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ABSTRACT

In this paper, a Flexible And Accurate Network-On-chip
Simulator (FAANOS) is introduced. NoC is a critical structure
for system-on-chip design. We discuss the structure of its various
components by presenting their details. We also provide an
analytical methodology that employs the micro-architectural
level of routers and links of NoC by considering their power and
chip area requirements. We go through the structure of FAANOS
when it is in switching mode and explain the transactional power
estimation metric. To evaluate the effectiveness of an NoC
system, an evaluation flow for early stage design and simulation
of NoC is presented.

Categories and Subject Descriptors

B.4.4 [Input/Output and Data Communications]: Performance
Analysis and Design Aids — simulation, verification.

C.1.2 [Processor Architectures]: Multiple Data Stream
Architectures (Multiprocessors) — interconnection architectures.

General Terms
Design, Verification.

Keywords
Network-on-Chip, SystemC based Modeling, System-on-Chip
Design.

1. INTRODUCTION

In VLSI technology, we recently have had a revolutionary
development of Network-on-Chip (NoC) to deal with on-chip
communication. In SoC design, there are a lot of challenges, and
among them communication and synchronization between
modules are prominent [8]. As a solution to these and other
problems such as performance, chip area and power
consumption, NoC structure has emerged. NoC replaces design-
specific interconnection (buses, point-to-point ports, etc.) in SoC
with a scalable and general purpose network, and it establishes a
communication mechanism between NoC cores and modules [2].
For designers and architects of NoCs, obtaining an optimal NoC
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is a big challenge due to a number of constraints and objectives
such as topology, switching method, routing techniques and
traffic pattern that have impact on the power, area and
performance of NoC. One of the best solutions to this challenge
is to simulate NoC in a suitable environment. NoC simulators are
dedicated test bed frameworks which serve a variety of NoC
needs. They allow designers to test NoCs that might be difficult
or expensive to emulate using real hardware. For example,
simulating the effects of a sudden burst in a message flow will be
difficult to investigate in hardware setup.

Power dissipation in NoC circuits is generally classified into
two sources: static (or leakage) and dynamic (or switching). The
estimation of dynamic power dissipation of any chip design is a
challenging task. Two main power models ranging from RTL
power estimation tools [12] and early stage architectural power
models have been proposed [14, 6]. For RTL power estimation,
the power models can be obtained by synthesis and place/route of
the RTL code. The generated library of the NoC components is
then used during NoC topology synthesis. The shortcomings of
this model are the requirement of having complete RTL code and
slow simulation (in the range of hours). However, the
architectural power model takes may only few seconds. This has
encouraged us to choose the architectural power model to
incorporate into our NoC simulation framework. This model
allows NoC architects and us to estimate the power in
transactional level or maximum condition. This feature of our
NoC simulator is unique as compared with the past similar works
reported.

We first develop a homogenous, general and accurate NoC
simulation framework. The backbone of the Flexible And
Accurate Network-On-chip Simulator (FAANOS) tool is built
using SystemC, and all of its components are developed in our
group. Moreover, the simulator considers different bit rates in the
application-oriented workloads and supports them by producing
appropriate output results. Our FAANOS simulator implements a
complete and diverse routing mechanism in 2D topologies by
using Source, Virtual-circuit, Odd-Even and LP routing
techniques [9]. These mechanisms lead to flexibility and accurate
results, and it provides an efficient NoC simulation and design
environment. FAANOS employs an analytical method to
estimate the power and area of NoCs that is a fast and accurate
methodology. It allows experimenting with various options
available at every stage of NoC design such as topology
generation, switching technique, virtual channels and routing
methods. FAANOS can be easily extended to include new
topologies and routing algorithms. In terms of accuracy, we can
argue that in our general NoC simulation environment the metric
results tend to be accurate needed at early NoC design stage.

The outline of this paper is as follows. Section 2 provides a
brief discussion on the related work. The infrastructure of NoC



simulator is introduced in section 3. The transactional power
estimation is presented in section 4. Then we propose an
evaluation flow model for NoC systems in section 5 and follow it
with the investigation of a test case in section 6. Finally, we
provide conclusions in section 7.

2. PAST NOC SIMULATORS

Most of the existing NoC simulators consider only a few
aspects of NoCs. Banerjee et al. have developed an RTL level
power model for NoCs by first extracting the SPICE level net list
from the layout and then integrating the characterized values into
the VHDL based RTL design [1]. An accurate power
characterization of a range of NoC routers was performed
through RTL synthesis and place and route using standard ASIC
tool flow by Synopsys [12]. Bona et al. first proposed an
architecture level power model for interconnection networks,
deriving its power estimates based on transistor count [5].
ORION is an early-stage architectural power model for NoCs
that was originally proposed and released in 2002 [14]. It has
since been widely used in academia and has been incorporated
into industry tool chains such as Intel, AMD, IBM, and Free
scale. Bhat also presented a methodology for automatically
generating the energy models for on-chip communication
infrastructure [3]. However, their focus is on bus and crossbar
based communication for SoC systems.

In terms of NoC simulator development, a lot of research has
been done on developing SystemC based simulation tools for
analyzing different aspects of an NoC system. Among the recent
past SystemC based NoC simulators, NIRGAM and NOSTRUM
are the prominent one. NOSTRUM is a SystemC NoC simulator
intending to develop an NoC architecture [11]. It mainly
concentrates on the communication issues. NIRGAM is a
SystemC based discrete event, cycle accurate simulator for NoC
design [15]. It provides considerable support to examine different
NoC designs in terms of routing algorithms and various
topologies. It is capable of simulation on 2D regular mesh or
Torus topologies using wormhole switching. The traffic
generator in NIRGAM generates packets in constant and bursty
bit rate. FAANOS covers all the functions of NIRGAM and
NOSTRUM works and extends it with some new approaches. It
considers different bit rates in the application-oriented workloads
and supports them by producing appropriate output results.
FAANOS implements a complete and diverse routing mechanism
in 2D topologies by using the mechanisms such as Source,
Virtual-Circuit, Odd-Even and LP routing [9]. These mechanisms
lead to flexibility and simulation accurate results, and it is more
supportive for users in providing efficient NoC design
environment. FAANOS employs an analytical method to
estimate the power and area of NoCs that is a fast and accurate
methodology. It produces different power and area characteristics
such as static, dynamic, architectural and transactional power
estimation as well as link and router area that can completely
describe the power and area behaviour of an NoC during early
design stages.

3. FAANOS STRUCTURE

The internal structure of FAANOS simulator is shown in
Figure 1. The blocks and arrows indicate the flow of data and
information in the simulator. The first executive block is the User
Interface. It gets NoC parameters in the form of various data
values and text file listing various NoC cores. The User Interface
converts the input data into core graph and core switch graph of
NoC for visualization, and finally it generates a file which can be
used for NoC simulation in the next block. The NoC Simulation
block consists of all the hardware descriptions of NoC modules
in the form of SystemC and these SystemC modules are utilized
for producing output results.
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The inputs to main functions of the NoC Simulator are the
files, which are prepared by the user and the User Interface
program, as well as libraries of power and area parameters. The
NoC power and chip area details are embedded in the simulator.
The NoC Simulation block uses these inputs to synthesize the
final NoC structure and then start the simulation process. After
the completion of a simulation run, it produces the area, power
and performance results of the NoC.

3.1. Hardware Modeling of NoC Simulator

Our simulator is divided into a number of NoC modules that
represent various areas of functionality of an NoC design. To
better understand the structure of simulator, we start from a basic
NoC design that is depicted in Figure 2. The design consists of a
source module, a traffic generator, sink (receiver) and router
modules. These four modules are connected by communication
links. The source, sink and traffic generator modules play the
role of SoC cores in FAANOS. We use only one traffic
generator. However, the source, sink and router module can be
more than one and are identified by unique ID numbers. Each
module contains two basic elements such as port and process
[17]. Ports allow communication among the modules. Processes
are the main computational elements that execute concurrently.

The source module and traffic generator play the role of a
source core. The source module uses a particular message
structure, which provides the design access to packet definition
and methods associated with the packet. A message consists of
packets where a packet is formed by varying number of flits. The
header flits are needed to route data from a source node to a sink
node. The header flit has various routing information as depicted
in Figure 3.
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The main purpose of the source process is to make packets
depending on the packet specification and traffic pattern. The
source process is invoked by a clock event. It calls two
subroutines depending on the chosen traffic pattern. The pseudo
code for the source process is given in Figure 4. The traffic
generator is responsible for dictating the traffic pattern to the
source modules. The pseudo code in Figure 5 shows the
operation of the traffic generator process.

void source:: func/()

{

define and Initialize local variables;
//continue till current time count is < SIM NUM
while( sim count++ < SIM NUM )

wait(); //when current time is higher than

//SIM NUM*LOAD do nothing//
if ( sim _count > (SIM NUM*LOAD) )
goto exclude;

//read the acknowledgment port of the router
ack = (bool)ach in.read() ;
//when the router does not accept packet

if (ack) ++flt_drp; //when router accepts packet
else {
Handle the burst messages;
Read the input port of traffic generator;
Save it as destination ID;
Generate packet related to destination ID;
Send packet;
Keep records of total time and number of packets
Initialize for next clock cycle;
}
}

sc_stop () ;

Figure 4: Pseudo-code of the source module

Two types of routers, regular and irregular are employed in
our simulator. The regular router has five input ports and five
output ports as shown in Figure 6. It is suitable for regular NoC
topologies such as Mesh or Torus. It can execute all the routing
techniques employed in FAANOS. However, the irregular router
has flexible input and output ports depending on the application
specific topology of the system. It is modeled to have a
maximum of 16 input/output ports to realize and simulate
irregular topologies. The router module accepts packets from the
source (or other router modules) and passes them to the sink (or
other router modules). When the router receives a packet, it puts
the packet to a channel. The address of the channel is determined
by the incoming packet. The router checks whether the channel is
full or not. If the channel is full, the router sends back an
acknowledgment (bit) to the source module requesting to hold
any further packet transfer via that the channel. The router also
waits for acknowledgment from the receiver module after it
sends a packet to the receiver. The router consists of some lower
level modules such as FIFO, crossbar, arbiter and demux which
are connected by signals together as illustrated in Figure 6.

The sink module accepts packets from the router and keeps
record of the number and time of incoming packets. It plays the
role of a sink core. When the sink module successfully receives a
packet, it sends an acknowledgment (bit) back to the router
module.

// traffic_gen.cpp
void traffic_gen:: func()
if (fixed) { // traffic is fixed
Send destination address of each source to
related output port for fixed pattern;

if (UNIFORM) { // traffic is uniform
Randomly chooses a destination address from
the current available destination addresses;
Generate traffic pattern;
Send the destination address of each source
to related output port based on uniform pattern;

if (LOCALITY) { // traffic is locality

Consider a source;

Randomly Choose locality coefficient number;

Determine neighbours related to the chosen
locality coefficient number;

Randomly choose a destination neighbor;

Generate traffic pattern;

Send destination address of each source to

related output port for locality pattern;

}

Figure 5: Pseudo-code of traffic generator

The arbiter module handles all the methods in a router such
as routing and switching algorithms. When a packet is injected to
an input port of router, it is directed by a demultiplexer to the
first free virtual channel (FIFO buffer). The FIFO module sends
the routing address of packet to the arbiter as a request event.
When the arbiter detects that event, it reads the destination
address and checks whether the output address is free or not. If it
is free, then the packet is sent via that output port. The arbiter
then disables a specific bit in the variable, free output meaning
that no data can be sent through that output port. This bit stays
disable until the next clock event. When a clock event is invoked,
the arbiter first checks that whether any output port gets free. If it
is free, the arbiter enables the free output bit related to that
output port. Enabling this bit means that the related output port is
ready to operate. The 2nd duty of the clock event is to pay
attention to any unanswered requests. If there is any request, the
arbiter checks its requested output port. If it is free, then packet
can go through that port. If the output port is not available, the
request will stay until the next clock event. Figure 7 lists the
pseudo code of arbiter process.
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void arbiter :: a func()
while( true ) {
wait () ;
initiate the local variable in each while loop;
if ( aclk.event()) { // Start of clock event
Check any free output port ;
Check any remaining request for output;
If output of a reserved input is free,
If line probe, execute its function;
If output of header-flit in VC is free, send flit;
}
else {
if (reg0.event())
Read the header;
If ODD_EVEN, execute its function;
If line probe, exdcute its function; // [9]
If the output port is free, start to send packet;
Reserve output port until all flits pass;
}
} // while
} // end of a_func()

send flit;

{ // Start of request events

Figure 7: Pseudo-code of arbiter process

The demultiplexer module consists of a virtual channel
allocator module and a switch module. It receives packet from a
sender module via the input port of the router. The module
(demux) directs the packet to a FIFO module depending on the
vcid value of the header flit. Each input port of a regular router
has at least a FIFO buffer module or a maximum of four FIFO
modules. When the demux module directs a flit to the input port
of FIFO module, the FIFO module writes the flit into the tail of
its buffers. When the flit emerges at the head of FIFO, a request
containing the route information is sent to the requesting port of
arbiter module for the desired output port. After the arbiter
module performs arbitration, it sends a grant signal to the grant
port of FIFO module that leads to the activation of the read port
of FIFO. The pseudo-code of Figure 8 depicts the functionality of
FIFO process.

When a flit is injected to the input port of crossbar module,
the packet from the input port (config) is sent from the router via
the output port. The pseudo-code of Figure 9 is an event
condition for the input i0.

void buf fifo :: £ func() {
while( true ){
wait () ;

if (wr.event()) { // start reading incoming packets
read flit from the input port;
store in the tail of FIFO ;
send back the new condition of FIFO ;
send a request to Arbiter ;

}

if (grant.event()) { // start sending the packets
send flit to crossbar module;
send back the new condition of FIFO;

}

if (bclk.event()){ // clock event

send a request to arbiter module;
}

} // while

} // end of buf fifo

Figure 8: Pseudo-code of FIFO process
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The main function is the top-level entity that ties all the NoC
modules together and provides the clock generation and tracing
capabilities. The pseudo code of main simulator module is shown
in Figure 9 where we instantiate each lower level modules and
connect their ports with signals to create an NoC design for
simulation.

3.2. Power Modeling

We propose an analytical method for estimating the power of
NoC routers and interconnection links by changing the router
architecture, ports and link widths. We use the architectural
models of different NoC components as well as the parameters
and analytical equations, which are established in these models to
obtain the power estimates. Power dissipation in CMOS circuits
can be classified into two sources: static (or leakage) and
dynamic (or switching) power dissipation. The static power
dissipation is currently one of the main factors limiting the
performance of a computer system [7]. It is formulated as P
=Lgatie- Vaa Where I, 18 the static current and V,, is the supply
voltage. The static power dissipation in each clock cycle is
formulated as:

P =Luic Vad'F e where Fy is the clock frequency

We can calculate /. for each component of the NoC system

depending on the architectural and technological parameters of
each component of the system. However, V,, and F.; are the
input parameters which should be specified by users in network
simulation. For estimating leakage power, an architectural
approach is proposed by Kahng et al [10] where the leakage
current have almost a linear relationship with the transistor width
and formulated by:

Ileak(is S) = W(la S) . (Isub(is S) + Igate(i: S)) (1)

where

e Iy and I are sub-threshold and gate leakage currents
per unit transistor width for a specific technology,
respectively;

e W(, s) refers to the effective transistor width of
component 7 at state s.

The dynamic power is estimated based on switching power
dissipation and it is formulated by:

1
P=-a.C.V%q. fou 2

// main noc.cpp

int sc_main(int argc, char *argv[]){

Define or Declare local signals, variables, clocks;

Instantiate traffic-generatore, sources,
sinks and routers;

Connect traffic generatore’s ports, sources’ ports,
sinks’ ports and routers’ ports to lacal signals;

Trace file instractions;

sc_start () ; // start simulation

Close trace files; // stop simulaton

if (REG_TRAFFIC) // regular traffic

Calculate the performance, power and area metrics;

if (IRREG_TRAFFIC) // irregular traffic

Calculate the performance, power and area metrics;

Figure 9: Pseudo-code of main function



where

e o is the switching activity and C is switch capacitance;

e V4 and fy, are the supply voltage and clock frequency
respectively.

Now by decomposing the NoC circuit into many equivalent
RC circuits and using simple RC equations, we can estimate the
total dynamic power.

3.3. Gate Level Modeling

We describe the gate level modeling of different NoC
modules such as arbiter, FIFO, crossbar and demux. In spite of
different routing strategies in the arbiter, three types of arbiters
namely matrix, round robin, and queuing are modeled in
FAANOS. Here, we just explain the matrix arbiter, which is
introduced by Dally and Towles [8]. For an arbiter with R
requesting entities, one can represent its priorities by an RXR
matrix. With one in row 7 and column j, if a requester i has higher
priority than another requester j, and zero otherwise. Then
this method requires R(R —1)/2 matrix elements (flip-flops).
Equation 3 represents the relation between the nth grant and the
requests.

8rm=reqny - Zi:tn(re%-ml(n—l)) (3)

where
® req; is the iy, request and gr, is the ny, grant;
® mj is the iy, row and jy column element in the matrix.

Our FAANOS simulator models the crossbar and demux in
terms of matrix and multi-tree. Figure 10 shows a gate level
structure of normal matrix crossbar with 7 input ports, O output
ports and W port width in bits. The connectors are shown as the
transmission gate.
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Figure 10: A typical matrix crossbar

The matrix crossbar consists of several horizontal input wires
over vertical output wires, plus transmission gate or tri-state
buffers at the cross-points. These tri-state buffers allow each
input port to be electrically connected to any output port [13].

The FIFO buffer is modeled in two types of SRAM and
register bases in our FAANOS simulator. Figure 11 shows the
gate level structure of a normal SRAM.

3.4. Derivation of Gate Level Parameters

We need two characteristics Iy, and Iy for each basic
circuit components to estimate the static power. Iy, and Iz for
each component are per micron of gate width as listed in Table 1
for different input state s at 25°C and for a high V. These
characteristics are derived from HSPICE and 65nm foundry
SPICE model with corresponding technology parameters.

FAANOS can calculate the I, for each module by employing
Equation 2 as the structure of each NoC module is hierarchically
composed from these circuit components.

Table 2 lists the capacitance notations needed for the basic
circuit components used in the gate level models of NoC
modules to estimate the dynamic power. The actual values of C,,
C4 and C,, are computed by CACTI [15]. Transistor sizes can be
the user-input parameters or automatically determined by Orion
2.0 [10] with a set of default values from CACTI and applied
with scaling factors from WATTCH [6]. Sizes of the driver
transistors, e.g. crossbar input drivers are computed according to
their load capacitance. For each component, we first describe its
regular structure in terms of architectural and technological
parameters. We then proceed with a detailed analysis and derive
parameterized capacitance equations by taking into account both
the gate and wire capacitances. The capacitance equations are
then combined to estimate switching activity to determine energy
consumption per component operation.

4. TRANSACTIONAL POWER

The transactional power estimation is the power consumption
when an NoC is operated by a specific traffic pattern. In this
case, we estimate maximum static power for all the components
and dynamic power for only those components that switch during
simulation. When data travel between NoC modules, each
module keeps records of its transactional characteristics. These
records facilitate the collection of transaction statistics and assist
the integration of power results in FAANOS. When a simulation
is stopped, the traversal energy (the energy consumed at each
transaction in a module) related to each module is multiplied by
the transactional record of that module and then accumulated,
which result in the energy consumption of NoC design.
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Figure 11: SRAM-based FIFO buffer with a read & write

Table 1: Ly, & Igy for each basic Circuit Component

component S L (A) Loate (A)
NMOS 0 1.097e-07 4.622¢-09
PMOS 1 3.172e-07 3.291e-09

INV 0 1.097e-07 4.622¢-09

1 3.172e-07 3.291e-09

NAND2 00 7.098e-08 3.549e-09
01 1.134e-07 5.103e-09

10 1.342¢-07 1.194e-08

11 1.766e-07 1.625e-08

NOR2 00 1.971e-07 6.701e-09
01 1.034e-07 4.343¢-09

10 1.412¢-07 8.048¢-09

11 7.245¢-08 6.448¢-09

With the entrance of a flit, the router keeps a record of
incoming flit in Ny, A router covers all the links events except
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the links connected to the local sinks. Therefore, a router should
also keep a record of incoming flit only for the exit link
connected to a sink. Now, the dynamic energy for passing header
flits inside a router during simulation can have the following
equation.

EdynJ'outer = ]vlinloElink +]ch al -Evcial +NWI"EWI'1'[8+
Nrcad 'Eread+Narb~Earbiter + Ncrossbar~ Ecrossbar (4)

where

° El/nlo Evcﬁalr Earbi/er and Ecroxsbar are the traversal energy of
link, VC allocator, arbiter and crossbar modules
respectively when a transaction happens in a module.

o FE.ieand E,., are the traversal energies when a write and
read transaction happens in a FIFO module.

®  Niwk Noe ab Nuvier a0d N0 are the incoming records
of link, 7VC_allocator, arbiter and crossbar modules
respectively.

® Ny and N,y are the records when a write and read
transaction happens in a FIFO module.

Table 2: Capacitance Notations

Notation Description

Cg(T) Gate capacitance of transistor or gate T

Cd(T) Drain capacitance of transistor or gate T

Ca(T) Only applicable if 7'is an inverter.
Ca(T)=Ce(T)+Cd(T)

Cw(L) Capacitance of metal wire of length L

Cin_cnt Input node capacitance of a crossbar connector

Cout cnt | Output node capacitance of a crossbar connector

Ccetr_cnt | Control node capacitance of a crossbar connector

CFF Switch capacitance of a flip-flop

CFC Clock capacitance of a flip-flop

As the arbitration and VC (Virtual Channel) allocation
happen only for header flits, the dynamic energy for passing the
body flits in a router during the simulation is calculated by
employing Equation 5.

Edynimuter: Nlink . Elink + Nwr . Ewrite +
Nread . Ereud + N, crossbar + Ecru.xsbw‘ (5)

Each router in the NoC accumulates the dynamic energy for
the flits, which has passed through it. The following equations
show the process of calculating the total power of NoC network,
P, network-

Edyn: Z?:in Edyn_router ®

Poyn = % X feik
Pstatic = (Pleak (V_al) + Pleak(FIFO) + Pleak(ar) +
P]eak(cr) + Pleak(l)) m>n
Pnetwork = den + Pstatic (6)

where

e mxn, N, fu. and Eg, are the number of routers, the
number of simulation cycle, the NoC frequency, the total
dynamic energy of network during simulation time
respectively;

® Py and Py, are the total dynamic and static power of
NoC network;

° Pleak(vfal)a Pleak (FIFO)’ Pleak (ar)a Pleak (Cr)and Pleak (1)
are the static power of VC allocator, FIFO, arbiter,
crossbar and Link modules respectively.
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S. EVALUATION FLOW MODEL

We propose an evaluation flow model by which the
effectiveness of an NoC system is evaluated in terms of
performance, power and area metrics by using NoC simulator.
One should first configure the network and traffic pattern and
then apply different traffic patterns to evaluate an NoC as
depicted in the flow chart of Figure 12. The NoC evaluation flow
may be iterative until a user is satisfied. There are two loops in
the flowchart. The first one is partially implemented in the User
Interface program and the rest in the NoC Simulator. In this step,
the user need to specify the configuration of NoC system in terms
of size and kind of message, topology, switching and routing
mechanism, FIFO buffer and virtual channel. These
configurations are specified in terms of NoC parameters and a
core text file. The parameters are requested via the console
screen by the User Interface program that a user should include
into the program. The core text file is a file produced from the
core graph of NoC application. The output of User Interface is a
file that is used as the main file of NoC Simulation program
(Figure 1). In the second loop, the user cannot change the
topology of NoC, but other configurations can be changed. These
configurations are saved in the main SystemC file,
main_noc.cpp. The user can change them and run the NoC
Simulation iteratively to gain the best results of NoC.

6. TEST CASE STUDY

These analytical investigations demonstrate not only the
capability of our simulator but also the challenges in response to
satisfying the NoC constraints. This investigation is presented on
2D topology. We have selected the test cases based on several
criteria such as the number of routers ranging from 9 to 36 and
the number of virtual channels (one and four). The goal is to
study the impact of NoC size and number of virtual channels on
the power and area of NoC for torus topologies. Specifically, we
are interested in the architectural and transactional power and
area breakdown. We assumed a 90nm technology and a clock
frequency of 1GHz. The area occupied by cores is fixed and
assumed to be 9 mm®. The other specifications of NoC are as
follows.

e Number of simulation=1000 cycle
Depth of FIFO =2
Traffic pattern = Uniform
Size of each packet = 5 flits
Routing strategy = XY mechanism
Size of each flit =31 bits

The simulation results after synthesizing different torus NoCs
are reported in Figures 13, 14 and 15. Each histogram is divided
into two zones: one virtual channel (VC=1) and four virtual
channels (VC=4). Each zone contains four bars and each bar is
for different NoC sizes such as 3x3, 4x4, 5x5 and 6x6. We
choose different NoCs to show the effect of NoC sizes on NoC
metrics. Since the NoC size determines the number of routers in
a 2D topology, NoC with size 3x3 has 9 routers and more for
other mentioned NoCs. Therefore, we expect a variation with
slope of 9, 16, 25, 36 (or 1, 1.8, 2.8, 4) between the metric results
of these NoCs.

In Figure 14, it can be easily grasped that the router area is a
function of NoC size in both VC=1 and VC=4 zones. It is logical
because routers have fixed size (5%5) for torus topology, and the
NoC size has a linear relation with the number of routers.
Therefore, the slope of increase in the router area follows the
NoC size in both zones of Figure 14. However, the slope of
increasing for the link area is not the same as that of router area.
This is because the area of link is a function of the total link
length that is estimated based on the SoC area, and the SoC area
consists of the area occupied by the cores and the routers.
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Figure 12: NoC evaluation flow

The area occupied by the routers is a function of the NoC size,
but the area occupied by cores is assumed to be fixed and 9 mm?.
Due to this fixed area, the slope of increasing for the link area
will not be the same as the router area in both VC=1 and VC=4
zones. We have also observed the same issue in the architectural
power graph.

In Figure 15a, the router architectural power is a function of
the NoC size for both VC=1 and VC=4 zones. It make sense as
the router size (5x5) is fixed, and the NoC size has a linear
relationship with the number of routers. Therefore, the increasing
slope of the router architectural power follows the NoC size in
both zones. However, the increasing slope of link architectural
power is not similar to the router area. As mentioned before, this
is because the cores area is fixed and it is not a function of the
NoC size. In the case of transactional power graph, the behaviour
of bars are different for VC=1 and VC=4 zones. In the case of
VC=4 zone shown in Figure 15b, when the routers have 4 virtual
channels (for a 2D topolgy), there is no contention in the NoCs
and the throughputs are almost 100% as depicted in Figure 13.

The transactional power is a function of the rate of router and
link transactions in NoC. The rate of router transaction when
throughput is a function of NoC size. In other word, when NoC
size increases, the number of cores will increase and more
transactions occur in NoC, so when throughput is 100%, the
router transactional power will be a function of the NoC size.
However, the same issue as mentioned before is happen for link
transactional power. The constant value of core size changes the
corresponding relation between the link transactional power and
the NoC size. In this case, the slope of increasing in transactional
power bars resembles the architectural power in VC=4 zone of
Figures 15a and 15b.

In the VC=1 zone of Figure 15b, there is no relationship
between the transactional power and the NoC size. This can be
justified by studying the throughput simulation results depicted
in the bar graphs of Figure 13 where the average of throughput is
less than 100%. In this case, we cannot estimate the behaviour of
NoC transactional power. In other words, in a deterministic (XY)
routing strategy, the higher throughput represents the higher rate
of transaction that leads to larger amount of transactional power
consumption by the NoC. For example, the 6x6 bar is less than
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the bars of other bars because the corresponding bar in Figure 13
is the least.

Two other points highlighted by the results shown in Figures
14 and 15 are the inconsiderable static power and considerable
link power and area. The static power component in the
architectural power is very small that can be ignored in our
design. However, in the case of transactional power especially in
the VC=1 zone, it can be a considerable amount in compared to
dynamic power. Therefore, it needs to be available in NoC
design. The link characteristic is important because sometimes it
includes a significant amount of NoC power. For example, in
Figure 15a, the link architectural power contributes over one-
third of each bar representing the overall power.

By considering all the mentioned points, we can conclude
that the architectural power consumption and the area occupied
by the network are the functions of the structural specification of
an NoC, which is the size and number of virtual channels used in
2D (Torus) topologies. However, NoC transactional power is the
functions of the structural and transactional specifications of
NoC including size, number of virtual channels and throughput.
The transactional power is very close to realistic power of NoC
that can be helpful to determine the bottleneck of NoC power,
and the architectural power determines the maximum power that
is consumed in the NoC. This will be very helpful in the early
stage of NoC design. For example, in the case of four virtual
channels (VC=4), which represents a guaranteed contention free
NoC, the average area occupied by the routers is 9.1 times higher
than the average area for one virtual channel (i.e. VC=1).
However, the variation in architectural power is much lower. For
example, the average power in the VC=4 zone is 1.7 times more
than the average power in the VC=1 zone. This can provide an
insight to the designer that by increasing virtual channels from
one to four will result in more cost of chip area than the power.

7. CONCLUSIONS

The structure of FAANOS has been analyzed in this paper.
We used SystemC, which is a C++ class library with some
dedicated language constructs, to create cycle-accurate models of
the hardware part and a user interface program. The hardware
modeling of every NoC module was described in detail. We
demonstrated the developing of our NoC simulator from a simple
network to a more complex and complete NoC simulator. In
terms of power and area, we have presented an analytical model
for the power and IC area of different modules of an NoC such as
FIFO buffer, arbiter, crossbar, and link. We have introduced
different state of the art architectural model of each NoC module
and then decomposed them into gate level and presented the
technological and analytical parameters accompanied by the
related formulation. We also described how the transactional
power metric of an NoC are calculated in FAANOS. At the end,
an evaluation flow model for early design of NoC has been
presented.
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