
adaptive k-means algorithm, we obtain the following error

Method k-means | adaptive k-means
Error of mixture 91445 13370
Error of separation 26176 21764
Total error 117621 35134

We also visualize the result by plotting the “circle”,

” “Square”,

and “diamond” clusters and tracing the standard k-means
linear separators on the same figure 8.

rates:
Method k-means | adaptive k-means
Error of mixture 12417 7443
Error of separation 11692 9817
Total error 24109 17260

For sure the proposed adaptive method enhances the per-
formance of clustering, we can not only perceive the im-
provement from the error rate, but also we have an intuitive
impression from the figure 7. Samples from three compo-
nents are plotted with red, violet and blue, the standard
k-means divides samples with linear separators, while the
adaptive k-means clusters samples into three groups: “cir-
cle”, “square”, and “diamond”. It is noticed that clustering
performance is improved particularly on components of type

-0.05

-0.10

“head or tail”.

10

Figure 7: k-means and adaptive k-means clustering,

on 1000 samples from Gaussian mixture model (6).

Case II.

Secondly, we tested these methods under an inappropri-
ate measurement, with the numerical value of the vertical
dimension multiplied by a factor 1/100.

287

Figure 8: k-means and adaptive k-means clustering,
on 1000 samples from Gaussian mixture distribu-
tion, vertically compressed by factor 1/100.

Comparing this result with the precedent, the robustness
of our proposed adaptive k-means is remarkable, which leads
to similar clustering results under both measurement scales.

Furthermore, after the error rates that we obtained, we
would like to compare them with the lower bound and upper
bound of the error rate. Calculating the total error rate’s
upper and lower bounds with the formula (11) and (14), we
obtain this estimation:

500 < total error < 230000 (19)

Knowing that one badly grouped sample will cause an er-
ror rate 500, we can estimate the number of badly grouped
samples by dividing the total error rate by 500. Now we can
estimate that under the appropriate measurement, k-means
clustering has made wrong decisions on about 50 samples,
and adaptive k-means clustering on about 35 samples, for
this instance in case I.

When the vertical dimension is compressed by a factor 1/100,
k-means clustering has made wrong decisions on about 235
samples, while adaptive method on about 70 samples, for
this instance in case II.

In the worst situation, if we cluster the samples randomly,
we will make bad decisions on about 460 samples, which is
a little less than a half of the entire set.

Furthermore, it would be interesting to investigate the
issue of convergence. We know that the standard k-means



iterations finally converge to a local minimum of the within-
class variance, and the procedure normaly stops after about
20 iterations [9]. With the proposed adaptive method, we
observe the convergence is as quick as the standard k-means
clustering, it also stops around 20 iterations in our tests.

In the discussion of classical k-means method, the notion
of within-class variance is our principal interest. Minimi-
zing the within-class variance is equivalent to reducing the
dissimilarity within each cluster and at the same time en-
larging the difference between clusters. We should note that
within-class variance is indeed the square sum of Euclidean
distances between samples and centroids. In the adaptive
method, this notion is replaced by the normalized within-
class variance, which is the square sum of distance between
samples and centroids, under the metric defined in 3.2. In
the numerical experiments, the normalized within-class vari-
ance is reduced with the iterations. We take Case I for illus-
tration, under the appropriate measurement, the normalized
within-class variance in the adaptive k-means procedure is
depicted in figure 9, in which the variance decreases until
the convergence.
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Figure 9: Normalized within-class variance with re-
spect to iterations, for the adaptive k-means cluster-
ing of 1000 samples from Gaussian mixture model.

4.2 DNS traffic data

We have considered 16 measured parameters for FQDNs
over a timeframe of 30 seconds of data traffic, leading to
167793 samples, as explained in subsection 2.3. These pa-
rameters includes the End User Request Number, the
DNSSEC SIG Number, (second-order) statistics for the In-
ternet and Platform Resolution Times, and for the TTL,
the End User IP Address, the Error Code Response and
the Error Code. These parameters are highly correlated one
with each other as we can see on figure 10. The correlation
among the 16 variables is remarkable, especially the rela-
tionships between the “EUQR” (end user query rate) vari-
able and the other variables can always be approximated by
two segments, so we prefer to process the clustering on the
whole data set than respectively on each variable, as men-
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tioned in subsection 2.3.
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Figure 10: Plots of pairs of variables for the 16 pa-
rameters of DNS traffic data set.

When applied to these data, both standard k-means and
the proposed adaptive k-means algorithm lead to the group-
ing of data into four clusters, from the Ward stopping cri-
terion [9]. Standard k-means algorithm groups the samples
in sets respectively of 19, 95, 167650 and 29 samples. On
the other hand, the adaptive k-means algorithm groups the
samples in sets respectively of 7, 57, 20 and 167709 samples.

The difference between the two methods lies in the respec-
tively obtained within-class variance of the clusters. For the
standard k-means algorithm, the within-class variance of the
clusters is given by

(2.54 x 10'7,4.33 x 10'°,2.13 x 10'°,6.26 x 10'°)  (20)

after convergence.

The proposed method makes it possible to reduce drastically
the within-class variance of the clusters. Figure 11 depicts
the within-class variance of the clusters with respect to the
iterations for the proposed adaptive k-means algorithm. In

this instance, the adaptive algorithm converges after 16 it-
erations.

Also the clustering obtained from the method we proposed
lead to fully connected groups for two-dimensional slices rep-
resentations, on the contrary to the clustering obtained for
the k-means algorithm, as shown on figures 12 and 13. We
depict the two clusterings on these figures, for simplicity we
only depict in 4 x 4 scatterplot matrices, with color blue,
red, green and violet representing the four different groups.

It should be noted that both methods find some groups of
type “Heavily Requested”, “Regularly Requested” and “Rare-
ly Requested”, and that the “Heavily Requested” domain



Figure 11: Within-class variance of the clusters with
respect to iterations for the proposed adaptive k-
means algorithm applied to the DNS traffic data set.
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Figure 12: Scatterplot matrix of k-means clustering,
on 4 criteria of DNS data.

names are not numerous (19 and 7 respectively). Now, by
comparing the results, it is clear that the standard k-means
method tends to group the samples according to their Eu-
clidean norm, which leads to some donut-shaped structure,
and on the contrary the adaptive method tends to distin-
guish the “branches” when the Euclidean norms of the sam-
ples are of the same level.

Finally, it appeared that the outcomes of the k-means and
adaptive k-means algorithms on the Gaussian mixture and
DNS traffic data are not dependent on the initial conditions
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Figure 13: Scatterplot matrix of adaptive k-means
clustering, on 4 criteria of DNS data.

of the procedures in all the tests we conducted.

5. CONCLUSION

In this paper we have introduced a DNSSEC architecture
proposal based on the splitting of the traffic in order to cope
with scalability and security issues of the current DNS archi-
tecture. Its implementation requires the clustering of DNS
traffic data.

To perform this task, we have considered the standard k-
means algorithm and proposed an extension of it through an
adaptive version. This algorithm performs better than the
standard one both on a simulated Gaussian mixture model
and on the DNS traffic data we extracted from the Orange
network. The adaptive extension of k-means algorithm can
reflect more precisely the inherent structure of data. We
also proposed three types of “error rate” to estimate the
accuracy of a clustering algorithm, when some extra infor-
mation about data’s “label” is available. Our method in-
deed enhances the error rates for Gaussian mixture models,
comparing to the standard k-means clustering algorithm.
Concerning DNS traffic data, both algorithms find “Heavily
Requested”, “Regularly Requested” and “Rarely Requested”
domain names, but the adaptive method manages to extract
some latent structure that the standard k-means cannot find.

As a perspective, it seems interesting to investigate the
classification task that could be implemented after the clus-
tering of the DNS traffic data in order to come up with a
fully adaptive and on-line system to perform the routing.
Regarding the DNS architecture, it would be necessary to
carry on tests on real devices, for applying the traffic clus-
tering.

Also, from a methodological point of view, we did not dis-
cuss the convergence of the proposed algorithm in this cur-



rent paper, we looked instead into the evolution of the nor-
malized within-class variance with respect to iterations, and
noted that it decreases drastically. As an EM type method,
we can continue to discuss theoretically the convergence in
future works. Here we can roughly consider that the adap-
tive algorithm searches a local minimum of the normalized
within-class variance during the iterations, similarly to the
k-means search for a local minimum of the within-class vari-
ance.

In future works, it would be also interesting to improve the
performance and stability of the proposed algorithm. No-
ting that as an algorithm searching for a local minimum,
just like k-means, initial conditions can be of premium im-
portance, the accuracy of our algorithm depends strongly
on the initial choice of the centroids. The investigation of
the initialization process should be taken into account in
order to enhance the accuracy. On the other hand, the re-
gularization parameter can also influence the performance,
as mentioned at the end of subsection 3.2, the more impor-
tant it is, the more stable behaviors the algorithm can enjoy,
but with a loss of accuracy. These issues will also be tackled
as parts of future works.
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