
CupCarbon: A Multi-Agent and Discrete Event Wireless
Sensor Network Design and Simulation Tool

Kamal Mehdi
School of Computer Science &

Informatics
University College of Dublin

Belfield, Dublin 4, Ireland
Kamal.Mehdi@ucdconnect.ie

Massinissa Lounis
LIMED Laboratory
University of Bejaia

Bejaia, Algeria
Massinissa.Lounis@univ-

bejaia.dz

Ahcène Bounceur
Lab-STICC Laboratory

Universiy of Brest
Brest, France

Ahcene.Bounceur@univ-
brest.fr

Tahar Kechadi
School of Computer Science &

Informatics
University College of Dublin

Belfield, Dublin 4, Ireland
Tahar.Kechadi@ucd.ie

ABSTRACT
This paper presents the first version of a Wireless Sensor
Network simulator, called CupCarbon. It is a multi-agent
and discrete event Wireless Sensor Network (WSN) simula-
tor. Networks can be designed and prototyped in an er-
gonomic user-friendly interface using the OpenStreetMap
(OSM) framework by deploying sensors directly on the map.
It can be used to study the behaviour of a network and its
costs. The main objectives of CupCarbon are both educa-
tional and scientific. It can help trainers to explain the basic
concepts and how sensor networks work and it can help sci-
entists to test their wireless topologies, protocols, etc. The
current version can be used only to study the power diagram
of each sensor and the overall network. The power diagrams
can be calculated and displayed as a function of the simu-
lated time. Prototyping networks is more realistic compared
to existing simulators.

Keywords
Wireless Sensor Network, simulator, multi-agent system, dis-
crete event simulation, OpenStreetMap, mobility.

1. INTRODUCTION
Progress and development in the field of wireless commu-
nication and electronics in recent years have given rise to a
new technology known as Wireless Sensor Networks (WSN).
These are composed of a large number of sensors that can
be deployed randomly and densely. A sensor is a small elec-
tronic device that can collect data from its environment and
send it to a base station. The type of data collected varies

depending on the application and the type of the sensors.
Sensor networks have many applications in different fields
such as health, environment, agriculture, geology, military,
etc. Most applications of WSN are challenging for design-
ers and this is due to the limited capacity of the nodes in
terms of autonomy (battery), computing power and inac-
cessible areas. This makes the design of the algorithms and
programs for WSN too constrained. Therefore, performance
evaluation tools become very essential in the process of de-
signing a wireless sensor network, and simulation is one of
the most used tools for this evaluation.

There exists a large number of WSN simulator tools. Some
of them are described in [12]. In this work we propose to
classify these tools into two main categories: simulators and
emulators and to introduce only some simulators that are
of four different types. The first type represents simula-
tors that are based on NS2 [7], which is a simulator de-
veloped in general for traditional networks and adapted for
WSN. It uses discrete event simulation. In this family we
can find NRL Sensorsim [13], based on modules, and RTNS
[11] for the real-time distributed systems. The second fam-
ily is based on the OMNET++ simulator [14]. It is a dis-
crete event simulator. We can find Castalia [3], for the de-
velopment of protocols and distributed algorithms, MIXIM
[8], an inter-level platform, NesCT [15] which allows to run
TinyOS applications, Pawis [6] with its modular design al-
lows to simulate deferent types of nodes, and Sensim [9],
which allows to develop new protocols and test their scala-
bility. The third family of simulators is based on Ptolemy
II [1], which is a framework for modeling, simulating and
designing of parallel embedded real-time systems. We can
mention two simulators of this family, Viptos [5] integrating
graphical development framework to simulate WSN based
on TinyOS and VisualSense [2] which can be used as an
educational tool to understand the basics of WSNs. Unfor-
tunately these two simulators are not available for download.
The fourth family is specially developed for WSNs, such as
WSNet [4] used to evaluate high-level designs, Atarraya [16]
for teaching and research topology control algorithms and

J-Sim [10] a framework for modeling and simulation.

In the context of this study, we present a simulator called
CupCarbon which is based on multi-agent and discrete event
simulation. The current version belongs to the second fam-
ily of simulators that is described above. It can be used to
generate networks for OMNET++. It offers a simple and
friendly graphical user interface for modelling the networks
using the OpenStreetMap (OSM) framework. Each node is
designed to be as close as possible to the real one. It is
composed of four modules: mirco-controller the radio an-
tenna, the capture unit and a battery. The current version
of CupCarbon includes simulation of mobiles and it allows to
represent the detailed energy diagram for each node versus
the simulation time. This version can be also considered as
a kernel which can be used to integrate different algorithms
and modules making use of its advantages. It can simulate
mobile tracking scenarios.

This paper is organised as follows. Sensor networks are in-
troduced in the Section 2. Section 3 presents the CupCarbon
design and simulation tool. Some simulation results are pre-
sented in Section 4. Some concluding remarks are given in
Section 5.

2. WIRELESS SENSOR NETWORKS
Sensors are electronic components that operate in networks
with autonomy. The term sensor is usually used to refer to
a sensor node (having a dimensions of a few centimeters).
It is composed of four components which are: a microcon-
troller (programmable integrated circuit), a radio antenna
(for wireless communication), a battery and a set of sensors
that we will call capture unit in order to avoid confusion. A
capture unit (having a dimension of a few millimeters) cap-
tures or intercept environmental information (motion, tem-
perature, humidity, gas, etc.). Henceforth, we use the term
sensor to refer to a sensor node and sensor unit to refer to
a sensor.

In order to be able to communicate (read or receive infor-
mation), a sensor must be programmed. Figure 1 shows an
example of a program for Arduino cards with an ATmega
microcontroller. This program will send each second the
byte 134 and will read the value of a sensor unit (motion
sensor) which is connected to the input pin 12 of the card
and then will send this read value wirelessly.

int p = 12;
void setup() {
 pinMode(p, INPUT);
 Serial.begin(9600);
}
void loop() {
 function();
 delay(1000);
}
void function() {
 Serial.write(134);
 int x = digitalRead(p);
 Serial.write(x);
}

Figure 1: Example of Arduino program.

A Wireless Sensor Network is an ad-hoc network and is
composed of a number of sensor nodes that are able to col-
lect, send and receive autonomously environmental data via
wireless communications. Figure2 shows an example of a

WSN. The position of these nodes is not necessarily prede-
termined. They can be dispersed randomly in a geographical
area called ”Wellfield” corresponding to the field of interest.

Internet

Base Station
(mobile)

Base Station
(static)

Storage
Date Processing

Sensors

Figure 2: Example of a Wireless Sensor Network.

WSN is one of the most important technologies that have
changed the world and facilitate many daily tasks. These
WSNs offer the possibility of observing and controlling phys-
ical and biological phenomena in several areas; industrial,
scientific (temperature, pressure, humidity, light, etc.), the
environment (pollution, CO2, etc.), health (patient mon-
itoring, epidemiological studies, etc..), transport (accident
prevention, etc.), home automation, and so on.

After being captured, the data is routed based on a multi-
hop routing to a node which is considered as a ”collection
point”; called Base Station. The Base Station, depending on
its configuration, can store, process, or transmit the received
data and it can be connected to the network via internet,
satellite or any other system.

The user can send requests to the nodes of the network,
specifying the type of data needed and collect environmental
data from the base station. The data routing is a critical
phase for the lifetime of the network, as the routing depends
on the energy state of the sensors in the network, and on the
data constraints.

3. THE CUPCARBON SIMULATOR
CupCarbon is a multi-agent and discrete event wireless sen-
sor network simulator which is based on geolocation. It al-
lows to model and simulate sensor networks on a digital
geographic interface of OpenStreetMap. For this purpose,
CupCarbon provides a set of easy-to-use and configurable
objects. Figure 3 shows the graphical interface of this sim-
ulator. The use of multi-agent systems allows better opti-
misation of the simulation time by taking advantage of the
parallelism of agents and events. CupCarbon is composed
of three main components: a multi-agent simulation envi-
ronment, mobile simulation, and finally the WSN simulator
(WiSen). These three components will now be described.

3.1 Multi-agent Simulation Environment
CupCarbon provides an environment for a multi-agent simu-
lation, which allows to run simulations and monitor various

Figure 3: The Interface of CupCarbon.

events and changes over time. The use of a multi-agent sys-
tem allows a reproduction of an environment similar to the
real world system, wherein each object in the system oper-
ates autonomously while communicating with other objects
in the same environment. The integration of OpenStreetMap
in this environment provides an interface and a database of
digitised data related to geolocation such as roads, the po-
sitions of buildings, etc. Among the main agents in the sys-
tem, one can find sensors for sending and receiving packets.
There is also gas, insects and mobiles. They do not neces-
sarily communicate between them but they interact with the
sensors. In the next versions, the agents will be able to in-
teract with the environment like buildings and meterological
events (e.g. wind, temperature, etc.).

3.2 Mobility
CupCarbon offers the possibility to create paths, free or re-
lated to real roads, and assign them agents to make them
mobile. Each path is defined by a set of referencing points on
the OSM map, and each point is associated to a date corre-
sponding to the exact arrival date of the object to it. There
are two ways to generate trajectories in this environment:

1. Manual generation: it is possible to generate trajec-
tories by manually selecting the points (x, y) on the
map and by specifying the arrival dates at each point.

2. Automatic generation: it is also possible to automat-
ically generate trajectories on the OSM map by speci-
fying the main points of the trajectory.

Paths must be saved. For memory optimisation reasons,
only trajectories associated with objects included in the sim-
ulation are loaded into memory. Only one point is loaded
in each move. The coordinates (x, y) of given objects will
be updated at the specific date for each point in the path
during the simulation. One trajectory can be associated to
multiple objects of different types. It is represented by a
GPS file where each line describes a date, GPS coordinates,
a boolean parameter, and the radius of the point to draw
on the map. The boolean parameter is used to determine
whether to draw the mobile objects connected at this point
or just simulate without drawing. It differentiate a simu-
lation for visualisation purposes and the simulation for the
calculating the energy diagram. Figure 4 shows an example
of a GPS file. Note that an agent who is not linked to a

00:00:00 36.787291466820015 4.965476989746094 0 25
00:00:01 36.768042206102585 4.956550598144531 0 25
00:00:02 36.74906320434928 4.95208740234375 1 25
00:00:03 36.73833386539537 5.000495910644531 0 25

Figure 4: Example of a GPS file.

HEAD PROTOCOL PROTOCOL-ID
send 154 70 S2
send 154 100 S3 S4
send 154 90 S1 S8 S9
wait 200
send 154 90 S2 S3 S6
send 154 30
wait 500
send 154 50 S1 S8 S9
break

Figure 5: Example of a communication script.

GPS file is considered as a static agent and a GPS file can
be assigned to multiple agents.

3.3 Communication script
CupCarbon allows to configure each agent of the simulated
system using script files to program their communications.
Such a file describes how an agent will communicate with
its neighbours and its environment. It contains all the main
actions to be performed by a sensor during the simulation.
Each line of the file represents an event that is characterised
by its type, date, value, signal power, and the list of agents
involved in it. An event is a command that can be of five
different types, as described below:

• COM_SEND: for the packet (message) sending,

• COM_DELAY, COM_WAIT: to force a waiting,

• COM_BREAK: to mark the end of a communication,

• COM_RECEIVE: to accept the reception of a packet (mes-
sage),

• COM_UNKNOWN: for unknown commands.

This file can, in some cases, have a header part which allows
to configure the communication protocol and describe the
type of algorithm to use in the simulation, subject to the fact
that the algorithm is already integrated into the simulator.
The header commands are given in the following:

• COM_HEADER: indicates the inclusion of a header,

• COM_PROTOCOL: this is for the communication protocol
to be used in the simulations.

Note that the headers are optional in the communication
script files and in the case of the absence of the header,
a standard protocol will be used. Also, in the absence of
the break command the execution of the file will be done
repeatedly until the end of the simulation. Figure 5 shows
an example of a communication script file.

3.4 The WSN simulator: WiSeN
WiSeN is the name of the module that represents the kernel
of CupCarbon for simulating events related to sensors (send-
ing, receiving, waiting, etc.). It supports and manages the
evolution of the state of each object in the system (energy,
position, etc.). Its implementation in a multi-agent envi-
ronment allows for each agent to be executed independently
and in parallel. Thus, it is possible to include mobility as-
pects and the detection of the target. Each agent generates
events based on a existing saved script. The simulator or-
ganises events generated by agents (sensors, mobiles, etc.)
according to their creation dates and executes them in the
same order, and it updates their status (energy, position,
etc.). Two types of files are automatically generated during
the simulation:

1. log file: a file in which all the events executed by
the simulator are stored for more detailed analysis and
debugging purposes. Each line in the file corresponds
to an event. One log file is generated per simulation.

2. rst file: a result file generated for each sensor. It
contains the energy evolution of a sensor during the
simulation.

3.5 CupCarbon Architecture
CupCarbon is developed in Java. Its architecture consists
of two layers: The first layer concerns the modules used to
build the simulation. The second layer concerns the simula-
tion itself. Figure 6 shows the different modules of CupCar-
bon. Four main modules can be distinguished:

• Agents Module: it includes devices and events nec-
essary to prototype wireless sensors networks and to
prepare and configure the simulator.

• OpenStreetMap Module: it allows designing wireless
sensors on an OSM map.

• WiSen Simulator Module: it allows to simulate wire-
less sensor networks. This module is connected to the
simulator agents.

• Solver Module: it integrates a set of optimisation al-
gorithms such as routing, coverage, etc. The current
version integrates an algorithm for solving the set cov-
ering problem used to determine the minimum number
of sensors that detect the maximum of targets. This
part will not be presented because it is not a part of
the objectives of this paper.

In order to simulate wireless sensor networks, two main types
of actors are needed: the agents and the scheduler. Once cre-
ated and initialised, the simulator then starts the agents and
the scheduler and synchronises all critical sections between
these agents.

Each sensor agent executes its associated communication
script after its initialization step and begins to move using
its associated gps file. The script allows the generation of
events (send, wait, etc.) which are recovered by the sched-
uler to execute them in the order of their creation dates. The

Device

DeviceWithoutRadio

DeviceWithRadio Mobile Gas & insects

Sensors

Agent

Devices & Events OpenStreetMap

SolverWiSeN Simulator

User
Interface

JXMapKit

WorldMap
OSM

Database

Synchronizer

Scheduler

Event List

Optimization algorithms
- Couverage
- Routing
 -

Figure 6: The CupCarbon Architecture.

Agent initialization

Load
communication script

and gps file

Start the agent

 Simulation
time finished

OR
BREAK_COM

?

Update
result file

Exclude the
agent from the

simulation

Generate
an event

Update
result file

Lock the
agent

Unlock the
scheduler

NOYES

Figure 7: The behaviour of a simulated agent.

process describing the behaviour of an agent is described in
Figure 7.

During a simulation, an agent starts to generate events de-
scribed in the associated communication script and those re-
lated to mobility. These will then be communicated to the
scheduler int order to sort them for a next processing phase.
As long as the agent has not met the stopping conditions, it
generates one event at a time whenever the scheduler unlocks
it by calling the synchronisation semaphore. The agent un-
locks the scheduler after generating the event. It then enters
into idle state until the next call of the scheduler.

The scheduler is an independent module that runs in parallel
with the agents. It organises events generated by agents in
order to execute them. It is composed of a list of events, a
management algorithm, and processing. Figure 8 shows the
main role of the scheduler.

The scheduler is started just after its initialisation. Then,
it will run in the background by collecting at each iteration
the next events. If the agent of generating events has the
necessary energy then the event will be executed otherwise
the scheduler move to the next event of the event list. After
its execution, it updates all the agents associated to the
event, such as receiving a message from a sensor, and then
add this action to the log file. The scheduler agent indicates
the event to the generator agent so that it can generate and

Scheduler
initialization

Start the Scheduler

Stop
condition

?

End of
simulation

Lock the
scheduler

Unlock the
agent

Execute
the event

Update the
log file

NO

YES

Go to the next event

Agent
battery is
empty ? YES NO

Figure 8: The scheduler.

add the next event in the scheduler list. Then, it switches
to the idle state while the list is used by the agent (the
list of events is a critical resource). The scheduler repeats
this cycle until the stopping conditions are met. The overall
simulation stops when one of the following three conditions
is fulfilled:

• there is no events to execute in the scheduler list,

• the simulation time is exceeded,

• there is a forced stop or real time limitation of the
simulation.

4. CASE STUDY
In this section we will show how to use CupCarbon to sim-
ulate the energy diagram of a sensor network which is de-
signed on the OpenStreetMap.

4.1 Simulation Setup
Once the CupCarbon tool is started and a new project is
created, it is possible to create a network of sensors directly
on a geographical map which represents the main window of
the software. It is possible to create routes to be assigned
to mobiles. It is also possible to create mobiles, gas and a
cloud of insects. For the sake of simplicity, we have chosen
as an example a simple network consisting of eight sensors
as shown in Figure 9.

Figure 9: A WSN designed with CupCarbon.

Once the network is developed, the different communication
scripts must be created and assigned to each sensor. One

script can be assigned to multiple sensors. In our case, we
create a single script that is assigned to all sensors. The
script is shown in Figure 10. This script allows a sensor to
send 10 bytes with the maximum signal power (100%).

send 100 100
send 110 100
send 120 100
send 130 100
send 140 100
send 150 100
send 160 100
send 170 100
send 180 100
send 190 100
delay 100

Figure 10: Communication script of the sensors.

As soon as all communication scripts are associated with the
sensors, the simulation can begin. The next section describes
the results for the network presented above.

4.2 Simulation Results
Once the network is ready, the real simulation parameters
must be specified: the simulation time and the simulation
step. Thus, the simulation can begin. In our case, we chose
to simulate a period of 100 hours (= 360K seconds) with
a simulation step of one hour. Indeed, this parameters are
given by the user but the execution will be based on the
discrete-event simulation.

Figure 11 shows the curves representing the energy diagrams
obtained for each sensor. In this graph eight curves are
drawn but we distinguish only four because the other curves
are superimposed. In this example, these curves are directly
related to the number of neighbours of each sensor. There
are four types of sensors corresponding to the four families
of curves. We distinguish the family of sensors with only
one neighbour (sensors S6 and S7) in blue, the sensors with
two neighbours (sensors S1, S2 and S4) in red, the sensors
with three neighbours (sensors S5 and S8) in purple and
only one sensor with four neighbours (S3 sensor) in green.
As we can see on the graph, for the script of the Figure
10 without the last line (delay) and for a given capacity of
the battery, the sensor S3 having four neighbours (in green
curve) dies after 57 hours (= 205, 200 seconds). Note that
the selected script means that the sensors send and receive
messages continuously while the battery is charged.

Figure 11: Energy diagrams related to sensors
(without the delay instruction).

If we take into account the delay of 100 milli-seconds for
each outgoing 10 bytes, as shown in the last line of the script
of Figure 10 we can improve significantly the lifetime of the
sensors. This new situation is illustrated by the curves in
Figure 12. After 100 hours functioning, the battery of the
sensor S3 reaches 70% of its total capacity. In other words,
the sensor S3 consumes 30% of its battery each 100 hours
functioning with an additional delay of 100 milli-seconds in
its communication script and it dies after only 57 hours with-
out this delay.

Figure 12: Energy diagrams related to sensors (with
the delay instruction).

5. CONCLUSION
A simulator, CupCarbon, for the design and study of wireless
sensor networks is presented. It allows to design networks
using the OpenStreetMap framework. Networks can include
sensors and other elements such as mobiles, gas, fires, etc.
The presented tool can run two types of simulations. The
Multi-agent simulation is used to parallelise the behaviour
of each sensor to make it independent. The discrete event
simulation is used to simulate the communications between
agents and especially between sensors. The main objective
of this simulator is educational. It will demonstrate the use
of wireless sensors under almost the same conditions as in the
real world. The simulator can also be used to calculate the
energy diagram of each sensor. A case study showing how to
obtain this type of diagrams is also presented. The results
are consistent with the structure of the network. We have
shown that a simple delay of only 100 milli-seconds in the
communication script of a sensor can improve significantly
its lifetime.

6. REFERENCES
[1] P. Baldwin, S. Kohli, E. A. Lee, X. Liu, and Y. Zhao.

Modeling of sensor nets in ptolemy ii. In the 3rd
International Symposium on Information Processing
in Sensor Networks (IPSN’04), Berkeley, USA, pages
359–368, April 26-27, 2004.

[2] P. Baldwin, S. Kohli, E. A. Lee, X. Liu, and Y. Zhao.
Visualsense: Visual modeling for wireless and sensor
network systems. Technical Memorandum UCB/ERL
M04/08, University of California, Berkeley, USA,
April 23, 2004.

[3] A. Boulis. Castalia: a simulator for wireless sensor
networks and body area networks. Users’s Manual,
version 3.2, March 2011.

[4] G. Chelius, A. Fraboulet, and E. Fleury. Worldsens:
development and prototyping tools for application
specific wireless sensors networks. In the 6th
International Conference on Information Processing in
Sensor Networks, pages 176–185, Cambridge, USA,
April 25-27, 2007.

[5] E. Cheong, E. A. Lee, and Y. Zhao. Viptos: A
graphical development and simulation environment for
tinyos based wireless sensor networks. Demo Abstract
in the 3rd ACM Conference on Embedded Networked
Sensor Systems (SenSys’05), page 302, San Diego,
USA, November 2-4, 2005.

[6] J. Glaser, D. Weber, S. A. Madani, and S. Mahlknecht.
Power aware simulator framework for wireless sensors
network and nodes. EURASIP Journal on Embedded
Systems - C-Based Design of Heterogeneous Embedded
Systems archive, 2008(3), January 2008.

[7] T. Issariyakul and E. Hossain. Introduction to network
simulator ns2. Book, Springer Ed., 2011.

[8] A. Köpke, M. Swigulski, K. Wessel, D. Willkomm,
P. K. Haneveld, T. Parker, O. Visser, S. L. Hermann,
and S. Valentin. Simulating wireless and mobile
networks in omnet++: The mixim vision. In the 1st
International Conference on Simulation Tools and
Techniques for Communications (SIMUTools’08),
Marseille, France, March 3-7, 2008.

[9] K.-W. Lee and W. K. D. Sensim: A simulation
program for solid-state pressure sensors. In the IEEE
Transactions on Electron Devices, 29(1):34–41, August
9, 2005.

[10] P. Levis, N. Lee, M. Welsh, and D. Culler. Tossim:
Accurate and scalable simulation of entire tinyos
applications. In the 1st International Conference on
Embedded Networked Sensor Systems, pages 126–137,
New York, USA, 2003.

[11] P. Pagano, M. Chitnis, and G. Lipari. Rtns: an ns-2
extension to simulate wireless real-time distributed
systems for structured topologies. In the 3rd
International Conference on Wireless Internet
(WICON’07), Austin, USA, October 22-24, 2007.

[12] A. Rastegarnia and V. Solouk. Performance evaluation
of castalia wireless sensor network simulator. In the
34th International Conference on Telecommunications
and Signal Processing (TSP), pages 111–115,
Budapest, Hungary, August 18-20, 2011.

[13] A. Sethi, J.P.Saini, and M. Bisht. Wireless adhoc
network simulators: Analysis of characterstic features,
scalability, effectiveness and limitations. International
Journal of Applied Information Systems (IJAIS), 5(9),
July 2012.

[14] A. Varga. Omnet++. User’s Manual, version 4.3.

[15] A. Varga and R. Hornig. An overview of the omnet++
simulation environment. In the 1st International
Conference on Simulation Tools and Techniques for
Communications (SIMUTools’08), Marseille, France,
March 3-7, 2008.

[16] P. M. Wightman and M. A. Labrador. Atarraya: A
simulation tool to teach and research topology control
algorithms for wireless sensor networks. In the 2nd
International Conference on Simulation Tools and
Techniques for Communications (SIMUTools’09),
Rome, Italy, March 2-6, 2009.

