
Cloud-based IoT Analytics for the Smart Grid: Experiences
from a 3-year Pilot

T. Hasan, P. Kikiras, A.
Leonardi

AGT International
Hilpertstraße 35

64295 Darmstadt, Germany
{thasan, pkikiras, ale-

onardi}@agtinternational.com

H. Ziekow∗

Furtwangen University
Robert-Gerwig-Platz 1

78120 Furtwangen, Germany
zie@hs-furtwangen.de

J. Daubert
TU Darmstadt / CASED

Mornewegstr. 32
64293 Darmstadt, Germany

joerg.daubert@cased.de

ABSTRACT
The transformation of electrical grids into smart-grid is seen
as one of the major technological challenges of our times and
at the same time as one of the key domains for Internet of
Things (IoT). Smart-home technologies and corresponding
analytics are an integral part of many use cases in this field.
In this paper we present a cloud-based test bed for capturing
and analyzing smart-home data and report on experiences
from a 3 year pilot with a cloud-based system. We discuss
on real-world challenges that we encountered throughout the
pilot - e.g. related to big data volumes and data quality -
and describe corresponding technical solutions.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Internet of Things

Keywords
Smart-home, IoT, Analytics

1. INTRODUCTION
In recent years, environmental and economic considerations
have fueled investments in renewable energy sources. For
instance, member states of the European Union have set
the so-called 20-20-20 goals, to obtain at least 20 percent of
their electricity from renewable sources by 2020. Germany
even strives for 80 percent renewable sources in the energy
mix by 2050. However, this change in the energy supply
has severe implications on the operation of electrical grids
and the corresponding ICT infrastructure. Decentralized

∗Main part of the work was done while at AGT Interna-
tional.

production (e.g. with solar panels on roof tops) causes the
need to expand grid management infrastructures to the low
voltage level, i.e. the level of streets and houses. However,
it remains an open question how technical solutions for grid
management of on this local level should be designed.

Smart-home technology is seen as a key enable for better
understanding and managing the energy consumption on in
the low voltage grid. To better understand the correspond-
ing challenges and solutions for data capturing and process-
ing, the German federal government has provided funding
for the PeerEnergyCloud research project [12]. This paper
reports on a cloud-based test bed for capturing and analyz-
ing sensor data from smart-homes that was developed and
piloted throughout this project. The pilot was conducted
using smart-home hardware packages with sensors for cap-
turing device specific energy consumption as well as sensors
for environmental conditions (e.g. room temperature). In
total we used 60 packages that were installed in various se-
tups and different homes. Overall, we observed installations
for up to three years and captured about 12 Billion sensor
measurements in total. The emphasis of this paper is on the
technical solutions that we developed for capturing and an-
alyzing the data as well as on the challenges that we faced in
the real-world deployment. Key contributions of the paper
are the following:

• We provide a solution architecture and details on tech-
nical components for a test bed that supports cloud-
based service on top of smart-home sensors.

• We discuss the real-world challenges for data capturing
and analysis that we derived from a 3 year deployment
in the smart home/smart grid domain.

• We present technical solutions that respond to the
challenges that we encountered throughout the pilot.

The remainder of the paper is structured as follows. Section
2 discusses relevant related work. Section 3 provides a high
level overview of the solution architecture and different com-
ponents of our test bed and Section 4 discusses operational
issues that we faced when piloting the system. The subse-
quent sections address technical details of the key compo-
nents in our test bed and the mechanisms for addressing the

TRIDENTCOM 2015, June 24-25, Vancouver, Canada
Copyright © 2015 ICST
DOI 10.4108/icst.tridentcom.2015.259694



encountered challenges. Section 5 drills down into the imple-
mentation of the gateway component that facilitates sens-
ing within homes. Section 6 describes specific monitoring
components that we developed for the smart-home domain.
Section 7 presents analytics components that we developed
for supporting smart-grid applications and discusses how we
addressed the corresponding big data challenges. Section 8
presents end-user services on top of our test bed along with
a privacy policy engine that we developed. Finally, we con-
clude the paper and discuss future work in Section 9.

2. RELATED WORK
Several systems integrating sensor networks with energy man-
agement systems at the consumer premises have been pro-
posed so far.

The closest to ours project is Linear [9], a Flemish Smart
Grid project focusing on solutions to match residential elec-
tricity consumption with available wind and solar energy,
an approach referred to as demand response. Linear se-
lected and deployed 2 types of smart appliances. The first
type consists of postponable appliances, such as dishwash-
ers, washing machines and tumble dryers, 445 of which were
deployed in the Linear pilot initiative. The second type con-
sists of buffered appliances, of which Linear included 15 do-
mestic hot water buffers and 7 electrical vehicles. In the
field test, 110 houses were equipped with smart meters. In
each Linear household a home gateway communicated with
the measurement devices and smart appliances and sent all
collected data in real-time to the backend of the gateway
provider. The data was then forwarded to the Linear pilot
backend. The project suffered from the amount of data and
transactions collected since no big data technologies to han-
dle that were used. Additionally, in-house communications
were one of the major sources of technical malfunctions. Lin-
ear, installed on average 11 ZigBee plugs in each home, half
of them serving exclusively to bridge communication signals.
Linear preferred “Ethernet over PLC to Wi-Fi” for connect-
ing the different modules in the house with the gateway.
This choice quite often caused conflicts with existing appli-
cations such as the home network and digital television. As
a result, Linear technicians repeatedly needed to reconfig-
ure and test the complete in-house communication setup.
According to the Linear support team “Some families were
so excited about the possibilities of the Home Energy Man-
agement System that they started moving plugs to different
locations in order to trace standby losses, not being aware
that they were messing up the network to the extent that the
fridge plug started showing the behavior of a television in
our databases”. Similar issues have been experienced also in
our pilot and in one of the following sections we will present
our mitigation approach.

In [5] the authors evaluate the performance of an in-home en-
ergy management system based on a ZigBee wireless sensor
network. The focus there is the performance of the system
on the application level, meaning the investigation of the
potential of both energy management and demand manage-
ment. The evaluation that has been performed by the au-
thors is based on simulation results, and not on real network
deployments in households as in our work.

Similarly, in [14] energy management in homes has been

Figure 1: High-level architectural overview of the PEC
ecosystem

investigated on a pilot consisting of only 3 households in
Sacramento. The solution has been implemented using off-
the-shelf components based on power line communication,
and it included a web-based monitoring and control of home
appliances.

3. OVERVIEW OF SYSTEM
ARCHITECTURE

In this section we provide an overview of the main compo-
nents of our testbed and the design decisions that drove the
architecture. Key components are further detailed in sec-
tions 5, 6 and 7. We developed the testbed to support pilot-
ing of smart building technologies for delivering value-added
services to end-users as well as for supporting grid opera-
tions through advanced analytics. Thus, the architectural
design was driven by the need to (a) integrate sensors de-
ployed in private homes, (b) deliver cloud-based services to
end-users, and (c) support big data analytics over captured
sensor data. Figure 1 gives an overview of the system ar-
chitecture that supports these needs. In the architecture we
distinguish two main physical layers: the local layer (hosted
within private homes) and the backend layer (hosted in an
cloud environment).

3.1 Local Layer
The main design goal of the local layer is to provide an easy
to use solution for installing and connecting sensors in pri-
vate homes to the backend infrastructure. Easy setup is a
key requirement because persons with little technical expe-
rience should be able to make installations in their homes.

Our solution for the local layer comprises wireless sensors
and a gateway component that we deploy in private homes.
The sensors are smart building sensors that capture elec-
tricity consumption of individual devices and some context
information within the home (e.g. room temperature and
brightness). In addition, some sensors act as actuators that
can control attached devices (i.e. switch power on or off).
Several vendors offer sensors for smart buildings, using a
range of different protocols (e.g. [1, 2]).

By design our system supports a multitude of different sen-



sor types and communication protocols. For the pilot we
choose ZigBee based sensors as a solution that enables wire-
less deployment and coverage of larger houses through multi-
hop communication.

When deployed in a house, the sensors establish a house
specific network (i.e. with user specific network ID and en-
cryption) and connect to the gateway component. The main
task of the gateway is to bridge between the smart building
sensors and the backend. It captures the arriving sensors
data, buffers them, and forwards them via REST calls to a
receiving component in the backend. In addition, the gate-
way provides a REST interfaces, allowing the backend to
issue ad-hoc queries for sensor data, meta data, and to issue
actuation commands.

The gateway software is based on Java and OSGi, mak-
ing it compatible with a wide range of hardware platforms.
Within the pilot we used media PCs to run the gateway but
more lean hardware platforms are viable alternatives. Zig-
Bee communication is enabled via a USB dongle and com-
munication to the backend is established via the Internet.
The network parameters for the ZigBee communication and
for connecting to the backend are preconfigured when the
components are shipped to the users. Through this pre-
configuration, the installation on site is limited to deploy-
ing the sensors and connecting the gateway to an Internet
router, thus is executable without detailed technical knowl-
edge. All communication to the backed in encrypted via a
VPN that the gateway connects to during startup. Besides
encryption, this setup has the benefit of enabling secured
communication from the backend to the gateway past fire-
walls and routers.

3.2 Backend Layer
The backend is hosted in a private cloud infrastructure. The
main purposes of the backend are (1) collection of sensor
data, (2) provisioning of web-based value added services to
end-users, (3) provisioning of analytics for grid operations.
Figure 1 shows the high level components that we roughly
group into three sets. We refer to one set as Management
Components that support the management of software and
hardware deployments in the testbed. We refer to a second
set of components as End-User Applications. These compo-
nents provide end-user facing services and connectivity. A
third set of components is called Analytics Components that
provides storage and processing capabilities for big data an-
alytics. The Management, End-User Applications, and An-
alytics Components, have different non-functional require-
ments, leading to different technology choices for their im-
plementation.

The Management Components are used to manage and mon-
itor the infrastructure. This includes health monitoring of
all system components as well as management of user ac-
counts and metadata about the deployments. In general,
monitoring of the system health and management of user ac-
counts is only moderately complex and can be implemented
with standard approaches. However, the management of
deployment metadata in an IoT context poses significant
challenges and calls for special techniques. Metadata in-
clude information such as the association of a sensor to the
object that it senses (e.g. an energy sensor attached to a

fridge). In an uncontrolled environment - such as private
homes - deployments might change without an explicit noti-
fication to the system (e.g. users redeploy smart plugs with-
out updating the meta data). We address this challenge with
dedicated analytics which implement a concept that we call
“self-conscious sensor”. Details about this concept and our
solution are given in Section 6.

The End-User Applications provide users with statistics of
their energy consumption and means to control (switch)
their devices via web interfaces. Key requirements for these
components are related to a good user experience in terms
of system responsiveness. The challenge is to timely process
the high resolution data from the sensors and to provide the
results via an interactive interface. We address this chal-
lenge by leveraging concepts from the lambda architecture
[10]. That is, we build the end-user applications on top of a
database that acts as a serving-layer and feed the database
via a dedicated batch-layer and speed-layer. The batch- and
speed layer preprocess and aggregate the data for presenta-
tion. The serving layer only holds the subset of the complete
sensors data which are needed for the end-user application
as well as pre-computed aggregated statistics. This reduc-
tion of the dataset and pre-aggregation keeps the serving
layer reasonably small and supports fast response times for
end-user applications that query the data.

The requirements for the Analytics Components are mainly
driven by (a) the large data volumes and (b) the support for
exploratory data analysis. For every household in the pilot
we receive about 1.2 million sensor measurement per day.
This calls for storage and processing technologies that can
handle big data. The batch layer provides a scalable stor-
age that holds all raw sensor data and holds components
for distributed batch processing (e.g. including a MapRe-
duce framework). The speed layer leverages technologies
of complex event processing that keep the recent incom-
ing data in memory and run analytics over the live data
streams. This design enables us to handle large data vol-
umes in our analytics. It also addresses the need for flexi-
ble explorative data analytics by keeping the complete raw
dataset and thus supporting the addition of arbitrary new
analytics functions. More details about the implementation
of the Analytics Components in Section 7.

4. OPERATIONAL ISSUES IN THE PILOT
Within the pilot we encountered several operational chal-
lenges while running our testbed. This section summarizes
the key challenges and gives an overview of the learnings.
The main challenges were related to two aspects: (1) connec-
tivity issues, (2) and the uncontrolled environment for the
sensor deployment. Connectivity issues occurred on two lev-
els. One is the connection of ZigBee devices to the gateway
and the other is the Internet connection from the gateway to
the backend. The ZigBee connectivity heavily depended on
the conditions within the various households. That is, the
material of the wall and the distance between sensors (i.e.
number of stories) had a strong impact on the connection
quality. We managed to support deployment in large house-
holds by leveraging the multi-hop capabilities of the ZigBee
protocol and by carefully selecting deployment positions (i.e.
plugs in stairways between stories). Connectivity issues to
the backend resulted from problems with some local inter-



Figure 2: Gateway components.

net connections and downtimes of the backend. While loss
of live data cannot be avoided, we implemented a solution
to fill in resulting data gaps in the master data set of the
backend. This is, we persisted recorded data on the local
gateways and updated the backend as soon as the Internet
connection was re-established (see Section 5 for details).

The challenge of sensing uncontrolled environment is inhered
to the application domain of smart homes. The tested had to
cope with a range of distortions caused by users. Examples
of such distortions include accidental disconnection of the
gateway (e.g. during cleaning) and rearranging of sensors.
Such distortions are inherent and cannot be prevented by
the system. Hence, the system must be able to adapt. We
addressed this by extended monitoring capabilities and an-
alytics which enabled the system to be aware of unintended
changes in the deployment. Section 6 provides more details
about the specific monitoring solutions.

5. GATEWAY COMPONENTS
The gateway provides an interface between the sensor net-
work and the rest of the system. This means not only bridg-
ing the gap between the likely short-range network used
by the sensors, but also the device-specific details and the
higher-level, device-agnostic middleware in the backend [3].

The proposed gateway provides an abstraction layer which
removes the device-specific details of the sensors and of-
fers the gathered data in a standardized, device-independent
way. The gateway also handles the management of the de-
vices which are attached to it. For example, managing the
registration of new devices, providing security and fault de-
tection. The gateway’s functionality should be extensible
during the deployment lifetime of the gateway and the gath-
ered data should also be stored in a cache on the gateway
for optimization purposes. The gateway design is split into
three main components: Core Bundles, Connector Pool and
Platform Services.

5.1 Core Bundles
The Core Bundles perform the majority of tasks carried out
by the Gateway. The set of Core Bundles comprises of the
following components:

• The Device List, which handles joins and leaves of the
devices to and from the sensor network so that the
registration and subsequent de-registration of devices
can be pushed to the backend.

• Sensor Data and Descriptions: the attached sensors
need to be described in a device-independent way so
that the backend can utilize the data and descriptions
without the need of having explicit knowledge of the
underlying implementation details of the various sen-
sors.

• Cache Manager: to defend against failures of network
connectivity, the gateway needs to cache sensor data
temporarily until connectivity has been restored. The
data needs to be kept in a cache for a pre-determined
amount of time before being removed.

5.2 Connector Pool
The Connector Pool is where the device-specific protocol
adaptors reside. The Connector Pool should have a num-
ber of device-specific protocol adaptors so that a number
of different devices using different networking technologies
can be attached to the gateway in a modular fashion. Each
protocol adaptor should completely encapsulate the device-
specific details of the sensor, leaving the rest of the gateway
to operate in as a generic way as possible. The protocol
adaptor will handle the actual interface to the sensor net-
work in order to receive data and all associated additional
device-specific functionalities such as sending commands to
the sensors for both actuation (where available) and man-
agement purposes.

5.3 Platform Services
Platform Services are generic house-keeping services to man-
age the Gateway as a service platform. In order for the gate-
way to be upgraded during its deployment lifecycle, it must
be implemented in a modular way. These modules must be
“hot pluggable”, meaning that they can be dynamically up-
graded without having to stop the running system. In order
to achieve that, a set of Platform Services must be present
providing an appropriate system and service platform which
enables such hot plugging of software components.

5.4 Gateway Implementation
In order to meet the requirements described in the previous
Section and satisfy the modularity and extensibility needs,
we chose to build the gateway using the OSGi service frame-
work. OSGi provides a platform where Java modules (called
bundles in OSGi) can be dynamically installed, stopped,
started, updated and uninstalled. By offering a service-
oriented architecture, bundles can register themselves as ser-
vices, discover existing services and bind to listening ser-
vices. These factors together mean that the functionality of
the gateway can be modified during its deployment life-cycle
thereby meeting our requirements. We created the following
services in Java on top of OSGi:

The XBee protocol driver implements the XBee specific
driver and performs the following functions:

• Device Discovery: it discovers XBee devices in the net-
work.



• Data handling: data is received from the attached de-
vices and the payload is parsed and sent to the Cache
Manager and also to the Data Push Interface so that
the data can be forwarded to the backend for further
processing.

• Actuation: if an application wishes to switch a device
on or off then the XBee protocol driver creates the
appropriate message to be sent to the device so that it
can be activated or deactivated.

The Device List provides a dynamically updated list of
attached devices which can be queried by the backend and
thereby also provided to the applications. The Device List
contains meta-data about each sensor that is attached, for
example, its MAC address, type and if it is a power plug,
whether or not its relay is switched on or off.

The Sensor Data and Descriptions are a set of high-level
descriptions of the sensors themselves and the data they
collect. The sensor descriptions are used by the gateway to
keep track of which sensors are attached to the gateway at
any particular time as we typically have sensors of multiple
types in a deployment. The sensor data descriptions are
used to convert the data sent by the sensors into a format
which can be used by the backend and thereby the rest of
the system.

When a message arrives from a sensor, it is processed by
the gateway and the relevant data is extracted. A single
sensor device can send messages with different types of data
as it may have multiple sensors on-board (e.g., temperature,
light, humidity, etc.) so the gateway needs to be aware of
the different types of data that can be expected from the
sensors.

Sensor Data 1 Unformatted sensor data
BRI=391lx

TEM=26.8C

BAT=OK

UBAT=4.72V

The Sensor Data 1 shows an example of the unformatted
sensor data as it arrives from the sensor at the gateway. The
gateway parses this data and creates a internal representa-
tion of this data using the sensor data itself, information
from the packet header and the time and date when the
packet has been received.

Sensor Data 2 Formatted sensor data in JSON format
"{\"MACADDR\": \"00:13:A2:00:40:61:B5:E4\",\"TYPE\":

\"ZBS-121\",\"DATE\": \"2012-05-11 15:12:06\",

\"VALUES\": {\"TEM\":27.2,\"BRI\":404,\"BAT\

":\"OK\",\"UBAT\":0.0, }}"

This internal representation is then converted into a JavaScript
Object Notation (JSON) stanza which is then sent to the
backend for processing. An example of the JSON stanza is
shown in the Sensor Data 2.

The Cache Manager interacts with a local database (e.g.,
PostgreSQL) to temporarily store the gathered sensor data.

The Database is also accessible via the Sensing/Actuation
Interface so that the applications can access the cache if
necessary.

The Representational State Transfer (REST) Inter-
face is the implementation of the interfaces used by the
gateway to interact with the backend. It provides the fol-
lowing features: get the latest data from the database for a
specific device, turn the relay of a device on or off (actua-
tion capabilities) and send gathered data from a sensor to
the Backend. The REST Interface is implemented using the
JAX-RS framework and formats the payload of the REST
calls in a JSON format.

6. MONITORING AND SUPPORT
SERVICE

In this Section we describe two important components re-
lated to the management of the system, the monitoring and
the plug change detection, respectively. These two compo-
nents make the system itself “self-conscious” about its status
and possible misconfiguration caused by the users.

6.1 System state monitoring
As we have to deal with a complex distributed system with
many potential error sources, the state of the system has to
be monitored constantly to be able to quickly detect faulty
or abnormal behavior. For that, a number of services were
implemented to help the administrators keep an overview.
As the deployment consists of gateways connected through
a VPN to a set of backend servers, it is obvious that it is
crucial to monitor each part to a certain extent. Therefore,
these three points for monitoring have been identified and
covered in our deployment.

As implemented in our deployment, an alert can be raised
when the number of connected sensors to a specific gateway
drops, hinting at an unstable local ZigBee network or other
problems with the gateway software.

As the VPN connection is an important part in the com-
munication infrastructure, it has to be monitored as well.
Services that dispatch alerts when new gateways connect or
disconnect are needed. Therefore, in our case, gateways send
an email whenever they connect to the VPN to be aware of
newly set up installations or unexpected restarts of gate-
ways. For manual inspection, there is a script that lists all
connected gateways.

Furthermore, the responsiveness and availability of the back-
end servers themselves are crucial. To monitor the servers,
we implemented services that look for recent activity in the
databases. If the data is not written through to the database
immediately, it can hint at problems with the REST-Interface
or problems with handling the high amount of incoming
REST calls and the resulting database writings. Because of
pilot project character, it was of advantage to periodically
restart the VMs to eliminate all stray or “buggy” processes
that might have been initiated by faulty automatic calls of
the REST interface or other components.

The majority of our services were implemented as scripts
that run on the central backend servers and are either called



manually or on a daily basis by e.g. a cron job. It came to
our attention that sending automatically generated status
emails through local SMTP server instances to a number of
interested administrators is very useful for keeping a general
overview of the system.

6.2 Plug change detection
Due to the loose installation of sensors and the fact that
private homes are very dynamic environments, we could ob-
serve that users tend to switch sensors or connect new de-
vices to their system without providing the information to
the system. Any analytical component working with data
from a household where the configuration has changed will
yield wrong results. Therefore, we designed a component
that can take required countermeasures to ensure the con-
sistency of the data.

We implemented a scalable framework (based on Apache
Storm and the machine learning framework Weka) that can
prompt the user to confirm a detected configuration change
or automatically trigger recalculation of any analytics mod-
els [8]. For this, it aggregates the consumption measure-
ments for each device of a specific household over 24 hours
and extracts a set of features from this aggregated data.
With feature vectors from multiple days and from all devices
of a specific household, two kinds of machine learning models
are learned. The first is a classifier that accurately classifies
feature vectors extracted from newly incoming data as one of
the devices the model has been learned with. By having such
a mechanism working with a high accuracy, (cyclic) swaps
can be/are detected easily. However, for the case that we
want to detect previously unknown devices, this approach
gives only limited possibilities to asses the confidence with
which newly collected data really comes from a device that
is known to the household model, as a classifier will always
chose one category, be it fitting or not. Therefore, we rely on
a second model that clusters the data into as many clusters
as there are sensors in the smart home kit and look at the
distance of a newly incoming feature vector to the closest
cluster center. If this distance is above a certain threshold,
we can accurately assume that the data the feature vector
has been extracted from is not coming from a usually at-
tached device. For the first component we use statistical
features like minimum (non-zero), maximum and average
daily consumption among others. In addition to that, a his-
togram of the daily consumption data is computed and put
into the feature vector as is. For the second component it
suffices to only rely on the statistical features.

As stated, the performance of the swapping detection is in-
evitably linked with the performance of the classification
mechanism. Our system is able to detect the devices with
an accuracy of 97.08% and therefore also detect cyclic swaps
very accurately.

When it comes to evaluation of the second model, we have
to look at two parameters of the setup, namely the number
of days of training data per device in the training set and
the cluster distance threshold that determines the distance
to the closest cluster center after which the device shall be
detected as unknown.

In order to be able to evaluate this model appropriately, we

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

F
a
ll
-O

u
t

Number of days in Training Set

1.0
1.0125
1.025
1.05

1.075
1.1
1.2

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

R
ec

a
ll

Number of days in Training Set

Figure 3: ClusterDist-based decision over number of days in
training set and varying threshold TclusterDist

furthermore need metrics tailored to the specific problem,
providing the possibility of tuning the system towards the
intended performance. Therefore, a short description of the
chosen metrics shall be given at this point. We identified
two questions that are of high interest in our scenario: How
many of the unknown devices are we able to detect? And
how many false alarms are issued by the system? The metric
addressing the first question is the Recall. In this context,
the Recall describes how many of the unknown instances
in the test set really were recognized as such. The second
measure is Fall-out. It describes how many of the tested
known devices have been incorrectly classified as unknown
devices, leading to a false alarm. It is key to maximize Recall
and minimize Fall-out.

As can be seen in Figure 3, increasing the threshold TclusterDist

we can observe characteristics one can expect, i.e. lowering
recall and increasing fall-out. Furthermore it can be seen
that with a rising number of instances per device in the
training set, the Fall-out drops and many of the threshold
combinations furthermore provide a constantly high Recall
rate. It is now key to find a combination of number of days
in training data and decision threshold that suits the appli-
cation scenario. With a lower Recall, more unknown devices
will falsely not be detected and with a too high Fall-out we
get more false alarms. With a lower number of required days



in the training set the system requires less time to set itself
up to operate but will possibly work less robustly.

When taking a look at the application scenario of prompt-
ing the user for confirmation of changes made to the smart
home environment, a high fall-out poses a problem. It can
be perceived bothering or even disturbing to the user if he
gets gets prompted on a too frequent basis. Therefore, we
propose to mitigate this issue by setting a minimum num-
ber of consecutive days where an instance representing the
behavior of an appliance at that day has to be detected as
unknown under utilization of the same model. In the second
scenario, where the detection of an unknown device triggers
recalculation of an ML model, the false alarm rate is not as
harmful, as an adequately designed system should be able
to cope with a moderate amount of recalculations. In this
case, the parameters can be chosen so that we have a high
detection probability and an amount of false alarms that
causes still manageable overhead.

7. ANALYTICS COMPONENTS
A central aspect of the pilot was to provide analytics compo-
nents for the captured energy data. A particular challenge
was to choose the right processing paradigms and technolo-
gies to cope with the high amount of sensors data. This
section provides insights about the requirements and corre-
sponding solution architecture that we used the project. In
addition, we discuss the implementation selected analytics
components (i.e. consumption prediction and power quality
anomaly detection) in detail.

7.1 Requirements and Solution Architecture
The solution architecture for our testbed was primarily driven
by three key requirements: (1) handling large data volumes,
(2) handling high velocity data, and (3) flexibility regarding
functional extensions. The first two requirements directly
map to two of the three Vs that define big data (i.e. vol-
ume and velocity). The requirement for handling large data
volumes is driven by the huge number of capture sensor mea-
surements. Throughout the pilot we collected approximately
12 billion data points (about 1.2 million per household and
day). This causes the need for technologies that can deal
with this amount of data. The requirement for handling
high velocity data is due to the need for real-time analy-
sis of the incoming sensor streams. Applications that drive
the need for real-time analysis are for instance load mon-
itoring for end-users and consumption prediction for load
balancing. End-users should have access to a live view of
their consumption to get direct feedback about how their
behavior influences energy usage. Consumption prediction
for load balancing benefits from live data to drive short term
adaptions of energy loads and support local balancing of the
energy grid [16]. This caused the need for processing tech-
nologies that can deal with continuous processing over data
streams. The third requirement - flexibility regarding func-
tional extensions - stems from the nature of the testbed. The
aim is to support exploratory data analysis and a growing
number of analytics services. Hence, extensibility regarding
the analytics functionality is a key concern for the solution
architecture.

In order to address the above discussed requirements we
adapted concepts of the lambda architecture for our solu-

tion [10]. The lambda architecture provides a conceptual
framework for the design big data systems. It defines the
three layers (1) batch layer, (2) serving layer, and (3) speed
layer to deal with different requirements independently and
though dedicated technologies.

We use concepts of the batch layer to address the require-
ment for handling large data volumes. The batch layer per-
sists all data and support parallelized processing in batches.
It aims on scalability and high throughput at the cost of
short response times. Our testbed persists all sensor data
in a master data set that serves at input for distributed
batch processing in a computer cluster. It allows exports as
plain csv files and thereby supports a batch processing with
a range of distributed processing system (e.g. Hadoop). We
discuss an embodiment that we used in the pilot in [13].

We use concepts of the speed layer to address the require-
ment of handling high velocity data. The speed layer sup-
ports continuous processing in real-time but does not persist
data. It keeps all data in memory and thereby enables real-
time analysis. Input data from the sensors arrive at the
system in a push based manner as read events and are ab-
stracted though an adapter. This allows to connect to a
range of stream processing systems (e.g. Apache Storm).
We discuss specific embodiments that we developed in the
pilot in [15].

To address flexibility for analytics extensions we follow the
data modeling principles defined for the master data set in
the lambda architecture. Specifically, we store sensor mea-
surements in a fact based model, keep all raw measurements
with a timestamp and refrain from updates as well as from
aggregation or non-trivial preprocessing. This ensures that
the maximum information value of sensor data is kept and
future analytics are not constrained by design decision in
the storage.

In the following subsections we discuss the implementation
of two representative analytics components within the above
framework.

7.2 Power Quality Anomaly Detection
Power quality anomaly detection is an analytics components
that detect power quality issues in the low voltage grid.
Specifically, it provides descriptive statistics about the devi-
ation of the measured voltage from the target voltage. This
deviation is subject to regulations and can impact the func-
tioning of electrical devices or even cause damage. Conse-
quently it is of high interest for grid operator to detect and
understand voltage deviations within their grid. With our
testbed we provide means to analyze this aspect of power
quality on a new level of detail, i.e. the level of individual
houses and even power outlets.

While the underlying mathematical operations are relatively
simple, the analysis faces a significant big data challenge re-
garding data volumes (see [13]). For instance, in a sample
experiment we analyzed voltage fluctuation of four house-
holds over the period of 1 month. This requires going over
about 200 million measurements to check for voltage de-
viations. However, the use case does not pose any strong
requirements on the response time for the query, making



0

200

400

600

800

1000

1200

1400

 2
days

 6
days

 10
days

 14
days

 18
days

 22
days

 26
days

 30
days

q
u

e
ry

 t
im

e
 (

se
co

n
d

s)

analytics scope (covered time)

RDBMS

Hadoop (1 Node)

Hadoop (3 Nodes)

Traditional Database System

Hadoop Based
Solution

Figure 4: Comparison of query execution times with increas-
ing database sizes

approached of the batch layer suitable for the implemen-
tation. An initial setup with batch processing on top of
PostgreSQL failed to cope with the data volumes (see Fig-
ure 4). However, connecting the master data set with a
Hadoop cluster and implementing power quality analysis as
MapReduce jobs made the analysis feasible and proofed to
be scalable (see Figure 4). Here, the map operation ex-
tracts the required subset of data points and computes the
deviation, while the reduce jobs compute the aggregate de-
scriptive statistics. Both operations run in batch mode and
can be completed for the describe sample experiment in less
than 7 minutes on a 3 node cluster.

7.3 Consumption Prediction
Accurate consumption prediction is a key enabler for load
balancing in the local grid. The aim is to actively influ-
ence consumption so that local production (e.g. from solar
panels) and local consumption match a closely as possible
within a neighborhood. In order to influence consumption
(e.g. though demand response mechanism) it must be known
in advance. At least a few minutes lead time are desirable
to invoke demand response measure.

We developed a prediction mechanism that uses the lat-
est real-time information and household specific prediction
models to make load predictions 15 minutes or an hour
ahead. Our solution uses machine learning based prediction
models that are trained for individual households and ap-
plied this models over live data streams. Experiments have
shown, that this approach can improve prediction accuracy
in the described setting [16]. However, it poses significant
processing challenges. One key challenge is the training of
individualized prediction models using the high volume of
stored consumption measurements. Another key challenge
is the continuous application of the models over real-time
data streams.

We addressed this challenge by leveraging technologies of
the batch layer and the streaming layer. We use the batch
processing to train prediction models based on the collected
historical data. This process covers feature extraction from
the data records as well as the training process itself. The
trained models are then loaded into the speed layer and re-
main in memory for real-time application. For real-time ap-
plication, the input features are also extracted from the live
data stream using in-memory operations. In a test imple-

mentation following this paradigm we achieved continuous
predictions with update rates of 0.5 Hz for 1000 households
on a single machine (see [15] for details). The specific imple-
mentation was done with the CEP engine Esper for feature
extraction in the stream [6] and Weka libraries for training
machine learning models [7].

8. END-USER SERVICES
In this section we share experiences in providing web based
end-user services on top of smart-home data, and report on
challenges that we faced with common technology stacks for
such a setup.

8.1 Energy Consumption
Within our testbed we provided a set of end-user services
that allowed users to better understand their energy con-
sumption. These services were a major driver for pilot users
to participate in the project. The provided services in-
clude live statistics of device specific consumption values as
well as long term statistics. In additions, the end-user ser-
vices include functionality for remote control of actuators
(i.e. switching smart plugs). Figure 5 shows screenshots of
two sample services. Service 1 (Figure 5a) visualizes sen-
sor data in real time and provides device specific as well as
room specific consumption statistics. This includes a con-
tinuously updates live chart over the past few minutes as
well as aggregate statistics that go back to the first mea-
surement. In addition, the service allows remote switching
of actuators. Service 2 (Figure 5b) provides device specific
long term statistics. The statistics go back up to a month
and in addition show a drill down of the consumption for
the past week, the past day, and the current day. Despite its
simplicity the service was very well perceived by end-users
and turned out to be a key motivator for participation.

All services are accessible via a web interface. They are im-
plemented following a typical design with a standard web-
server on top of a relational database PostgreSQL (see Fig-
ure 1). The web based services were already launched early
in the project when the components for big data processing
were not available yet. However, this setup resulted in a set
of challenges throughout the project.

A key challenge that we faced was that performance issues
quickly arise when providing the described services on top
of relational databases. Due to the high number of records
(about 1.2 million records per house and day) maintenance
operations like e.g. adding indices or exporting data very
time consuming. Also, timely delivering query results re-
quired to tweak the database.

One specific challenge was providing the live chart in Ser-
vice 1 that goes a few minutes back per sensor. This re-
quired to regularly query the database for measurements of
a given sensor and a timestamp in a given range. Due to
the high number of records, this query put a lot of load on
the database. We solved this issues with an index on the
timestamp that allowed to limit the scope of the query. Yet,
the index on time did not solve all performance issues. In a
monitoring component we regular check for the latest entry
of each sensors. Since network failures (e.g. accidentally
pulled network plug in a house) occasionally caused data
gaps of several days. In such cases the monitoring query



(a)

(b)

Figure 5: Service 1 with live statistics (a) and Service 2 with
long term statistics (b)

needs to go back through millions of records and has a long
response time.

Another challenge was the provisioning of long-term statis-
tics. In Service 1 we show the device specific consumption
since the start of recording. Ad-hoc computation of this
statistic from the history of recorded load values is not fea-
sible in a timely fashion (i.e. it would require computing
the integral over the load curve with hundreds of millions of
values). Here, we leverage a feature of the used smart plugs.
These plugs provide an accumulated work value for the mea-
sured energy since installation. This value is transmitted
with every measurement and we could use it directly in the
statistics of Service 1. However, we still faced performance
challenges for the more fine grained statistics of Service 2.
Here we again leveraged the accumulated work value but the
resulting queries still took several seconds due to the need
for handling data gaps. The delay was too long for a satis-
fying user experience. Hence we implemented materialized
view of the query results that were regularly updated with
batch jobs.

8.2 Privacy
The smart metering ecosystem may facilitate a multitude of
applications and value added services (VAS). Security and
privacy are a major concern in this context as these appli-
cations and services directly affect users’ everyday life and
may collect a substantial amount of sensitive data.

Figure 6: Privacy Model.

In order to enable these services new security and privacy
solutions are required. The user needs simple-to-use mech-
anisms that provide a transparent view on all data that is
collected and processed within such an ecosystem. The user
should be in perfect control of which data is collected, how
it is processed and which data is exchanged with which third
parties. The PEC Privacy Dashboard is one of the compo-
nents developed for the PEC project designed to define and
control access to sensors. Fig. 6, depicts the components
and their interaction.

The user interacts with a component called Privacy dash-
board to review current access control rules and to modify
as well as add rules. The user input from the privacy dash-
board is transformed into statements in a given policy lan-
guage. In order to make our approach as open as possible
XACML [11] is used as the policy decision language, as its
expressiveness allows full coverage of all necessary aspects
for our application scenarios. These policy statements are
then used to evaluate access requests from various appli-
cations. Specifically, the Policy Generator translates these
PEC specific rules into generic XACML rules, policies, and
policy sets and store them in the Policy Store. Service re-
quest data or data streams from an interface associated with
the Policy Enforcement Point (PEP). The PEP translates
data requests into XACML queries and forwards them to
the Policy Decision Point (PDP). The PDP will load cor-
responding XACML policies from the store and attempt to
decide on the request.

In the current version of the privacy dashboard shown in Fig.
7 deployed sensors and devices are presented to the user in
a hierarchical fashion grouped first by the sensor type (e.g.,
motion, temperature, etc.) and within this group according
to actual sensor location. While this layout reflects logi-
cal structure according to types of information requested
from each application, it can easily be modified or adapted.
Future adaptation might include information regarding the
requested sampling rate of the service, or the sampling rate
required for a particular service level.

For more details regarding the transformation into XACML
policies refer to [4].



Figure 7: Privacy Dashboard.

9. CONCLUSIONS
In this paper we have provided results that were obtained
thought a three year pilot with a cloud-based test bed for
capturing and analyzing smart-home data. Our results in-
clude findings on real-world challenges in the application
domain as well as technical solutions for addressing them.
Among the challenges we found issues with data quality and
data loss on several layers of cloud-based IoT solutions. In
many cases, the issues are inherent to the application domain
were we sense in home environments were users intentionally
or unintentionally interfere with the operations of the sys-
tem. With our solutions for sensor monitoring and deploy-
ment change detection we have shown ways how to address
this issues. However, we see room for additional research
and development efforts to expand the pool of techniques
to cope with the data quality challenges. In particular, new
techniques may be desirable when expanding the solution to
new types of sensors.

Another set of key issues that we faced in the pilot was
related to big data challenges. Our findings provide strong
indication that classical relational database systems are hard
use in given setup and dedicated big data technologies can
provide better alternatives. We have shown solutions for a
specific set of analytics that we have developed. Further
research should expand the scope of considered analytics to
validate and possibly adapt our suggested solutions for big
data processing.

Overall, our work shows researchers as well as practitioners
in the smart grid domain what challenges they have to ex-
pect when integration smart home technology. In addition,
we describe solutions and approaches that can be followed
and expanded to tackle such challenges.

10. ACKNOWLEDGEMENT
This work has been supported in part by the German Federal
Ministry of Economics and Technology, project PeerEnergy-
Cloud which is part of the Trusted Cloud Program.

11. REFERENCES
[1] Z. Alliance. Ieee 802.15. 4, zigbee standard. On

http://www. zigbee. org, 2009.

[2] Z.-W. Alliance. About z-wave. Accessed at July 17th,
2014.

[3] C. Busemann, V. Gazis, R. Gold, P. Kikiras,
A. Leonardi, J. Mirkovic, M. Walther, and H. Ziekow.
Integrating sensor networks for energy monitoring
with service-oriented architectures. International
Journal of Distributed Sensor Networks, 2013, 2013.

[4] P. Ebinger, J. HernÃ ↪andez Ramos, P. Kikiras,
M. Lischka, and A. Wiesmaier. Privacy in smart
metering ecosystems. In J. Cuellar, editor, Smart Grid
Security, volume 7823 of Lecture Notes in Computer
Science, pages 120–131. Springer Berlin Heidelberg,
2013.

[5] M. Erol-Kantarci and H. T. Mouftah. Wireless sensor
networks for cost-efficient residential energy
management in the smart grid. Smart Grid, IEEE
Transactions on, 2(2):314–325, 2011.

[6] EsperTech. Esper event processing. On http://esper.
codehaus. org, 2015.

[7] M. Hall, E. Frank, G. Holmes, B. Pfahringer,
P. Reutemann, and I. H. Witten. The weka data
mining software: an update. ACM SIGKDD
explorations newsletter, 11(1):10–18, 2009.

[8] T. Hasan. Scalable distributed smart home monitoring
and auto-configuration. Master’s thesis, Technische
Universität Darmstadt, Multimedia Communications
Lab, 2014.

[9] Linear. http://www.linear-smartgrid.be/. 2015.

[10] N. Marz and J. Warren. Big Data: Principles and best
practices of scalable realtime data systems. Manning
Publications Co., 2015.

[11] OASIS. eXtensible Access Control Markup Language
2 (XACML). Ed. Tim Moses., 2005.

[12] PeerEnergyCloud. http://www.peerenergycloud.de.
2015.

[13] M. Strohbach, H. Ziekow, V. Gazis, and N. Akiva.
Towards a big data analytics framework for iot and
smart city applications. In Modeling and Processing
for Next-Generation Big-Data Technologies, pages
257–282. Springer, 2015.

[14] E. Williams, S. Matthews, M. Breton, and T. Brady.
Use of a computer-based system to measure and
manage energy consumption in the home. In
Electronics and the Environment, 2006. Proceedings of
the 2006 IEEE International Symposium on, pages
167–172. IEEE, 2006.

[15] H. Ziekow, C. Doblander, C. Goebel, and H.-A.
Jacobsen. Forecasting household electricity demand
with complex event processing: insights from a
prototypical solution. In Proceedings of the Industrial
Track of the 13th ACM/IFIP/USENIX International
Middleware Conference. ACM, 2013.

[16] H. Ziekow, C. Goebel, J. Struker, and H.-A. Jacobsen.
The potential of smart home sensors in forecasting
household electricity demand. In Smart Grid
Communications (SmartGridComm), 2013 IEEE
International Conference on, pages 229–234. IEEE,
2013.


