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ABSTRACT
Constructing accurate animal behavior models often requires
close interaction between a diverse group of domain experts
in fields such as biology, ecology, modeling and simulation.
To ease the effort and time involved in creating these models,
we propose on-the-fly automatic behavior model generation.

Automatic code generation is a well-established software
engineering technique. It has proven valuable in GUI gener-
ation, web service specification and in multi-agent systems
design. But while these techniques have served programmers
well, there is still a lack of tools that are targeted towards
domain specialists utilizing modeling and simulation frame-
works.

To address this deficiency we present a tool that leverages
robot control architectures to provide automatic code gener-
ation of animal models using an intermediate language that
is readable and writable by both human and machine.

Categories and Subject Descriptors
I.6.5 [Simulation and Modeling]: Model Development
Automatic code generation for intelligent agents

General Terms
Design, Languages
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machine or Markov model. Finally, this ethogram must be
programmed by hand into executable code in a program-
ming language like Java or C++, that targets a particular
simulation platform such as RePast or MASON. This is not
only time and labor intensive, but can also present signifi-
cant problems for animal researchers who are not also expe-
rienced programmers.

In fact, this problem is not unique to the field of ethology.
In specialized domains such as animal behavior research,
business process management and graphic design, software
creation has largely moved out of the hands of software en-
gineers and into the hands of domain specialists. This has
fueled a demand for automatic code generation frameworks,
which allow the creation of specialized software with little
or no actual code writing on the part of the programmer.
For example, a business manager might use a graphical flow-
chart to generate process management software to automate
business transactions. Graphic designers use GUI web devel-
opment kits to generate interactive web pages. Automatic
code generation is even used by software engineers to ease
the burden of writing highly redundant “boilerplate” code
like remote procedure calls and web services. And increas-
ingly, researchers in sociology, economics and social animal
behavior are turning to Agent-based Modeling and Simula-
tion (ABMS) tools to conduct their research.

There have been some attempts to meet this need in the
field of Multi Agent Systems (MAS) research, by construct-
ing toolkits to automatically generate agent controllers from
visual specifications. But these frameworks either rely on a
UML type of model to describe agents, which is not intuitive
to domain specialists, or they support sequential, procedu-
ral types of agent controllers, which are often inadequate to
describe complex animal behaviors.

We present a code-generation framework that uses behavior-
based robot control architectures as a model for agent con-
trollers. Furthermore, to maximize code flexibility, we choose
the XML as a language-neutral intermediate language, to al-
low our agent controllers to be not only machine readable,
but machine writeable – an opportunity we intend to exploit
in future work.

A popular technique for automatic code generation is the
use of templates. Template-based code generation relies on
predefined translation descriptions. For instance, a template
might indicate that the presence of a certain keyword or tex-
tual pattern as input should produce a segment of code as
output. This is identical to the problem of programming lan-
guage compilation, and indeed the YACC and GNU Bison
programs are well-known template-based code generators.

An ethologist, or animal behavior researcher, who wants to 
create an executable model of animal behavior to run in a 
simulation faces a daunting challenge. First, he or she will 
have to spend hours observing the animal with a notebook, 
recording their observations in minute detail. Next these 
observations must be translated into an ethogram, a graph-
ical depiction of the behavior that resembles a nite state

 
 

 



Figure 1: This work combines approaches from three
disciplines: Multi-agent systems, Model-driven en-
gineering and Robot control architectures.

The problem we face is the use of such templates to pro-
duce an executable program from a description of behavior,
and to make that executable model dynamically available at
run-time. Our solution is to combine two well-established
paradigms - behavior-based robot controllers, and an au-
tomatic code-generation framework - in a novel way. This
allows us to generate agent controllers that respond to dy-
namically changing environments.

But while the use of automatic code-generation frame-
works is well established, there have been several different
approaches to describe the models for those frameworks. For
instance, the MAS community typically uses UML diagrams
to model the configuration parameters of the system itself,
while the control logic of the agents is created as either a pro-
cedural workflow, or a hierarchical decision making system
in which tasks are subdivided into component objectives and
delegated to subordinate processes by a master controller.
The same approach has been carried over to the ABMS
community with some success, as evidence by the “Agent
Modeling Platform” (AMP) framework. But sequential and
hierarchical controllers can become problematic in dynamic,
unpredictable environments. Furthermore the use of UML
to describe agent behavior, while close to the domain rep-
resentation for software systems, is typically different from
behavioral representations used by the domain specialists
who are likely to make use of ABMS tools in their research.

In the remaining sections of this paper, we will provide
a survey of the existing approaches, and present details of
our framework. In section 2 we will review similarities and
differences between multi-agent systems (MAS) and agent-
based modeling and simulation (ABMS), while contrasting
significant work in model-based engineering. In section 4,
we will discuss the emergence and benefits of behavior-based
robot control within the robotics community. In section 7
we will give technical details of our proof-of-concept imple-
mentation, and in the final section we will outline future
directions and goals for this approach.

2. MULTI AGENT SYSTEMS
We define a multi-agent system as a software system con-

sisting of autonomous processes known as agents, which per-
ceive features of their environment and carry out actions to
influence that environment. This is typically referred to as
a sense-think-act cycle.

The notion of multi-agent systems has been applied to
software engineering in the form of Agent-Oriented Systems
Design (AOSD). This approach models a software system
(e.g., a web server ) as a set of processes within an envi-
ronment. These processes have a hierarchical relationship
with one another, an internal algorithm or control logic,
and a mental state. The presence of a mental state is the
differentiating feature between AOSD and the more con-
ventional object-oriented design. Mental states often use
Michael Bratman’s Beliefs, Desires, Intents (BDI) model [3],
in which a belief is information (possibly inaccurate) about
the environment that is stored within an agent, desires are
goals that an agent tries to achieve, and which are selected
for action according to its belief set. Once selected for exe-
cution a desire becomes an intent. This model follows Allen
Newell’s notion of rational agents [8], where an agent selects
from a variety of possible actions whether such an action
will accomplish its goal.
In the next section, we will examine how the agent concept

has been applied to modeling and simulation systems.

3. AGENT-BASED MODELING AND
SIMULATION

Modeling and simulation systems rely on descriptions of
an entity within an environment (a model), to try to pre-
dict the state of the environment, or system, at a given off-
set from the initialization time. The two conventional ap-
proaches to M&S are continuous and discrete event systems.
Agent-based Modeling and Simulation (ABMS) uses au-

tonomous software entities called agents, that follow the
“sense-think-act” operational life cycle. Most importantly,
ABMS uses autonomous software processes to generate emer-
gent behavior and complex systems.
At a given time step of a simulation, an agent takes input

from its environment (sensing), processes it in some manner
(thinking) and uses the result to enact some change in its
environment, such as moving within it, or modifying its state
(acting). Defining the middle part, think, is crucial to agent
development, and constitutes what is typically referred to
as the control architecture of an autonomous agent.

4. ROBOT CONTROL ARCHITECTURES
Much of the research around agent control architectures

has emerged from the robotics community. Over the last
several decades, robot control architectures have evolved
from hierarchical controllers, which are plan-intensive and
deliberative, to lightweight and dynamic reactive controllers.
Later, the emergence of behavior-based controllers combined
the two previous approaches.
In a hierarchical controller, a task is broken down into

subtasks and distributed to subcomponents of the architec-
ture, the way a general might relay orders to his or her lieu-
tenants on a battlefield. (Fig. 3) Several successful robots
from the 1970’s followed this method, such as Shakey built
at Stanford Research Institute (SRI). But hierarchical plan-
ners proved to be very cumbersome. They were too resource
intensive for the early hardware on which they ran, and they
were not able to adapt well to highly dynamic environments.
As a reaction to hierarchical planners, researchers started

using so-called “reactive” controllers, which emphasized a
tight coupling between sensor inputs and actuator outputs,
with minimal planning or deliberating in between. (Fig. 2)



Figure 2: Reactive controllers emphasize tight cou-
pling of sensor inputs and motor outputs, with min-
imal deliberation in between.

Figure 3: A hypothetical deliberative-style control
architecture. Sensor input is passed to a long-term
goal planner, which filters the information down to
subordinate processes like path planning and map-
ping, as necessary. Unlike reactive controllers, there
is typically a lot of computation between the sensor
input and the motor output.

In a reactive view, the presence of a ’god-like’ controller is
both unnecessary and ineffective in generating robust behav-
ior. This point of view is summarized well (if irreverently)
in Rodney Brooks’ 1987 memo “Planning is just a way of
avoiding figuring out what to do next” [4].

Brooks later developed the Subsumption architecture, which
inverted the flow of information in the controller. Rather
than flowing from top (a master controller) to bottom (sub-
ordinate processes) as in an hierarchical controller, a sub-
sumption architecture operates from bottom to top. Specif-
ically, sensor inputs are consumed by many independent
processes, each of which processes the perceived informa-
tion according to its own rules. The results are then passed
along to higher order processes, which subsume those micro
decisions by either accepting or overriding them.

Behavior-based architectures represent a compromise be-
tween the hierarchical and subsumptive approaches. They

Figure 4: An example of a hypothetical hybrid con-
troller. A temporal coordinator, or finite state ma-
chine, controls the behavior of the agent, while each
state of the machine is a reactive controller, or be-
havioral assemblage.

take the notion of bottom-up information flow from sub-
sumptive controllers, combined with the representational
world knowledge and ’sense-think-act’ approach of hierar-
chical controllers, to create planning robot controllers that
can adapt to uncertain and dynamic physical environments.
We use Arkin’s Theory of Societal Agents as a conceptual
model for our behavior-based experiments[2]. This model
itself derives from Minsky’s Society of Mind[7].

5. SCHEMA THEORY
The Societal Agents model uses schema theory to provide

basic building blocks for complex agent controllers. Schema
theory has roots as far back as Emmanuel Kant, but has
been applied in the 20th century to neuroscience e.g., by
Ron Arkin. A schema defines the process by which a sensor
input produces an impulse to action. It produces a “coarse-
grained”model for behavior; it is not overly concerned with
the details of its implementation (whether in code or in neu-
rons), but rather provides a broad, symbolic description of
its effect.
When a schema produces a result, or impulse to action,

it does so in the form of a vector. A vector, as in physics,
is simply a point in space with both direction and magni-
tude. To describe behavior, vectors can be used to indicate
attraction to a goal (e.g., water, prey or home) or repulsion
from obstacles or predators. Furthermore, vectors can be
summed to produce result vectors. This leads to the use of
vector fields for path navigation. For example, the combi-
nation of vectors that attract an agent to a goal, and repel
it from an obstacle, create resultant vectors that lead the
agent around the obstacle and to the goal. Such a use of
vector fields as the basis for motor impulse decisions is well-



established in neuroscience[2] and ethology[1].
We consider three types of schemas: Perceptual schemas,

motor schemas and behavior schemas. Perceptual schemas
provide sensor data about the world to the controller, and
are embedded within motor schemas. Motor schemas de-
scribe basic stimulus and response processes; given informa-
tion provided by its embedded perceptual schema, a motor
schema produces a result vector. Motor schemas may be
grouped together via coordination operators to form more
complex behavior schemas, or assemblages.

Coordination operators take the result vectors of their
subordinate motor schemas and produce a combined result
vector. Theory of Societal Agents (TSA) describes three co-
ordination operators, Continuous, Temporal and Compet-
itive. Continuous coordination operators are the simplest
– they produce a weighted vector sum of all of their sub-
ordinate schemas or assemblages. A temporal coordination
operator is a finite state machine. Each coordinated assem-
blage is a state, and transitions between states are motivated
by perceptual triggers. Competitive coordination operators
function much the same as the subsumption controllers de-
scribed previously. Assemblages are prioritized, with higher
priority assemblages given the power to modify or override
the result vectors of lower assemblages.

These assemblages are then selected by a planner of some
kind. In the MacKenzie, Arkin and Cameron’s MissionLab
simulator for goal-based robot teams [6], planning is per-
formed by a temporal coordination operator called the tem-
poral sequencer The temporal sequencer chooses from a set
of assemblages based on input from a perceptual trigger.
This is essentially a finite state machine, where assemblages
are states and perceptual triggers are edges.

Finally, we discuss Model-Driven Engineering, a software-
engineering technique that uses abstract models of systems
to represent the structure and functions of actual executable
code. Unlike the models discussed previously which rep-
resented physical phenomena or entities via mathematical
functions or executable software controllers, these are graph-
ical models that visually capture salient features of a soft-
ware system or module. The idea is that abstract represen-
tations of the actual programming code will better repre-
sent the meaning of the software modules being represented
in a condensed form that might be obscured by having to
read and understand the actual code base. A good abstract
model will both encapsulate the important features of the
things it models and hew closely to domain-specific represen-
tations. For instance, software engineers might make good
use of the Unified Modeling Language (UML) as an abstract
model for object-oriented code design, while Business Pro-
cess Managers might be more comfortable working with flow
diagrams to describe the sequence of transactions that con-
stitute a business process.

These abstract models might be used strictly for plan-
ning and communication between teams, as in the case with
waterfall-style software engineering, or they might be used
to automatically generate some or all of the executable code
by an MDE framework.

In the next section, we will discuss how Model-driven En-
gineering has been applied to multi-agent systems.

6. PREVIOUS WORK
While there has been extensive work on automatic code

generation in the field of Agent-oriented Systems Design

(AOSD), there has been relatively little targeted towards the
Agent-based Modeling and Simulation (ABMS) community.
This is particularly surprising because many of the users of
ABMS toolkits are domain specialists, with little experience
in software engineering. The MDE work generated by the
AOSD community tends to focus on the total software de-
velopment lifecycle, while the agent controllers are typically
described by sequential process diagrams or deconstructive,
hierarchical task managers. In this section, we will discuss
the significant work on applying Model-Driven Engineering
(MDE) to AOSD, as well as some work from the ABMS and
robotics communities.
The INGENIAS framework[9], developed by the grasia!

research group in Madrid, constitutes a total software lifecy-
cle approach to Agent-oriented software development, with
a visual specification language and the MetaEdit+ develop-
ment tool. The visual specification language is built around
the popular GOPRR meta-modeling language. GOPRR
(Graphs, Objects, Properties, Relationships, Roles) is com-
monly used to describe data flow, processes diagrams and
use-case diagrams. Like UML, it excels at defining relation-
ships between objects.
The INGENIAS method breaks a MAS down into views,

each of which describes one of 1) single agents, 2) how agents
interact with each other, 3) relationships among goals and
tasks, 4) an organizational model that describes grouping
and hierarchy of system components or 5) the things an
agent perceives in its environment. It is the first of these -
the agent model, that is of interest to us here.
Another framework that brings MDE capabilities to the

ABMS community is easyABMS[5] developed at the Uni-
versity of Calabria, Italy. Like the MDE tools developed
for AOSD systems, easyABMS uses UML and process flow
diagrams to describe agent behavior and simulation parame-
ters. The framework generates code that integrates with the
popular Repast Simphony simulation engine. An easyABMS
agent controller is defined by a set of behaviors that may be
triggered based on pre-defined parameters. Each behavior
is essentially a sequence of actions with control flow state-
ments (loops, branches, etc.) As discussed previously, this
type of controller, while conceptually straightforward, and
well-suited to software systems with little uncertainty, can
be problematic in situated environments, which are often
unpredictable and dynamic.
AMP, or Agent Modeling Platform , is a similar effort

that makes use of the Eclipse Modeling Tools to generate
essentially sequential agent controllers and configurations.
Our controllers are based on Arkin’s Theory of Societal

Agents. In MissionLab, Arkin developed his own Model-
based Engineering approach, with automatic code genera-
tion based on a graphical user interface. MissionLab uses
the Configuration Description Language (CDL), to describe
high-level features of robot controllers, including behavior
primitives and how those primitives combine to form assem-
blages. CDL is a quasi-functional language with support for
recursively defined agents (i.e., agents that are combinations
of other agents). CDL does not define the implementation
of behavior primitives, but rather presumes that CDL prim-
itives will be bound to some existing library of primitives
designed for a particular physical platform.

7. IMPLEMENTATION
For our MDE framework we use the Extensible Markup



Figure 5: The process that transforms an XML de-
scription of behavior into an executable, which is
injected at run-time into a simulation kernel.

Language (XML) as an intermediate language. XML has
several advantages for such a purpose. First, it is language-
neutral. While our proof-of-concept generates Java code,
suitable code should be producible in any number of tradi-
tional programming languages using template-driven tech-
niques. Furthermore, XML is a human readable and writable
specification. Users of the framework can directly observe
and edit the XML representations of their agent controllers.
Finally, and most interestingly, XML is machine readable
and writable. This allows us several opportunities. First, it
should be possible for a GUI interface to generate the XML
models directly. Second, it should allow a software program
to generate such a model from scratch. We intend to take
advantage of this opportunity in future work by using these
controllers as a gene in a genetic programming approach.
Finally, it will allow agents to modify their own controllers
while they are still running, by using Java’s reflection capa-
bilities.

To generate Java behavioral code, we use a template-based
approach, in which Extensible Stylesheet Language Tem-
plates (XSLT) are used to match patterns in the controller
XML document, and output plain text based on the pattern
matched.

Once the Java code has been generated, it is compiled us-
ing ANT (Another Neat Tool), an XML-based build engine.
ANT uses an XML build file, where each element specifies
a target (such as compiling Java code, or transforming an
XML document using a given XSL Template) and its de-
pendencies. We generate this build file dynamically with
the correct names of our controller and configuration classes
based on a simple configuration file for the simulation. We
use ANT’s Java API for generating the build file and run-
ning during the simulation’s run time. Finally, to load the
freshly-built controllers, we use Java’s ClassLoader capabil-
ity to dynamically instantiate the class and inject it into the
Java Runtime Environment. The process that allows us to
go from a hierarchical specification of agent behavior to a
fully-executable model is illustrated in Fig. 7.

Excerpts from an XML-based specification are shown in
Figs. 6, 7 and 8. The structure of this XML document
is derived from the Societal Theory and Schema terminol-

Figure 6: The part of the XML description that
describes the available motor schemas, or behavior
primitives of the agent controller.

ogy outlined previously. Fig. 6 describes Motor schemas, or
primitive behaviors, which will be transformed into instances
of Clay behaviors. These behaviors are then aggregated into
Behavioral Assemblages or Agent Schemas as shown in Fig.
7. Finally, Fig. 8 shows the temporal coordinator, or Finite
State Machine, that controls the transitions between these
states. In this example, an agent (specifically an ant) wan-
ders randomly between three different homebases, or nests,
while avoiding obstacles in its path and interacting with
other ants in a spiraling motion. Not shown here are the
Perceptual Schemas, which specify those objects or agents
in the environment of which this agent is aware, and the de-
scription of triggers between the states of the state machine.
Our executable Java code is built around Clay, a library of

behavior-based primitives and coordination operators, with
support for a controlling finite state machine. While XSL
Templates could be written that target any such suitable
behavior-based library, we found Clay to be a good candi-
date due to its origins as an implementation of the Societal
Agents Theory. Furthermore, our generated code can be run
in the MASON simulation kernel, a popular and feature-rich
simulation engine.
As an alternative to the template-based approach described

above, we considered the use of the Java Architecture for
XML binding (JAXB), an architecture commonly used to
generate web services. The JAXB framework uses Java an-
notations (preceded by the ’@’ symbol on class declarations)
to bind Java classes to XML elements. So including such a
bound XML element in an XML document produces an in-
stance of the bound class. But we felt that this approach
was too closely tied to the implementation details of the Java
code, and did not sufficiently abstract away the semantic
meaning of the controllers.
A limitation of this work is that, while it is possible to

dynamically generate code at runtime in many languages,
that code may not be loadable at runtime. We rely on Java’s
Reflection API to make this possible, but some languages,
notably C and C++ do not natively allow for dynamic class



Figure 7: The part of the XML description that
describes how the Motor Schemas are combined to
form Behavioral Assemblages, or Agent Schemas.

Figure 8: This section of the XML controller de-
scribes the transition table for the temporal coordi-
nation operator or Finite State Machine. Each state
is a Behavioral Assemblage. Triggers, or edges, are
described elsewhere.

loading (although there are some workarounds in the Linux
environment).

Furthermore, our framework is really tailored for behavior-
based agent controllers. A user who requires the use of se-
quential controllers with branching and looping logic will
probably be frustrated by trying to adapt our framework to
those techniques.

Finally, behavior-based controllers are really more like
heuristics than algorithms. While they are robust in un-

predictable environments, their behavior is not guaranteed,
and thus may not be suitable for traditional AOSD systems
such as web security systems, or e-commerce sites, where
correctness is paramount.

8. CONCLUSION
We have presented a language-neutral technique to gener-

ate behavior-based agent controllers from hierarchical, text-
based descriptions of those controllers. We believe this to
be a compelling, new approach that opens up a variety of
exciting opportunities for future research.
For the ABMS community, it means that agents can be

prototyped quickly, or even automatically. For the AOSD
community, it means that long-running agents can be mod-
ified on the fly to take advantage of new algorithms and
libraries.
One goal of further research is to use these machine-writable

controllers as genes in a genetic programming system to
evolve agent controllers that mimic the behavior of animals.
While there has been similar work on evolving robot con-
trollers and ant-like agents by Koza, the controllers gen-
erated were sequential controllers, without the robustness
of the behavior-based paradigm. Furthermore, we intend to
use the technique to generate models, rather than optimized
behavior, which is a novel approach.
We also intend to incorporate these controllers into a GUI

environment, to allow non-programmers such as ethologists
or sociologists to quickly and easily prototype agent con-
trollers for their simulations.
Finally, a fully-featured solution should not be tied too

closely to a particular behavior library or simulation engine.
We plan to add support for several engines and behavior
libraries in the future.
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software engineering with ingenias. In Multi-Agent
Systems and Applications III, pages 394–403. Springer,
2003.


