
Domain-based Virtualized Resource Management In

Cloud Computing

Dongwan Shin and Hakan Akkan

Secure Computing Laboratory
Department of Computer Science and Engineering

New Mexico Tech
Socorro, NM 87801

Email: {doshin, hakkan}@nmt.edu

Abstract-Cloud computing has drawn much attention in
recent years. One of its delivery models, called infrastructure
as a service (IaaS), provides users with infrastructure services
such as computation and data storage, heavily dependent upon
virtualization techniques that offers benefits such as elasticity
and cost efficiency. Most of current IaaS service providers have
adopted a user-based service model, where users are directly
mapped to virtualized resources that they want to use and
they are charged based on usage. Hence, user and resource
management are centralized and easily administered at the IaaS
provider. However, this also results in the lack of support for
scalable management of users and resources, organization-level
security policy, let alone flexible pricing model. Considering
the increasing popularity of cloud computing, there is a strong
need for a more scalable and flexible IaaS model, along with
a more fine grained access control mechanism. In this paper
we propose a domain-based framework for provisioning and
managing users and virtualized resources in IaaS to address
this issue. Specifically, an additional layer called domain is
introduced to the user-based service model, and the domain
layer facilitates the de-centralization of user and virtualized
resource management in IaaS. The cloud service provider is able
to delegate its administrative works to domains, and domains
manage their users and virtualized resources allocated from the
cloud service provider. Our framework provides benefits such
as scalable user/resource management, domain-based advanced
policy support, and flexible pricing.

Index Terms-cloud computing; IaaS; role-based;

I. INTRODUCTION

Cloud computing is a new type of computing, which en­
ables convenient, on-demand access to computing resources.
Though its definitions, attributes, and characteristics are varied,
it is rapidly emerging and diversified, and is being adopted
as a new potential infrastructure for enterprise, government,
and academic computing. In general, It is considered as a
computing model that promotes availability of computing
resources, which can be rapidly provisioned and released
with minimal management effort or service provider interac­
tion [1]. Typical examples of cloud computing include office
applications migrated to the Internet such as Google Docs
and enterprise computing & storage service such as Amazon
EC2 & S3, Google Apps, Salesforce's Cloud Platform, and
Microsoft's Azure [2], [3], [4], [5].

With major companies like Google, Amazon, IBM, and
Microsoft all currently at the forefront of the movement toward

cloud computing, the federal and state governments have also
shown keen interest in cloud computing; for instance, the
U.S. Census Bureau is using Salesforce's cloud to manage
the activities of about 100,000 partner organizations across
the country; the Defense Information Systems Agency (DISA)
has a private cloud within its data centers which is providing
human resource management services to both U.S. Army
and Air Force; and NASA Ames Research Center recently
announced the development and deployment of a cloud com­
puting infrastructure called NEBULA [6], to provide high­
capacity computing and storage services by using a virtualized
and scalable approach to achieve cost and energy efficiencies.

In addition to satisfying various computing needs from
different groups of users, cloud computing provides some
benefits from the perspective of computer security such as
centralized data management (thereby reducing data leakage
and providing monitoring benefits), password assurance, and
security testing. However, there are still critical challenges in
this computing paradigm demanding more advanced mecha­
nisms for protecting data and applications in private, public,
and hybrid clouds; for instance, they include cloud data
security (confidentiality, integrity, availability) in clouds, data
ownership issues, and protection of virtualized resources, to
name a few. In this paper, we are motivated to investigate a
flexible, decentralized, and policy-driven approach to protect­
ing virtualized resources.

One of the delivery models of cloud computing, called
infrastructure as a service (laaS), provides users with in­
frastructure services such as computation and data storage,
and it is heavily dependent upon virtualization techniques.
Specifically, infrastructure resources such as operating systems
and networking are provisioned on virtual platforms and
provided as an on-demand service to users, and this offers
benefits such as elasticity, and cost/energy efficiency. However,
most of current IaaS service providers have a user-based
service model, where users are directly mapped to virtualized
resources that they want to use and they are charged based
on usage. Therefore, the administrative jobs of managing
users and virtualized resources are centralized and easily
performed at the IaaS provider. However, this also results
in the lack of support for scalable management of users and
resources, organization-level security policy, let alone flexible

ziglio
Typewritten Text
COLLABORATECOM 2010, October 9-12, Chicago, USA
Copyright © 2011 ICST
DOI 10.4108/icst.trustcol.2010.3

pricing model. Considering the increasing popularity and wide

adoption of cloud computing, there is a strong need for a

more scalable and flexible IaaS model, along with a more fine

grained access control support.

In this paper we propose a domain-based framework for

provisioning and managing users and virtualized resources

in IaaS to address the issue. Specifically, an additional layer

called domain is introduced to the current user-based service

model, and the domain layer facilitates the de-centralization of

user and virtualized resource management in IaaS. The cloud

service provider is able to delegate its administrative works

to domains, and domains manage their users and virtualized

resources allocated from the cloud service provider using role­

based security policy. Our framework provides benefits such as

scalable user/resource management, domain-based advanced

policy support, and flexible pricing.

The rest of this paper is organized as follows. Section 2

discusses background and related work. Section 3 describes

our approach to domain-based user/resource management,

followed by the discussion of our design and implementation

in Section 4. Section 5 concludes this paper with a discussion

on our future research direction.

II. BACKGROUND AND RELATED WORK

In this section we first discuss the general characteristics of

cloud computing and its three different delivery models. Then,

we describe the support of role-based access control (RBAC)

as a way to ease the administration and management of user

privileges in different cloud computing platforms.

A. Cloud Computing and Jts Delivery Models

The general characteristics of cloud computing include on­

demand service, ubiquitous access, location independence,

rapid elasticity, and measured service [1]. To support these

characteristics, cloud computing generally consist of three

foundational components and three optional, applied compo­

nents depending on its deployment models. The three founda­

tional components are essentially those that are needed to build

a collection of physical/virtualized, distributed servers for

providing cloud services. They are 1) hardware and facilities,

2) software kernel, and 3) virtualization, as shown in the lower

part of Figure 1. The three applied components characterize

and classify the services and applications of cloud computing.

They are 1) computation and storage resource, 2) cloud soft­

ware development platform, and 3) cloud software application,

as shown in the upper part of Figure 1. The computation and

storage resource component concerns the deployment model

called Infrastructure as a Service (IaaS), the cloud software

development platform component pertains to another deploy­

ment model called Platform as a Service (PaaS), and the cloud

software application component is related to the deployment

model called Software as a Service (SaaS). Their differences

are as follows; first, in the SaaS model, the cloud consumer can

use the cloud provider's applications running on a cloud infras­

tructure which are accessible through a client interface such as

a web browser. Typical examples of this type are Google Docs

Cloud Software Application

Cloud Software Development

Platform

Vlrtuahzation

Software as a Service

(SaaS)

Platform as a Service

(PaaS)

(laaS)

ardware and FaCilities

Fig. I. Cloud computing components and delivery models

and Salesforce applications [4], [7]; in the PaaS model, the

consumer can deploy onto the cloud infrastructure consumer­

created applications using programming languages and tools

supported by the provider. Some of the examples of this type

include Google App Engine and Windows Azure [3], [5]; and,

lastly in the IaaS model, the consumer provisions processing,

storage, and other fundamental computing resources where the

consumer is able to deploy and run arbitrary software. Amazon

EC2 & S3 and Eucalyptus are the examples of this type [2],

[8]. The successful implementation of cloud infrastructure

requires that both foundational and applied components work

together seamlessly.

B. Role-based Support in Current JaaS Platforms

Virtualization is a powerful and indispensable mechanism

for cloud computing, and especially it is true for the IaaS

delivery model. Virtualized resources are provisioned and pro­

vided to users as a on-demand service. Hence, considering the

increasing number of cloud users, a flexible and policy-driven

decentralized management and authorization mechanism for

protecting virtualized resources is essential for the success of

cloud computing in general, and IssS in specific.

Role-based security policy [9], [10] has attracted consid­

erable attention in computer security communities over the

last two decades, and it has grown to be a proven solu­

tion for managing access control in a simple, flexible, and

convenient manner. The basic idea behind role-based access

control (RBAC) is to use the intermediary concept called

role to provide an indirection mechanism between users and

permissions. This indirection mechanism helps reduce errors in

user/permission management, support advanced features such

as constraints and role hierarchy, and allow for convenient

user/permission management schemes such as role-based ad­

ministration and delegation [11], [12], [13], [14]. RBAC has

been successfully implemented in many commercial systems

including different flavors of operating systems, database

systems, enterprise-based web applications. It has been also

used and implemented to support the decentralization of access

control management [15], [16], [17].

a) U-VR Direct Mapping

b) U-VR Indirect Mapping Through Domain

Fig. 2. Our Approach

Unfortunately, most of existing IaaS platforms do not sup­

port the notion of grouping or categorizing users, and thus

there is no support for RBAC. Each user in the platforms

is considered to be independent of others and is provided a

root privilege for the virtualized resources that are requested.

Therefore, this flat hierarchy rooting from the direct mapping

between user and virtualized resources naturally lacks the

support for the advanced features that RBAC offers.

Amazon 's EC2 platform [2] is the most popular IaaS

service. Amazon also provides many accompanying services

such as storage (S3, ESB) and database (Amazon SimpleDB,

Relational Database Service - RDS). However, there is no

support for RBAC in these services. The only type of access

control is restriction on operating system (OS) images. A user

can upload an as image and attach an access control list

(ACL) to it by specifying which users can use that image. An

image can also be made available to the public. Eucalyptus [8]

is another popular IaaS platform which was started as an

academic research and then converted into an open source

project. It has been designed to be an exact clone of the

Amazon EC2 in functionality. Hence, it is equipped with the

same access control mechanism as EC2 does. However, since

its sources are open, it is possible to extend the platform to

support different features and our approach is based on this.

NASA's IaaS platform called Nebula [6] was initially based

on Eucalyptus but it has been rewritten to add its own engine

Nova to address scalability issues with Eucalyptus. Recently

the platform was reconfigured to support the use of roles

in its access control mechanism [18]. The approach taken

is twofold: first the frontal controller was connected to an

LDAP server for retrieving user/role information, and second

a pass/fail gate was implemented on each API call. Though

this approach is similar to our approach, its support for some

advanced features such as role hierarchy is not clear and

more importantly there is no concept called domain in their

approach, which is basically the core part of our approach that

allows for domain-based administrative delegation, security,

and userlresource management.

Unlike the aforementioned platforms, Windows Azure [5]

is a PaaS type of service platform where users are allowed to

develop applications on the Azure AppFabric to deploy them

on Microsoft's datacenters. The platform also provides storage

and automatic scaling/load balancing features. Applications

deployed within Azure may belong to either or both of Web

role and Worker role. Depending on the role, the application is

allowed to perform different tasks. Hence, roles are assigned

to the application, not to the user, in this platform.

III. OUR ApPROACH

In order to support a scalable, decentralized, policy-driven

scheme for IaaS, we discuss a domain-based framework for

managing users and virtualized resource in this section. First,

we present the formal definitions of IaaS components along

with the introduction to the notion of domain. Then re­

definitions of some of role-based policy constructs follow.

A. laaS Components

The component of IaaS that we are most interested in for our

approach is virtualized resources such as virtual machine (VM)

types based on different configurations, operating system im­

ages, ramdisk images, and networking capabilities including

elastic IP addresses. These kinds of virtualized resources can

be found very commonly in existing IaaS platforms, with the

slightly varying degree of their abstraction.

Definition 1: Let vn = {vrl' ... , vrl} denote a set of vir­

tualized resources. A virtualized resource is represented by

n-tuple, where n denotes the number of different kinds of vir­

tualized resources serviced in the IaaS platform. For instance,

vrl = (VMconjigl, VM082, VMnet3), where VMconfig1
denotes a virtual machine type with 1.7 GB memory, 1 virtual

core, 160 GB storage, and 32-bit platform I; V M 082 denotes

a Linux operating system; and V M net3 denotes elastic IP

addresses.

The cloud user can select and use a subset of virtual

resources and he needs to have a unique credential to access

them; typically a pair of public and private keys is used for

the credential.

Definition 2: Let U = {Ul' ... , un} denote a set of cloud

users that can be uniquely identified. uvn = u x vn

represents the relation of cloud user-to-virtualized resource,

and the function fuv R: U -+ 2 VR maps a cloud user to a set

of virtual resource.

I The similar configuration is called a small instance in Amazon EC2
platform.

In addition to virtualized resources and cloud users, we

introduce the concept of domain, which can provide an in­

direction mechanism between the cloud user and virtualized

resource. Adding the domain in between the cloud user and

virtualized resource can offer various benefits. First, it can

provide a means of decentralized, scalable management of the

cloud user and virtualized resources through the delegation of

administrative jobs. A domain can be delegated the authority to

manage the cloud user and virutalized resource associated with

the domain. Second, security policies and measures can be

applied to the domain level, not the IaaS service provider level.

Monitoring and auditing the usage of virtualized resources

can be performed at the domain-level. Last, more various

subscription types can be introduced based on domain-level

contracts. Figure 2 depicts the relationship between the three.

We define a domain as a single RBAC domain where role­

based user/resource administration can take place.

Definition 3: Let D = {d1, ... , di} denote a set of RBAC

domains. UD = U x D represents the relation of cloud user­

to-domain, and the cloud user may or may not be associated

with a domain. Similarly, DVR = D x VR represents the

relation of domain-to-virtualized resource, and the virtualized

resource may or may not be assigned to a domain. Lastly,

UVRv represents the ternary relation of cloud user-domain­

virtual resource, and the function fuv RD: U x D ---+ 2 VR

maps a pair of user and associated domain to a set of virtual

resource.

B. RBAC Components

Our approach is based on RBAC due to its advanced features

previously discussed. It subsumes existing RBAC components,

also following the conventional approach to defining them

using the sets, relations, and functions. Note that some of them

have been further specified or redefined for our purpose.

Definition 4: The RBAC components supported are as fol­

lows.

- U = U x D represents the set of domain users associated

with domains, and U x ¢ represents the set of cloud users not

associated with any domain.

- P represents the set of permissions to use virtualized re­

sources associated domains

- R and S represents the set of roles and sessions, respectively.

- UA, PA, and RH, representing the relation of user-to-role

assignment, permission-to-role assignment, and role hierarchy,

respectively. RH is partial order on R, written as ::5.

- user: S ---+ U represents a function mapping each session Si
to the single user.

- roles: S ---+ 2R represents a function mapping Si to a set of

roles, where roles � {rl(:3r' � r)[(user(Si), r') E UAl} and

Si has permissions UrEroles(s;) {pI (:3r" ::5 r) [(p,r ") E PAl}.

C. Domain-based Management and Delegation

Our approach supports the domain-based management of

users and virtualized resources through the delegation of the

administrative functions and allocation of virtualized resources

to each domain from the cloud service (IaaS) provider. The

user and virtualized resource are associated with the domain,

and the domain administrator can manage them based on their

organizational security and management policies. It should be

noted that this does not mean that our approach does not

support the traditional user-based service model. The user can

get the infrastructure service through both the direct mapping

and indirect mapping as shown in Figure 2.
The cloud service provider can allocate virtualized resources

to each domain based on its subscription contract. In addition,

the cloud service provider delegates administrative functions

related to user management, role management, and permission

management. Please refer to [10] for more details on RBAC

administrative functions. The access request from the user

contains the user identity and requested virtualized resource,

and the reference monitor can check if the user is allowed

to access the virtualized resource by checking both the direct

mapping and indirect mapping.

IV. DESIGN AND IMPLEMENTATION

In this section we discuss the design and proof-of-concept

implementation of our approach. The Eucalyptus platform has

been modified and extended for our purpose. As previously

stated, Eucalyptus has no notion of roles for its access control

mechanism. Specifically, we designed and implemented ob­

jects that represents roles, permissions, and different adminis­

trative domains within Eucalyptus; we modified web interface

of Eucalyptus to enable the cloud service administrator for

managing domains and associated permissions, and to enable

domain administrators for managing domain users and roles;

and we designed and implemented a reference monitor that

checks whether the given request for the creation of virtual

machines should be granted or not.

We first discuss the general architecture of Eucalyptus and

then present our design and implementation.

A. Eucalyptus Architecture

Eucalyptus is organized into five components, each of which

is responsible for operation of a different part of the platform:

1) Cloud Controller (CLC): The main component which

governs the system and exposes a query (REST/SOAP)

interface for users to communicate with the system. It

also leverages a web interface for administration, user

registration and retrieving user credentials.

2) Walrus: Amazon S3 equivalent part of Eucalyptus.

3) Cluster Controller (CC): Each cluster has a CC respon­

sible for resource allocation among the nodes within that

cluster.

4) Storage Controller (SC): Amazon ESB equivalent part

of Eucalyptus. Each cluster has a SC that exports block

storage devices over the LAN for VMs to mount them.

5) Node Controller (NC): Responsible for

running/terminating virtual machines and networking

of them.

In the open source distribution, the source code for CLC

includes the code for Walrus and SC components. During the

Userlnfo

"nalle: String
.. paS5WOrd: String
.. isAtillin: boolean
... . .

Holes: lht<Rot!!lnfo>
.. dofiin: DCMlainlnfo
.hOc.lainAdlftin: boolean

Fig. 3. RBAC Object Design

boot up, CLC marks SC and Walrus components as either local

or remote and tells Mule ESB (enterprise service bus) what to

do with the remote components. If they are remote, Mule ESB

takes care of transportation of messages between remote hosts.

The CLC is composed of a number of tightly coupled modules.

They are all compiled and packaged into separate jar files

and loaded by the same classloader during the boot process

of the system. For example, the web administration module

is compiled into the package called eucalyptus-www.jar and

loaded/started by the bootstrapper. We have created a separate

module for the RBAC component called rbac-manager.jar

and put all the code related to roles, domains and the reference

monitor in this package.

B. RBAC Component Representation

Since there is a limited number of resources in this platform,

we decided to represent permissions over them as collections

of resources. Among various virtual resources such as images,

VM types, number of public IPs, and allowed ports, we only

considered images and VM types for this prototype design

and implementation. A resource collection consists of a list

of images, a list of VM types, and the name of the cluster

on which these images and VM types can be used. Objects

that need to be assigned permissions (roles and domains)

are associated with resource collection objects, as shown in

Figure 3. For example, a user of the role associated with the

resource collection object (cluster= "ZoneA ",images=[emi­

AAAAAA,eri-BBBBBB), vmTypes=[ml.medium}J can only cre­

ate a virtual machine of type ml.medium, only in the cluster

named ZoneA, and can use either of the images listed. In

Eucalyptus, all users are treated the same. By introducing

the concept of domains, we can group users and manage

access control administration separately from other domains.

Each user and role is associated with a domain that makes

administration easier. The user to domain mapping information

is stored in the UserInfo object by adding an extra attribute

to the class. The cloud administrator can create domains and

modify permissions given to them such as VM types and

images. These permissions form the basis for all permissions

given to roles within that domain, as shown in Figure 4. The

domain administrator then assigns permissions to roles from

this set of permissions. Permissions are assigned to domains

per computing clusters, and this provides a finer grained access

control as to"who can do what on what cluster". The class

RoleInfo is responsible for representing the roles and the

permissions associated with them. The user to role association

information is stored also in the Userlnfo object by adding an

extra attribute. Permissions assigned to roles are represented

as ResourceCollection objects for each cluster. The cloud

administrator or domain administrators can select and assign

permissions to roles among the permissions that are available

to the domain of the role which are assigned by the cloud

administrator, as shown in Figure 5.

The reference monitor is involved only in processing a

VM creation request. The request message goes through

several components in which the validity and acceptability

of the parameters are verified. The internal messaging

between components in Eucalyptus is done via Mule ESB

that also includes the processing of such requests. We have

configured the Mule so that a VM creation request message is

passed through the reference monitor as the last stage of the

validation process. Mule configuration is done in compile-time

with XML files in which services and associated endpoints

are configured. We also defined a new endpoint called

RolesVerifyWS and a new service called RolesVerify in

clc/modules/cloud/src/main/resources/eucalyptus-services.xml

and clc/modules/cloud/src/main/resources/eucalyptus­

verification.xml, respectively. The reference monitor receives

a VmAllocationlnfo object which contains the necessary

information to run VMs such as the user ID, requested

machine&kernel&ramdisk images, the VM type etc. It first

retrieves the Userlnfo object associated with the requesting

user and retrieves user's roles as a list. Starting from these

roles, it initiates a breadth-first-search over the role hierarchy

to find all of the image, VM type, and cluster permissions.

During the search, if all of the required permissions are

found in one or more roles, the search is terminated and

the reference monitor allows message to pass through. If the

search terminates with consuming all of the role hierarchy and

not finding all of the required permissions, an exception is

thrown which will prevent the request from further processing

and return the exception message to the client.

V. CONCLUSION AND FUTURE WORK

In this paper we have discussed a novel approach to man­

aging virtualized resources in cloud computing by introducing

the notion of domain and injecting a role-based security policy

support into the IaaS service model. Specifically, our approach

adds an additional layer of domain to the current user-resource

direct mapping mapping, and the cloud service provider del­

egates its administrative functions to each domain, and the

domain administrator further manages users and allocated

virtualized resources. This framework provides benefits such

as domain optimized resource management, domain-based

advanced policy support based on role, domain-based security

log analysis, and better pricing model (based on not just

user, but group/domain). Finally, we discussed how to design

and implement a proof-of-concept prototype by modifying an

existing IaaS framework called Eucalyptus.

Our immediate future work includes the investigation on

how to support advanced role-based policies such as separation

of duty (SoD).

"7/ , NMT SCL EucalyplUs CIoLol Logged In as admIn I Domain: def-..tt I �

"-

Domains

=;; I NMT SCL El.CaIyplUs Cloud Logged " as ..tml" I Doma.n def .. n I Lll!ll!Ul

U.ts Rotft; 00""'"

Im.�. YmTypes
Faculty_Zone ekt-OC181156 .! m1.Xlarge

eri-EF311003 ..1 cl.xlarge
.... 50FEOE3F A m1.la<ge •
ek..ooE"1�'" 6!lt ml.SfflIII ... 6!lt

Studer<_Zone ",,;.oBE41157 • m1..malI
""50EDOE4D! cl.medium
eri-EF031ODl ! m1.1t1alge ... MIl
�FE0E3' t!QI

.....

Fig. 4. The web interface for managing domains and permissions

7/1 N MT SCL Eucolyp1Us Cloud

.-

Ro4e nan-. jstl.A1n
CloudUser

...
VmType.

mllilfgll • i!!!!III.

�. Sludeont_Zone ekJ-OBE41157 I. c1.medlum .I
eri-EF031003 I m1 .• rTIIlI '" a.&II
�EDOE.C·JtiIII

Role nama IFac\Aty
CIoudUser

...
1m

Faculty_Zone ekJ.OC181156 x cl.medium II:
eri-EF031003 & m1.19rg8

StudencZone 8fl'Ita)E00E4C'" &Ill. mUmaI!

Fig. 5. The web interface for managing roles and permissions

ACKNOWLEDGMENT

This work was supported at the Secure Computing Labo­

ratory at New Mexico Tech by the grant from the National

Science Foundation (NSF-IIS-0916875).

REFERENCES

[I] NIST, "Nist working definition of cloud computing,"
http://csrc.nist.gov/groups/SNS/cloud-computing/index.html, Tech.
Rep., 2009.

[2] Amazon Elastic Compute Cloud and Simple Storage Service,

http://aws.amazon.com.
[3] Google Apps, http://www.google.com/a.
[4] Salesforces the Sales Cloud, http://www.salesforce.com/crm/sales-force-

automation/.
[5] Windows Azure Platform, http://www.microsoft.com/azure/default.mspx.
[6] NEBULA: NASAs Cloud Computing Platform, http://nebula.nasa.govl.
[7] Google Doc, http://docs.google.com/.
[8] Eucalyptus Open Source, http://open.eucalyptus.coml.
[9] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman, "Role­

based access control models," IEEE Computer, vol. 29, no. 2, pp. 38-47,
February 1996.

[10] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chan­
dramouli, "Proposed NIST standard for role-based access control," ACM
Transactions on Information and System Security, vol. 4, no. 3, August
2001.

[II] D. Shin, G.-J. Ahn, S. Cho, and S. Jin, "On modeling system-centric
information for role engineering," in Proceedings of 8th ACM Sympo­
sium on Access Control Models and Technologies, Como, Italy, June 2-3
2003.

[12] G.-J. Ahn and R. Sandhu, 'The RSL99 language for role-based sepa­
ration of duty constraints," in Proceedings of 4th ACM Workshop on
Role-Based Access Control. Fairfax, VA: ACM, October 28-29 1999,
pp. 43-54.

[13] L. Zhang, G.-J. Ahn, and B. Chu, "A rule-based framework for role­
based delegation," in Proceedings of 6th ACM Symposium on Access
Control Models and Technologies, Chantilly, VA, May 3-4 2001, pp.
153-162.

[14] E. S. Barka and R. S. Sandhu, "Framework for role-based delegation
models," in Proceedings of i6th Annual Computer Security Application

Conference, New Orleans, LA, December 2000.
[15] N. Dimmock, A. Belokosztolszki, D. Eyers, J. Bacon, and K. Moody,

"Using trust and risk in role-based access control policies," in Proceed­
ings of 9th ACM Symposium on Access Control Models and Technolo­

gies, Yorktown, NY, June 2004.
[16] ITU, iTU-T Recommendation X 509. information Technology: Open

Systems interconnection - T he DirectolY: Public-Key And Attribute

Certificate Frameworks, 2000, iSO/lEC 9594-8.
[17] D. Shin, G.-J. Ahn, and S. Cho, "Role-based EAM using x.509 attribute

certificate," in Proceedings of Sixteenth Annual iFfP WG il.3 Working

Conference on Data and Application Security, Cambridge, UK, July
29-31 2002.

[18] RBAC support for Nebula, http://nebula.nasa.govlblog/2010/jun/nebulas­
implementation-of-role-based-access-control.

