
A data type for discretized time representation in DEVS

Damián Vicino
Université Nice Sophia

Antipolis, France
Carleton University, Ottawa,

ON, Canada
Laboratoire I3S UMR CNRS

7271, France
damian.vicino@carleton.ca

Olivier Dalle
Université Nice Sophia

Antipolis, France
Laboratoire I3S UMR CNRS

7271
INRIA Sophia Antipolis -

Mediterranée
France

olivier.dalle@unice.fr

Gabriel Wainer
Dept. of Systems and
Computer Engineering

Centre of Visualization and
Simulation (V-SIM)

Carleton University, Ottawa,
ON, Canada

gwainer@sce.carleton.ca

ABSTRACT
This paper addresses the problems related to data types used
for time representation in DEVS, a formalism for the spec-
ification and simulation of discrete-event systems. When
evaluating a DEVS simulation model into an actual com-
puter simulation program, a data type is required to hold
the virtual time of the simulation and the time elapsed in
the model of the simulated system. We review the commonly
data types used, and discuss the problems that each of them
induce. In the case of floating point we show how, under cer-
tain conditions, the simulation can break causality relations,
treat simultaneous events as non simultaneous or treat non
simultaneous events as simultaneous. In the case of integers
using fixed unit we list a number of problems arising when
composing models operating at different timescales. In the
case of structures that combine several fields, we show that,
at the cost of a lower performance, most of the previous
problems can be avoided, although not totally. Finally, we
describe an alternative representation data type we devel-
oped to cope with the data type problems.

Categories and Subject Descriptors
I.6.2 [SIMULATION AND MODELING]: Simulation
Languages

General Terms
Theory

Keywords
Simulation, Data Type, Time, DEVS

1. INTRODUCTION
Discrete-event simulation is a technique in which the sim-
ulation engine plays an history following a chronology of
events. The technique is called ”discrete-event” because the
processing of each event of the chronology takes place at

discrete points of a time-line and takes no time with respect
to virtual simulated time (even though it may take a non-
negligible time to compute with respect to the real wall-clock
time). Unless the system being modeled already follows a
discretized schedule (e. g. basic traffic lights), the process
of modeling a phenomenon using a discrete-event simulator
can be considered as a discretization process.

We will discuss some implementation issues related to the
representation of the time in a discrete-event simulation en-
gine. Since this problem is closely dependent on the im-
plementation details, we choose to restrict our discussion to
the particular case of the DEVS discrete-event simulation
engines[2] [11].

The DEVS formalism provides a theoretical framework to
think about Modeling using a hierarchical, modular approach,
described in appendix A.

Zeigler[11] also described the algorithm of a simple abstract
simulator, able to execute the DEVS models. When it exe-
cutes a model, this simulation algorithm exchanges only two
types of data with the models: events and time.

In the last four decades, many DEVS simulation engines
have been implemented and studied using different com-
putation models, such as Sequential, Parallel, Distributed,
Cloud, etc. All these DEVS engines handle the passing of
events between models following the principles of the ab-
stract simulator: Compute the time of next events (mini-
mum of the times remaining in each model until the next
internal transition), compute resulting event outputs, route
events in the network to their destination inputs, and recom-
pute the time remaining until the next round (subtracting
the time elapsed from the scheduled time advance).

Notice that time is never exchanged directly between mod-
els, but only between the models and the simulation engine.
Therefore, a common time representation is needed between
the models and the simulation algorithm, but this time rep-
resentation can possibly vary from one model to another,
provided that the simulation algorithm is able to make the
translation.

Simultaneous events correspond to the cases in which the
discretization that results from the discrete-event modeling

produces identical time values. Simultaneous events occur
in DEVS in two ways: either a model receives input events
from multiple models at the same time, or it receives events
from other models at the same time as it is reaching the
end of the time advance delay. Some means are provided
in each DEVS variants to ensure deterministic processing
of simultaneous events. For example, in classic DEVS, a
tie-breaker function named SELECT is used to resolve this
situation.

The SELECT function is hard to define, and having an er-
ror in its definition can lead to unpredictably large modeling
errors, as will be discussed in Section 3. However, assuming
the SELECT function used is valid, we may still experi-
ence simulation errors due to the way the time is stored
internally by the simulation engine. Indeed, in the DEVS
formalism, the time is a real value, but it is well known that
it is not possible to find a computer representation for all
real numbers. Therefore, an approximation is needed for the
values that have no exact representation. This approxima-
tion is the result of a quantization process. Unfortunately,
contrary to modeling errors, simulation errors due to the
quantization of time are hidden to the modeler even though
they may have similar impact on the simulation results.

The focus of this paper is on this particular problem of se-
lecting an internal representation and the possible effects of
such a selection on the simulation results.

2. BACKGROUND
To contextualize the problem, we reviewed the source code
and documentation of the eight following DEVS simulator
projects:

• ADEVS[9]: “A Discrete EVent System simulator” is
developed at ORNL in C++ since 2001;

• CD++[8]: “Cell-DEVS++” is developed at Carleton
University, in C++, since 1998;

• DEVSJava[12]: “DEVJava” is developed at ACIMS in
Java since 1997; it is based on its predecessor DEVS++[6]
(implemented in C++). Currently it is part of the
DEVS-Suite project[10];

• Galatea: A bigger project with an internal component
(Glider) developed at Universidad de Los Andes im-
plementing DEVS in Java since 2000;

• James II[5]: “JAva-based Multipurpose Environment
for Simulation” is developed at University of Röstock,
in Java, since 2003. It is the successor of the simulation
system JAMES (Java-based Agent Modeling Environ-
ment for Simulation). The project includes a set of
Simulators, we reviewed the DEVS one;

• ODEVSPP[6]: “Open DEVS in C++” is developed in
C++, since 2007;

• PyDEVS[1]: “DEVS for Python” is developed at Mc
Gill University in Python since 2002;

• SmallDEVS[7]: “SmallDEVS”is developed at Brno Uni-
versity of Technology in SELF/SmallTalk since 2003.

A common feature in all of them is to embed the passive
state representation in the time representation data type
using some infinity representation.

All simulators, but ADEVS and CD++, represent Time us-
ing the double precision floating point data type1 provided
by the programming language. All but one use the internal
representation of infinity provided by the data type. The
exception is ODEVSPP that uses MAX DOUBLE constant
in place of internal infinity.

In the case of ADEVS the time is represented using a C++
class template. The class works as a type wrapper adding
infinity representation to the provided type. The operators
are defined in a way that, if one of the parameters is an
infinity the defined algorithms are used, else the wrapped
type operators are used.

In the case of CD++ the time is represented using a class
with five attributes: four integers for the hours, minutes,
seconds and milliseconds, and a double precision floating
point for sub-milliseconds timings. There is not an explicit
representation of infinity, but the passive state is evaluated
comparing the Hour field to 32767.

Something to keep in mind is that all DEVS simulators exe-
cute a single Model (sometimes composed of several others).
This model is called the top or root model.Regardless of the
simulator, a global variable is needed to keep track of the
global Simulation Time. Some simulator may try to reduce
the scope of the synchronization in sub-models wherever it
is possible, while others simply use the root model in a sys-
tematic way to centralize all timing information. This is
important to remember when evaluating Time representa-
tion range.

3. TIME REPRESENTATION PROBLEMS
In DEVS modeling, the domain of the time variables is R+.
This choice results in a quantization problem at the time
of implementing the model. Depending on the data type
chosen for implementation, different approximations or re-
strictions may be observed.

Approximation effects belong to two categories: time shift-
ing, and event reordering. In the case of time shifting, we
have an error on the precision of the computation, but the
time line of events is not affected. In the second case, the
approximation leads to a different time line of events than
the one expected in theory using exact arithmetic on real
numbers, which may, in turn, break the causality chain. In
case the causality chain is broken, the error can be arbi-
trarily large, such that no error bound can be found in the
general case.

A characteristic of reordering errors is that they cannot be
explicit in formal proofs on the paper. Furthermore, reorder-
ing errors are practically impossible to predict, and may
occur following irregular frequency patterns, which, in the
worst case, can fool the validation tests.

The following example shows that even the simplest model
may be subject to reordering errors. In this example, we
model a counter with 2 inputs, one to increase the count and
the other to reset and output the current counter result.

1In the case of PyDEVS, the dynamic type is forced to Float-
ing Point by systematically using Python casting syntax.

The root coupled model is:
C =< X,Y,D,M, I, Z, SELECT > where:
X = ∅,
Y ⊆ {out} × N,
D = {1, 2, 3} with: M1 and M2 two generators sending tick
respectively every 0.1 second and every 1 second, and M3 a
counter with 2 input ports: add 1 and reset.
EIC = ∅, EOC = {((M3, out), (self, out))},
IC = {((M1, out), (M3, add1)), ((M2, out), (M3, reset))}
SELECT defined to give priority to inputs from model M1

over those from model M2.

The output of this simulation is, in theory, the value 10 on
the ”out” port of C every 1 second.

We implemented this in DEVSJAVA 3.1 and pyDEVS 1.1,
and kept it running for a while. In DEVSJava we got a differ-
ent result than expected: the output consisted of a majority
of 10 values, but also some 9 and 11 values. In pyDEVS
we first obtained the expected results for this experiment.
Nevertheless, after changing the parameter of M2 from 1.0
to 100.0 seconds, we observed similar discrepancies, with a
few occurrences of 999 and 1001 values on C’s “out” port
instead of only 1000 as theoretically expected. Interestingly,
the errors of this model occur following a regular pattern (a
geometric law of factor 4 in both simulators).

This result can be explained knowing that both simulators
use single or double precision Floating Point numbers for
time representation. Indeed, the value 0.1 is well-known bad
quantization point in the Floating Point standard. There-
fore, every time an algorithm accumulates many times the
value 0.1, as the model M1 does, the rounding error accu-
mulates, which leads to the observed errors. We discuss in
more details the case of Floating Point numbers in section
3.1.

Looking at other data types, such as Integers for example,
does not fully solve the problem. We further discuss the case
of integers in section 3.2.

In Section 2, we also reviewed implementations that use a
structured or object-oriented data-type. However, as further
explained in section 3.3, these data-type don’t have bet-
ter results than using floats or integers because they work
mostly as wrappers of these types or small extensions to
their range.

3.1 Floating point data types
Adopted by a majority of simulators, this data type leads
to several variants due to the selection of different preci-
sion levels (single, double, or extended) and how the passive
state of a model is represented (the semantics of which be-
ing to wait for an infinite time). For example, infinity can
be mapped onto a reserved value or an additional variable,
e. g. a boolean, can be use to handle the special case of
infinity, in a structure or wrapper data type.

3.1.1 Strengths of floating point
The floating point data type was engineered to represent
an approximated real number and to support a wide range
of values. The basic structure is the use of a fixed length
mantissa and a fixed length exponent.

The main strengths of using floating points are:

• A compact representation, usually between 32 and 128
bits;

• Implemented in almost every processor;
• A large spectrum between max and min representable

numbers;
• An internal representation for infinities;
• A widely used standard, making the simulator code

more portable;
• Largely studied mechanics of its arithmetic approxi-

mations.

On the other hand, floating point has well known limita-
tions[4], but are still often considered as an acceptable trade-
off, due to their intuitive use. We review those problems and
limitations in the following sections, in the particular case
of simulation.

3.1.2 Quantization errors
The floating point arithmetic rounds the results continu-
ously, not only with divisions (as it happen with integer),
but also with additions and subtractions. Rounding errors
result in two kind of errors: shifted values, and artificially
coincidental values.

We don’t elaborate more on the case of shifted values, as this
case was already discussed with the example in the previous
section, that showed this kind of error can easily break the
causality chain, e. g.. by accumulation.

The rounding of values due to quantization may also pro-
duce artificially coincidental values. As mentioned in the
introduction, the case of simultaneous events must be dealt
with care, which explains the need for a SELECT func-
tion. Unfortunately, when the coincidence is the result of
a hidden process, the SELECT function may not be able
to make a proper decision. Indeed without the rounding er-
ror, two distinct time values have an implicit natural order,
and this natural order may not be the one produced by the
SELECT function.

3.1.3 Non fixed step
The floating point representation uses a variable step size be-
tween consecutive represented values. The reasons for hav-
ing variable step come from the nature of the incremental
sequence of powers: As the absolute value of the exponent
value increases, more bits are needed for coding the expo-
nent value, and these bit are taken from the least significant
side of the mantissa.

Some assertion code can be provided to detect when an ad-
dition of non zero numbers is done and to check if the result
is equal to one of the operands.

3.1.4 Cancellation
This kind of problem happens when subtracting 2 close num-
bers. The effect is that the mantissa loses precision. For
instance, when subtracting 0.999 from 1.000, we get 0.001:
The mantissa digits are shifted to obtain 1.0E-3, and the
result is the loss of the 3 significant digits in the mantissa.
This cancellation effect makes the rounding problem even
worse.

A solution sometimes proposed to solve some of the float-
ing point issues, since the time always advances, is to use
a framing mechanism. This is a way to keep the computa-
tions in the dense area around the origin. This solution is
implemented using a threshold value t0: Once the models
have reached this value, t0 is subtracted from all the clocks
in the system.

A downside of this solution is that it increases the number
of subtractions, which in turn may lead to an increase in
Cancellation errors.

Error detection can be implemented by keeping track in ev-
ery operation of how the mantissa significance was affected.
This does not solve the problem, but may still give a confi-
dence indicator as the assertion in the non fixed step one.

3.1.5 Compiler optimization dangers
In 1991 Goldberg[4] shows a set of optimizations that when
used with floating points can affect the precision of the com-
putation. Changing compilers (for updating or portability)
can change results if any problematic optimization is added
or removed, which might be hard or impossible to detect.
Also, at the time of distributing the simulation in an het-
erogeneous cloud or grid, different architectures, operating
systems and compilers may be used making the problems
scale together with the infrastructure.

3.1.6 Standard complexity
If the floating implementation follows the IEEE754, which is
common, there are more issues to consider. IEEE754 gives
special meaning to some quantities (NAN, Infinities, pos-
itive and negative zeros); it defines exceptions, flags, trap
handlers and the option to choose a rounding models. These
mechanisms need to be taken into account when implement-
ing the Simulator, or they could result in unexpected behav-
iors.

3.2 Integer data types
Using integers is the first idea that comes up when trying to
avoid the issues related to rounding and precision with float-
ing point numbers. For example, in the field of networking,
well-known simulators such as NS and Omnet++ have gone
through major rewriting in order to change their represen-
tation from floating point to integers: NS3 has chosen a 128
bits integer representation, while Omnet++ v4.x has chosen
a 64 bits integer representation.

3.2.1 Strengths of integers
The Integer type is used to represent a subset of consecutive
numbers in Z.

Some interesting characteristics of the Integer type are:

• Its compact representation, usually between 8 and 128
bits;

• Its generalized support by all processors;
• Its fast and exact arithmetic, except for divisions;
• Its fixed step between any two consecutive values;

Using integers in place of floats can be seen as a trade-off
in which the large range and the ability to approximate the

(dense) real numbers is traded against the accuracy of an
exact representation, but only for a limited range of the
(sparse) natural numbers. In many situations, when the
range is not that much a concern, integers offer a better
trade-off.

3.2.2 Overall range
For a given number of bits, the absolute range of values
supported by an integer type using that amount of bits is
much narrower than the absolute range of a floating point
using the same amount of bits. Indeed, starting with the
single precision floating point (32 bits), the largest absolute
value is around 3 × 1038 while it is only around 2 × 109

for a 32 bits integer; At the other end, the smallest single
precision floating point value is around 1 × 10−38 while for
any positive integer the smallest (absolute) value is 1.

Trying to cover the same range as a floating point with in-
tegers, using the smallest step offered by the floating points,
is feasible but very space-inefficient for single precision (76
bits vs. 32) and unreasonable for higher precision.

However, since there is no approximation with the additive
arithmetic on integers, a frame shifting mechanism as de-
scribed in previous section is safe to implement and will not
incur problems such the cancellation mentioned about float-
ing points.

3.2.3 Quantity of unused representation
Since the smaller representable value is 1, the unit associated
to the variable is the smallest representable time of a model.
Some simulator use a fixed unit value, e. g. nano-seconds.
This fixed unit implies that all timings are aligned on mul-
tiples of one nanosecond. Therefore, a model of a generator
that would output ticks every second, would waste 99.9% of
an already limited representation range.

To avoid this waste, an analysis of the model can help to
adjust the unit. In this case, the unit does not need to be
a standard one: a rational, eg. 1

7
s, can even be chosen if

it allows to capture all the possible timings needed for the
simulation of the model time line.

3.2.4 Multiple scales and model composition
One of the strengths of the DEVS formalism is its ability to
compose models. This favors the reuse of previously devel-
oped models to create more complex ones and the division
of the system into smaller parts.

Assuming the time unit is hard-coded within the Simulator
implementation requires a unit to be found that covers all
possible models. This approach can be used for simulators
dedicated to a specific purpose, eg. micro-controllers elec-
tronics or planets dynamics. However, if the simulator is
intended to be multi-purpose, it becomes impossible to find
a compact and efficient representation that covers the full
spectrum of possible requirements.

An alternative is to use time units defined locally within each
model. For instance, this approach allows to pick months as
the time unit for building a gravitational model of plan-
ets dynamics, and pico-seconds for micro-controllers as sug-
gested by each model analysis.

When we have different time scales in different (Sub-)models,
we need to have extra computation to compose them as
DEVS Coupled Models. In case the time-step in one repre-
sentation is divisible by the one in the other, the smallest
step can be used as the common step, but the time-values
in the larger-step model have to be systematically adjusted,
at the cost of an extra multiplication operation.

When using time-scales that don’t divide each other, e. g.
1
7
s and 1

5
s, finding a common time-step requires to find a

common denominator, and adds a systematic multiplication
on both sides.

3.3 Structures and containers
Complex data types that come with each programming lan-
guage can also be used be used in place of the afore-mentioned
ones, in order to avoid some of the problems we have sur-
veyed. These data types include: classes, objects, structs,
tuples, arrays, vectors and other containers.

However, using such data types often results in new trade-
offs, such as user-friendliness vs. memory consumption, or
vs. performance, or vs. complexity of time arithmetic.

3.3.1 Developer friendliness
In some implementations of time, a structure with an integer
fields to handle different units of a time value is used. This
can be done using an array, vector, class or struct, with the
main objective of expanding the range.

This kind of structure is used in the Time class in CD++
(which has also an extra float field) in which the fields are
aligned on standard time sub-units (days, hours, minutes,
nanoseconds). The use of human-friendly units, even when
convenient for the model definition, makes the arithmetic
more complicated, and is space inefficient. For example,
using a byte-long integer to represent minutes on 8 bits,
wastes 76% of the values.

3.3.2 Memory consumption and access
Integers and floating point numbers can both use either 16,
32, 64 or 128 bits depending on the processor architecture. A
struct having multiple integers as previously defined, when
implemented as a Class, Object or Struct, requires a pointer
to the structure and offsets to each component.

This gets worst if we combine with previous problem and we
use human friendly representation. For efficiency purpose, it
is advisable to use integer that match the processor register
size, hence at least 64 bits on computing architectures cur-
rently available. An structure for [HH:MM:SS] using such
integers for each field would use 224 bits and represent less
range than a single 64 bits integer coding the same range
using the seconds unit. In some languages, like C++, this
can be reduced choosing an 8 bit integer data type, anyway
this is not a possibility in some other languages like PHP or
Python.

In case a vector-type collection is used, the memory footprint
is increased to define pointers needed for iteration or other
general purpose use of the data type as memory allocators.

In some architectures with few available registers, accessing
multiple integers generates a higher number of cache miss
and results in significant performance degradation.

3.3.3 Memory Alignment
In most architectures, the use of smaller than bus size or
misaligned data types will require extra processing to be
read and write. For example, if the bus width is 32 bits,
2 consecutive integer values of 16 bits can be read using a
single memory access, but extra operations are needed for
the actual values to be unpacked prior operation. Similarly,
having a 16 bits integer followed by a 32 bits one ends up
either with the second one being misaligned and requiring
two memory access each time it is read/write, or with the
waste of 16 bits to realign the representation.

3.3.4 Operation encapsulation
If we want this data type to be reusable, the operations giv-
ing the semantic to the data type and its representation need
to be encapsulated. The only data types providing the mech-
anisms to embed operations in a data type are classes and
objects, and in most languages one depends on the other.

This encapsulation has to be compared with the usability
of collections. In case the data type is first designed as a
class or object, adding the operators to it doesn’t increase
the memory access to its internal fields. On contrary, in case
the data-type is designed as the encapsulation of a collection,
using a class or object wrapper, a new indirection level is
added, which may result in increasing the number of memory
access, with possible added degradation due to cache miss.

4. A NEW TIME DATA TYPE
The standard way to represent the measure of a time lapse
is the product between its magnitude and the time unit:
t = m× u. Our proposed data-type aims as finding how to
best represent both of these quantities, the magnitude and
the unit.

In Section 3 we described a set of problems and limita-
tion with the representation and performance of the differ-
ent data types used in DEVS implementations. Looking
for a more adequate data type for the time computation in
DEVS, we describe in the following subsections a set of rep-
resentation requirements, performance requirements and we
propose a data type covering most of those requirements to
avoid the previously exposed problems.

4.1 Representation requirements
From previous analysis, we can derive the following require-
ments:

• For the unit part of the representation, different units
must be supported;

• For the magnitude part, we need to address four con-
cerns:
1. Avoid (hidden) quantization as much as possible;
2. Avoid additive arithmetic errors;
3. Provide a large enough range for any time repre-

sentation;
4. Support seamlessly the coupling of models possi-

bly operating using different units;

• Optionally, we may want to have an internal represen-
tation for infinity. (Some simulators don’t need it.)

4.2 Performance requirements
We expect the use of the new data type not to impact signifi-
cantly the performances of the simulation. Time is advanced
in every model, and every coordinator has to operate with
it.

We should keep our representation compact and avoid wast-
ing representation space.

Also, when trade-offs for performance are possible, we prefer
to optimize the additive operations and comaparisons, which
are the only ones used internally by the simulator.

Since time scaling operations that result from the composi-
tiopn of models may be expensive, we want to avoid them
as much as possible.

4.3 The proposed data type
In this subsection, we first describe a data type that cov-
ers the representation requirements and enumerate it limita-
tions. Afterward, we describe how to, doing a few trade-offs,
we can adapt it to a more performant implementation.

For the magnitude, we need a representation that allows us
to represent large subset of numbers without rounding, and
that all operations result in values into the same subset. A
large subset of R covering this 2 conditions is Q, any of its
values q can be represented as q = qn

qd
where qn, qd ∈ Z.

A representation of numbers in Q includes the numbers
of the Integer type representation and the numbers of the
Floating Point type representation (but infinity). In ad-
dition, it covers new cases, such as the numbers required
for representing frequencies that are not powers of 2. I.e.
two generators, one sending three events per second and
one sending one per second can be modeled and have a si-
multaneous event every second.

Unfortunately, a simple implementation of this data type re-
quires more space and operations time than previous ones.
The space complexity comes from having several pairs of
integers that represent the same value. The time complex-
ity comes from the need to compute reductions (Greatest
Common Divisor) in the representation in order to keep it
as compact as possible.

Recall from earlier that we note t = m× u.

To ensure that the range, m, can be large enough, a dy-
namic size representation can be used for the numerator
and denominator. In the following, we assume m is a ra-
tional number q defined by a duple of integers that are large
enough.

For u, the unit, we can use an enumeration of units and
define the scaling function to convert the operands of binary
arithmetics operations to the smallest common unit before
proceeding.

The previous data types covers all the representation re-

quirements.

The restriction is that magnitude values had to be repre-
sented by a subset of Q delimited by the size used to repre-
sent the 2 integers used to represent q and the units need to
be a finite predefined set with relations well defined between
them.

Unfortunately, using this data in a real simulation would
waste a lot of representation space, and induce a big com-
putation overhead when coupling models havoing different
units.

A few optimization can help reduce this overhead in the
general case and limit the increase of complexity to specific
scenarios that where not supported by previous data types.

A first change is to replace the unit enumeration represen-
tation by an integer scale factor e and a patron unit p, so
that any unit can be thought as p × 2e. Using the Second
as patron unit may be reasonable for general purpose if the
e is represented with a 32 bit integer.

The second change would be to use a custom quantum qu ∈
Q and a scale i ∈ Z to represent the time inside each model
as: qu×i. This quantum is a divisor of all the possible times
that will be used by the model, modelers usually think about
it at the time of modeling. In the case the modeler doesn’t
set the quantum, if the model has regularity in it behavior,
qu can be readjusted until stabilized by the Simulator just
finding the Greatest Common Divisor between last used qu
and the one from current operation. An example of a case
where it never stabilize is when the frequency of event is
constantly increasing as ta = (1

2
)n where n is the quantity

of previous outputs.

The use of this quantum makes that every operation be-
tween common quantum operands (expected most common
case) would be as expensive as Integer computations. In the
case we have different quantum operands, we need to ad-
just it which may be an expensive operation used few times.
The case in which an adjustment is needed very frequently
corresponds to a model that was not properly handled by
previous representations.

We propose then to reduce the qu representation to two com-
mon integers as large as the architecture bus. This trade-off
of keeping a small qu can increase significantly the optimiza-
tion possibilities of the data type and keep it compact. This
reduction is not as restrictive as it may look, when combin-
ing to the unit representation all float and integer space is
covered and we still have another component i to scale the
values.

If we look the whole representation (magnitude and unit),
with current changes a time lapse is represented as: t =
i× qu× 2e × p. In 32 bits architecture, the qu takes 64 bits,
the e 32 bits, p is implicit and i we can fix it to 32 bits too
and have a representation of 128 bits which most the time
the operations are just comparison of the first fields and
add/substract/compare on the last one, all possible with 32
bits Integer operations.

To simplify the notation, we define the unit u as: u = qu×
2e × p and the time lapse t as: t = i× u.

When working with binary operators, and both operands
has the same u, the operation is quite trivial, just the i from
each operand is used. The problem of having i limited to 32
bits is the coupling of models using different u which makes
necessary to have binary operators supporting different us
in their operands. If the u differs in e, when need to oper-
ate just in the segments of the number that representation
overlaps and we need to check for possible carry to expand
the representation.

In the case when the qus of each number are different, a
common qu needs to be found and then i and e adjusted
accordingly. Since this is a more expensive operation, a good
selection by the modeler of the qu of each model is important
to agree the common qu between components fast.

A way to agree in the qu can be introduced to the Simulator
logic so the models negotiate it at initialization, or it can be
encapsulated in the Time data type itself if using an Object
Orient Language.

The problem with the initial negotiation approach is that it
increments the logic of the simulator and doesn’t really solve
the problem when the time unit can change during simu-
lation (as the model ticking half as previous tick showed
before). Anyway, if the trade-off is worth it between pre-
dictability on the performance and flexibility to allow the
change of the quantum in simulation time, it can be done.

In the dynamic case, a simple implementation of the nego-
tiation mechanism that agrees in a global qu common to
all models participating can be implemented just checking
qulocal = quglobal at the time of operate, if they are equal
then just operate with no worry, in the case they are not
equal a new qugloabl that divides both is computed, the lo-
cal i and e are adjusted and the new qu is assigned to both.
All models defined with different qlocal will do this until
reach consensus. Obtaining consensus using this approach
is lineal in the quantity of basic models participating in the
simulation, anyway stabilization of the representation in ev-
ery model can require square of the quantity of Basic Mod-
els adjustments to internal representation variables. This
approach after reach consensus is as performant as the pre-
vious one, but it doesn’t exclude the use of Models that can
change its qu. If a model changes it qu a new consensus
needs to be reached, and automatically will be done.

The header of a Time c++ class with a mechanism to agree
the q encapsulated may look like this:

typedef pair <int , int > fraction;

template <typename T>
class Time {
public:

// constructors
Time() = delete;
Time(const fraction q,

const int exp ,
const int m);

// operators
Time& operator =(const Time&);
const Time operator +(const Time&);
Time& operator +=(const Time&);

// negotiation
static fraction q_global;

private:
fraction q_local;
BigInt i;
int e;

};

// Comparison operators
bool operator ==(const Time&, const Time&);
bool operator !=(const Time&, const Time&);
bool operator <(const Time&, const Time&);
bool operator >(const Time&, const Time&);
bool operator <=(const Time&, const Time&);
bool operator >=(const Time&, const Time&);

This c++ class implementing the operations as described
earlier in this section covers fairly the requirements.

Another representation can be done changing the i and e
data types to vector of pair of integers where each position
in the vector has a segment of i and an associated e. This
way, when operating between numbers that don’t have dig-
its in common, the addition or subtraction can be done as
just a concatenation. Also, this representation saves space
when several 0s are in the middle after an operation, this
are just not represented in the vector, any segment of 0s can
be removed from the vector.

About complexity of the operations in the alternative repre-
sentation. For add/subtract operations once the qu is stable
the operations need to do a check of the compatibility and
then the operation as described before. If we simulating
something that was possible to simulate using Integers, the
overhead is 3 integer compares for equality, if it was not pos-
sible to simulate the worst case is linear to the size of the
vector used to represent i. If the vectors don’t have gaps and
the e matches, complexity is equivalent to use BigInt, in the
case there is any gap or the e is miss-aligned a displacement
of all segments may be done in the worst case and this is a
linear operation in the size of the i vector. For the compare
operations worst case is linear to the size of the i vector too.

4.4 Communicating values
From previous analysis, we can think about how to com-
municate models in different simulator modules to handle
interaction with web server based simulator or between dif-
ferent technologies.

An XML, JSON, or any serialization can be provided based
in the class header described before.

An message using xml, may look like this:

<?xml version="1.0"?>
<time type="Time">

<unit numerator="58"
denominator="57"

patron="Second" />
<magnitude offset=" -64">

123812937129837129
</magnitude >

</time>

The magnitude can be broke in pieces and send the offsets
and content of the segments and avoid completing the gaps
with 0s. Anyway, given the time it takes to parse the XML
the difference may not be significant and more validation is
needed to check the overlaps when parsing.

5. PERFORMANCE COMPARISON
In this section, we show the results of 4 experiments we
realized to measure the performance impact of choosing the
proposed Data Type compared against other possible Time
data types implementation.

The experiments are implemented in C++11 compiled with
clang 500.2.79. Each experiment was run without compiler
optimization and with -O2 compiler optimization. Five data
types are used for comparison:

• Float: We use the native float implementation.
• Integer: We use the native integer wrapped in a class

to make it also provide infinity arithmetic.
• Rational : We use the boost[3] implementation of ra-

tional (1.55) wrapped in the same class as Integer to
make it also provide infinity arithmetic.

• DTime: A naive implementation of the proposed data
type using global agreement with statics as described
in previous section.

• FDTime: A naive alternative implementation to the
proposed one. This one doesn’t intent to reach global
agreement, in place the agreement is produced between
operands in each operation.

5.1 Experiment: series y=1
This experiment implements:

∑N
x=1 1

 0.0001

 0.001

 0.01

 0.1

 1

 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

R
un

 ti
m

e

Acumulation result

FDTime
DTime

Float
Integer

Rational

Figure 1: Series y = 1 with no compiler optimization.

In this experiment all types but float provide exact results.
The problem with float is that after accumulating enough,
the exponent is increased and the increment starts being
discarded.

In Fig. 1 all data types show similar behavior, the worst
implementation appears to be the Rational, while both FD-
Time and Time appear to be similar to just using an Integer
with Infinity operations.

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

R
un

 ti
m

e

Acumulation result

FDTime
DTime

Float
Integer

Rational

Figure 2: Series y = 1 with -O2 compiler optimiza-
tion.

In Fig. 2 Integer and Rational are as good as float after
being optimized, while FDTime and DTime get almost no
improve from the compiler optimization.

5.2 Experiment: series y=1/x
This experiment implements:

∑N
x=1

1
x

Computing this series using integers makes no sense and
computing it using float is very imprecise, it rounds most of
the values.

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 0 2000 4000 6000 8000 10000 12000

R
un

 ti
m

e

N

FDTime
DTime

Float
Rational

Figure 3: Series y = 1/x with no compiler optimiza-
tion.

In Fig. 3 we obtain very similar results in DTime, FDTime
and Rational and a float that goes 100x times faster (but
returns the wrong results).

In Fig. 4 after run compiler optimizations, we see that float
flattens getting a great improve, but the other data types are
mostly unaffected by the optimizations, just doing slightly
better at the start.

5.3 Experiment: series 1/2x

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 0 2000 4000 6000 8000 10000 12000

R
un

 ti
m

e

N

FDTime
DTime

Float
Rational

Figure 4: Series y = 1/x with -O2 compiler optimiza-
tion.

This experiment implements:
∑N

x=1

∑23
y=1

1
2y

This experiment returns all representable values in float un-
til the exponent is increased. In numeric methods, it may
be suggested to start the Sum from the smaller number to
reduce the error. Anyway, in DEVS, we don’t have a way to
reorder the operations, so it is a valid use case doing it this
way.

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 0 200 400 600 800 1000 1200

R
un

 ti
m

e

Repetitions

FDTime
DTime

Float
Rational

Figure 5: Series y = 1/2x with no compiler optimiza-
tion.

In Fig. 5 we obtain similar results to previous experiment.
In Fig. 6 something changes, this time the float curse doesn’t
flatten.

5.4 Experiment: series 1/p
This experiment implements:

∑N
x=1

1
pi

with pi the i-esieme

prime number in N.

Here, all numbers but 1/2 are not representable by float, so
the result is very imprecise, also the prime numbers force to
fail the simplification of the fractions in the internal repre-
sentation of the other data types.

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 0 200 400 600 800 1000 1200

R
un

 ti
m

e

Repetitions

FDTime
DTime

Float
Rational

Figure 6: Series y = 1/2x with -O2 compiler opti-
mization.

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

R
un

 ti
m

e

N

FDTime
DTime

Float
Rational

Figure 7: Series y = 1/pi where pi is the i-esieme
prime with no compiler optimization.

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

R
un

 ti
m

e

N

FDTime
DTime

Float
Rational

Figure 8: Series y = 1/pi where pi is the i-esieme
prime with -O2 compiler optimization.

In both, Fig. 7 and 8, we obtain similar result to those in
the

∑N
x=1

1
x
experiment.

6. CONCLUSIONS
We surveyed a set of Simulators used to run DEVS formal-
ism simulations and we analyzed the implications of the data
type selected in those to characterize the need of a new Time
data type. From this characterization we described require-
ments for the new data type and a possible implementation
which covers them at the expense of a slight increase in spa-
cial and time complexity compared to its predecessors when
running in the same scenarios, but increases significantly
the accuracy and the range of the data type compared to
previous ones. We compared naive implementations of the
proposed Data Type against other Data Types used in the
surveyed simulators and against other data types, the worst
penalty obtained was in the order of 100X. We think the
trade-off is worth it even when work need to be done in op-
timizing and compacting the data type yet. We will focus
our future work in the complexity aspects, the implementa-
tion and evaluation of the data type in the CD++ simulator
and then we will study how this work applies to other Sim-
ulation formalisms in discrete events.

7. REFERENCES
[1] J.-S. Bolduc and H. Vangheluwe. A modeling and

simulation package for classic hierarchical DEVS.
MSDL, School of Computer McGill University, Tech.
Rep, 2002.

[2] A. Chow and B. P. Zeigler. Revised DEVS: a parallel,
hierarchical, modular modeling formalism. In
Proceedings of the SCS Winter Simulation Conference,
1994.

[3] R. Demming and D. J. Duffy. Introduction to the
Boost C++ Libraries; Volume I-Foundations. Datasim
Education BV, 2010.

[4] D. Goldberg. What every computer scientist should
know about floating-point arithmetic. ACM
Computing Surveys (CSUR), 23(1):5–48, 1991.

[5] J. Himmelspach and A. M. Uhrmacher. Plug’n
simulate. In Simulation Symposium, 2007. ANSS’07.
40th Annual, pages 137–143. IEEE, 2007.

[6] M. H. Hwang. DEVS++: C++ Open Source Library
of DEVS Formalism. On-line resource at
http://odevspp.sourceforge.net/ [Last checked: Oct
31st 2013], v.1.4.2 edition, April 2009.

[7] V. Janoušek and E. Kironskỳ. Exploratory modeling
with smalldevs. Proc. of ESM 2006, pages 122–126,
2006.

[8] A. Lòpez and G. A. Wainer. Improved Cell-DEVS
model definition in CD++. In Proceedings of ACRI.
Lecture Notes in Computer Science, volume 3305,
Amsterdam, Netherlands, 2004. Sloot, P.; Chopard,
B.; Hoekstra, A. Eds.

[9] J. Nutaro. ADEVS project. On-line resource at
http://web.ornl.gov/˜1qn/adevs/ [Last checked: Oct
31st 2013].

[10] X. Xiaolin Hu and B. P. Zeigler. The Architecture of

GenDevs: Distributed Simulation in DEVSJAVA.
On-line manual at http://acims.asu.edu/wp-
content/uploads/2012/02/The-Architecture-of-
GenDevs-Distributed-Simulation-in-DEVSJAVA-.pdf
[Last checked: Nov 1st 2013], January 2008.

[11] B. P. Zeigler, H. Praehofer, T. G. Kim, et al. Theory
of modeling and simulation, volume 19. John Wiley
New York, 1976.

[12] B. P. Zeigler and H. Sarjoughian. Introduction to
DEVS modeling & simulation with JAVATM:
Developing component-based simulation models.
Arizona State University, 2003.

A. DEVS FORMALISM
In DEVS, the modeling hierarchy has two kinds of com-
ponents: basic models and the coupled models. The basic
models (with ports) are defined as a tuple:
A =< S,X, Y, δint, δext, λ, ta > where:
S is the set of states,
X = {(p, v)|p ∈ IPorts, v ∈ Xp} is the set of input ports
and values,
Y = {(p, v)|p ∈ OPorts, v ∈ Yp} is the set of output ports
and values,
δint : S → S is the internal transition function,
δext : Q×X → S is the external transition function,
Q = {(s, e)|s ∈ S, 0 ≤ e ≤ ta(s)} is the total state set
(with e is the time elapsed since last transition),
λ : S → Y is the output function and
ta : S → R+

0,∞ is the time advance function.

At any time of the simulation the basic model is in a specific
state awaiting to complete the lifespan delay returned by the
ta function, unless an input of a new external event occurs.
If no external event is received during the lifespan delay, the
output function λ is called, and the state is changed accord-
ing to the value returned by the δint function. If an external
event is received, then the state is changed to the value re-
turned by the δext function, but no output is generated.

Coupled models define a network structure in which nodes
are any DEVS models (coupled or basic) and links represent
the routing of events between outputs and inputs or to/from
upper level. Formally, the Coupled Models are also repre-
sented by a tuple:
C =< X,Y,D,M,EIC,EOC, IC, SELECT > where:
X is the set of input events,
Y is the set of output events,
D is an index for the components of the coupled model,
M = {Md|d ∈ D} is a tuple of basic models as previously
defined,
EIC, EOC, and IC are respectively the External Input
Coupling, External Output Couplings and Internal Cou-
plings that explicit the connections and port associations
respectively from external inputs to internal inputs, from
internal outputs to external outputs, and from internal out-
puts to internal inputs,
SELECT : 2D − {} → D is the tie-breaker function that
sets priority in case of simultaneous events.

