
Combining Discrete Event Simulations and Event Sourcing

Benjamin Erb
University of Ulm

Institute of Distributed Systems
benjamin.erb@uni-ulm.de

Frank Kargl
University of Ulm

Institute of Distributed Systems
frank.kargl@uni-ulm.de

ABSTRACT
Discrete event simulations (DES) represent the status quo
for many different types of simulations. There are still open
challenges, such as designing distributed simulation archi-
tectures, providing development and debugging support, or
analyzing and evaluating simulation runs. In the area of
scalable, distributed application architectures exists an ar-
chitectural style called event sourcing, which shares the same
inherent idea as DES. We believe that both approaches can
benefit from each other and provide a comparison of both
approaches. Next, we point out how event sourcing concepts
can address DES issues. Finally, we suggest a hybrid archi-
tecture that allows to mutually execute simulations and real
applications, enabling seamless transitions between both.

Categories and Subject Descriptors
I.6.0 [Computing Methodologies]: Simulation and Mod-
eling—General ; D.2.11 [Software]: Software Engineering—
Software Architectures

General Terms
Design, Performance

Keywords
Discrete event simulation, event-driven architecture, event
sourcing

1. INTRODUCTION
For both simulation systems and enterprise applications,

the current values of its entities represent essential proper-
ties of the system over time. In discrete event simulations
(DES), state is maintained for all simulated entities. Ex-
ecuting new simulation events incrementally modifies the
simulation state and eventually generates a final outcome.
Given a correct simulation model and simulation program,
we can deduce results for the simulated domain and explore
potential consequences.

potential consequences.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

In enterprise applications, application state contains the
current values of all domain objects and is usually modi-
fied by various triggers such as user interactions or internal
occurrences. Enterprise systems read and modify state by
accessing and altering values, in most cases backed by a
database system. Within the last years, an alternative style
for application architectures appeared and has been increas-
ingly gaining attention, especially within distributed and
cloud environments [1]. This style, called event sourcing,
does not directly modify state by altering values. Instead, it
stores the sequence of events that trigger state transitions.
Event sourcing is actually sharing the same inherent idea
as DES: an execution model represented by a sequence of
events.

In this position paper, we show that it is promising for the
simulation community to have a closer look at event sourc-
ing and related concepts. We believe that both approaches
can benefit from each other: Simulation engines can ap-
ply concepts related to event sourcing that might enhance
the development process of simulations, facilitate debugging,
and improve simulation analysis. Distributed simulation en-
gines can adopt architectural concepts from event sourcing.
On the other hand, enterprise architectures embracing event
sourcing can take advantage from the decades of discrete
event simulation research, such as parallelization efforts.

The remainder of this paper is structured as follows. First,
we introduce event sourcing and related concepts for appli-
cation architectures. Then we compare event sourcing and
DES by elaborating similarities and pointing out differences.
Next, we consider opportunities and challenges when com-
bining both approaches. We then propose a hybrid archi-
tecture that we are currently working on and finally give an
overview on our future work.

2. EVENT SOURCING & CQRS
Event sourcing is an architectural style that is used in-

creasingly in large enterprise applications. As it is often
combined with another concept—Command Query Respon-
sibility Segregation (CQRS)—we will briefly introduce both.
Then we consider typical distributed architectures that ap-
ply both styles together.

2.1 Event Sourcing
Fowler [6] summarizes event sourcing as “captur[ing] all

changes to an application state as a sequence of events”.
Hence, event sourcing does not apply the traditional concept
of state handling in sequential, imperative programming: to
alter values by replacing them. Altering an entity’s state in

e10 e11 e12 e13 e14

(a) An unmodified event sourcing sequence with the five
events e10 . . . e14. Executing the sequence of all events
yields the current application state.

e10 e11 e12 er e13

(b) An event sourcing sequence e10 . . . e13 with a retroac-
tively injected event er between e12 and e13

e10 e11 e12 e13 e14

(c) An event sourcing sequence e10 . . . e14 where event e12
has been retroactively removed from the log

e10 e11 e12 e13

b12 b13 b14

(d) An event sourcing sequence e10 . . . e14 where a branch
b12 . . . b14 has been created retroactively after event e11

Figure 1: An unmodified event sourcing log that captures application state by storing sequences of events is shown in the first
illustration. The other three illustrations demonstrate potential modifications of the given event sourcing log, retroactively
changing application state or computing varying alternatives.

this way only captures the last state of the entity. Storing
every single state-changing event instead might look like a
considerable overhead at first. In fact, this style brings along
several advantages as long as it is strictly adhered. Thanks
to the event log, the system is not only aware of the final
state of an entity, but also of it’s entire history.

Using the event log, an application state can be rebuilt
completely just by re-executing the stored sequence of events.
It also allows us to recreate any prior state of the applica-
tion by executing events until a certain point in the past.
Interestingly, we can also alter the past by modifying events
or event meta data, by removing events from the past or
even by injecting new events into the past, as shown in Fig-
ure 1. A new computation of the modified event log yields
the resulting alternate final state.

But not only the event log can be modified in event sourc-
ing. Also the corresponding application code that handles
events can be retroactively modified. Code changes include
bug fixes, the introduction of new features or even additional
code that executes time-dependent logic [6].

One could argue that such an architecture might be inef-
ficient, because application states can only be obtained via
the event logs. The architecture can be augmented using
a secondary database that maintains application state in a
more traditional way. In this case, events are not only ap-
pended to the event log, but also the state of the database is
instantly updated. Note that this database can be volatile
(e.g. an in-memory database), as its state can always be
recomputed using the event log. Furthermore, snapshots of
this secondary store can be persisted as snapshots that sum-
marize the sequence of all preceding events. Snapshots are
also necessary for fast re-executions after modifications of
events or code. In this case, the last snapshot before the
modified event is restored, and only the subsequent events
are rerun.

2.2 Command Query Responsibility Segrega-
tion

In software engineering, Command-query Separation is
a principle that promotes the differentiation of operations
reading state and operations writing state. Command Query
Responsibility Segregation (CQRS) is a concrete style fol-

lowing this principle [7]. A general advantage of this style
is the reduced complexity of operations, as methods that
tangle command-like operations (i.e. write) and query-like
operations (i.e. read) are now discouraged. An architectural
result is a separated model for commands and queries within
the application.
When this separation is extended to the database, differ-

ent stores may be used for readable data and for updates. In
that case, both stores can be decoupled entirely and man-
aged independently.

2.3 Applying Event Sourcing & CQRS in Dis-
tributed Event-driven Architectures

Event-driven architectures represent a popular solution
for large-scale, distributed applications. This is mostly due
to their non-monolithic design, their loose coupling of com-
ponents, and their inherent asynchronous style, as illustrated
by Hohpe [11]. Individual components of an event-driven ar-
chitecture publish events and/or subscribe for events within
the system. Event consumers process single events or se-
quences of events and may update internal state and publish
new events. Some components apply a concept called (com-
plex) event processing [13], where the component analyzes
the stream of events inside the system and even matches
patterns of events against complex rules.
Event-based systems can apply various styles for dealing

with stateful applications. One of the options is the use
of event sourcing and CQRS, as shown in Figure 2. Per-
sistence and durability are guaranteed through event sourc-
ing. All occurring domain events of the application are cap-
tured and logged into an event store. A secondary, read-
optimized database maintains current the application state.
In terms of CQRS, commands which represent state changes
are added to the event log and also applied to the sec-
ondary database for updating. Queries do not interact with
the event log. Instead, queries always use the secondary
database for read operations.
The events may be propagated asynchronously to the sec-

ondary database. Such a weak coupling represents some
kind of eventual consistency within the application: Not
all commands that change states are instantly affecting the
readable values. But after some time, values are also guar-

Application
Interface
(CQRS)

Command
Model

Query
Model

Current
State

Event
Log

Commands

Queries

Events

State Updates
(Events)

Read-
only
Access

Figure 2: A section of an architecture applying event sourc-
ing and CQRS. State changes are captured as events, added
to an event store that logs all events, and forwarded to a sec-
ondary database maintaining the current application state.

anteed to be updated for reading requests. A weaker con-
sistency is obviously not appropriate for all potential use
cases. Many applications can actually handle it though,
when eventually consistent behavior is already considered
as part of the application design, and not only as an artifact
of the database [10].

Another advantage of this design is the potential, but
not mandatory separation of state handling. When strong
consistency is required, the event store and the secondary
database can be tightly coupled and guarantee visibility of
changes. On the other hand, a decoupled design allows to
fine-tune performance and scalability. For instance, applica-
tions challenged with highly concurrent read requests can be
easily elastically adapted by scaling up the secondary stores.

There is an increasing number of libraries and frameworks
that support the event sourcing and CQRS style in appli-
cations. For instance, the Eventsourced1 library enhances
the distributed computing framework Akka (Scala/Java) by
applying event sourcing. Jdon2 is a Java application frame-
work for applications using event sourcing and CQRS. Mi-
crosoft has published a complete reference how to apply
event sourcing and CQRS in their Azure cloud environ-
ment [1].

3. COMPARING EVENT SOURCING AND
DES

Discrete event simulations (DES) represent the most com-
mon type of simulation in many domains, including net-
works, logistics, business processes, and various other do-
mains with processes. As seen in the previous section, event
sourcing represents a basic style for persistence in event-
driven architectures, mainly used in distributed, large-scale
enterprise applications.

1https://github.com/eligosource/eventsourced
2http://www.jdon.org/

In both approaches, events represent a fundamental prin-
ciple: the progress of state over time. The current state of
the execution is derived from all previous events. In a dis-
crete event simulation, events are used to model real-world
occurrences and are created and handled as part of the sim-
ulation program. In event-driven architectures, events are
either created by external triggers (e.g. user requests) or
by internal components, and handled by components of the
application. Here, events are either predictable or unpre-
dictable external stimuli the system reacts to or they are
part of the internal application model itself.
While a discrete event simulation generates a determin-

istic simulation of potentially indeterministic real-world en-
vironments, event sourcing captures and stores events from
the inherently non-deterministic real world in a determinis-
tic and ordered manner. Both approaches yield a serialized
timeline, where occurring events are ordered precisely us-
ing (logical) time stamps. For discrete event simulations,
serializability is a key to validity and correctness. Only de-
terministic test runs are reproducible and enable repeatable
executions. Ordering is also imperative for event sourcing,
because otherwise the re-executions of an event log might
yield diverging final states. Discrete event simulations as
well as systems with event sourcing heavily benefit from par-
allelization methods. Such methods process multiple inde-
pendent events in parallel, but still yield the same states as
a serial execution does. This is also known as the causality
constraint [8].
The architectural styles event souring and CQRS both

have a strong relation to the software engineering approach
domain-driven design (DDD). DDD encourages an explicit
modeling of the application domain and the interaction of
software developers and domain experts. Furthermore, im-
plementation details are often abstracted from higher level
domain concepts using domain specific languages (DSLs).
This is very similar to the simulation domain, where the
simulation engine, the simulation model and actual simula-
tion program are also separated. In both cases, low-level
implementation details are hidden from the application de-
veloper resp. simulation developer, who uses a DSL or other
forms of abstractions. The underlying model is designed
and implemented by experts that know both the domain
and the architecture of the simulation/application. The ac-
tual application architecture or simulation engine is again
developed differently with a focus on performance and other
non-functional properties.

4. OPPORTUNITIES & CHALLENGES
We now focus on opportunities for simulation engines in-

corporating event sourcing concepts. Then we assess oppor-
tunities for a hybrid engine, running both applications and
simulations.

4.1 Opportunities
We identified three main opportunities when applying event

sourcing as a main concept of a simulation engine: (i) sim-
plifications of interactive development and debugging, (ii)
improvements in simulation analytics, and (iii) possibilities
for distributed simulation architectures.
Current simulations environments provide limited support

for developers when compared to other software develop-
ment environments. Especially complex, large-scale simula-
tions are difficult to debug and test due to very long exe-

cution times. At worst, simulation executions are abruptly
aborted after hours of correct execution because of a single
bug in the simulation code. There are guidelines how to
trace errors and debug simulation models [12]. The most
popular method is the creation of logging traces during exe-
cution and apply post-mortem trace analyses [5]. However,
long executions times of large simulations render this ap-
proach cumbersome in practice. A direct and interactive
development is not possible anymore, when the time be-
tween test runs, trace analysis, bug fixing and re-execution
diverges.

We believe that event sourcing can help by making the
internal event list of a simulator explicit to the developer
through the event store. As we have seen in Section 2,
event sourcing generally allows the modification of the event
stream as well as modifications of the components handling
the events. In doing so, simulation developers can explicitly
analyze the captured events and are not required to create
their own traces. Furthermore, simulation code can be mod-
ified in a paused simulation execution, or it can be retroac-
tively modified and re-executed. When periodical snapshots
of the event log have been created during the first run, a
developer can jump to any event in the log, reestablish the
corresponding simulation state and continue the execution
without re-executing the prior simulation. Developers can
also jump through the execution step-by-step (i.e. event-
by-event on the event log and line-by-line within handling
code). Stepping with introspection of values is an intuitive
way of debugging sequential code. Depending on the event
logging scheme, even an efficient reverse execution of events
becomes possible: A developer restores a certain simula-
tion state by selecting an event from the timeline, and then
steps back in time by removing preceding events. The idea
of reverse execution is not new for simulations. However, it
has only been used as a rollback mechanism for optimistic
parallelization efforts [2]. Reverse execution helps the devel-
oper to understand how unexpected simulation states have
emerged.

Apart from simulation code modifications, the event log
itself can also be altered. This allows the retroactive modi-
fication of events, of event meta data, or even of the simu-
lation progress (branching). As the list of events in discrete
event simulations are hidden from developer, this represents
a novel approach towards interactive execution, debugging
and parametrized execution. Alternative executions can be
easily evaluated by retroactively injecting new events into
the simulation event log and compute alternative outcomes
on a branch. Single events caused by simulation program-
ming errors can be corrected. A parametrized execution of a
simulation also fits well into this model. A common timeline
is computed, and branches with different event parameters
split up the execution.

An explicit event log also pays off for debugging, when
methods known from complex event processing (CEP) are
used. Stepping through large simulation programs for de-
bugging may be inefficient and cumbersome. A developer is
rather looking for certain simulation states or certain state
transitions. CEP engines provide query mechanisms for de-
tecting complex event patterns. CEP query languages are
similar to SQL, but additionally support temporal condi-
tions. We believe that such CEP queries on event logs are
a natural way of expressing breakpoints for interactive sim-
ulation debugging.

The explicit trace of all events captured in the event store
allows the usage of a large set of concepts and tools for ana-
lyzing simulation results that original came from other event
domains. The aforementioned CEP queries can also be used
for simulation analysis and monitoring. Such an analysis
component processes all occurring events on-line during ex-
ecution of the simulation and yields additional results sep-
arate from the final state of the actual simulation. There
is also active research on the explorative analysis of event
traces with visual tools like Zinsight [4].
Major drivers for distributed simulations are the reduction

of simulation execution time and the support of larger sim-
ulation models. Apart from traditional clusters, cloud en-
vironments are increasingly regarded for distributed simula-
tions. While distributed simulation systems mainly focused
on PDES concepts for the efficient execution of distributed
simulations, the cloud has raised awareness for additional
challenges of distributed simulation environments, such as
fault-tolerance, heterogeneity and reliability [9]. Event sourc-
ing does not suggest a new parallelization scheme for speed-
up in distributed simulations. However, the event sourcing
style provides some suggestions that can be mapped to simu-
lation environments in the cloud. The separation of core ap-
plication, event store, secondary database with current state
and additional components allows easy distribution. The
event store mainly requires large amounts of disk space, and
efficient sequential access. The secondary database storing
the current state is ideally stored in memory, hence should
be placed on dedicated nodes with much RAM. The event
store with event logging represents a native journaling mech-
anism. In case of a crash, a restart of the entire simulation
can be avoided. Furthermore, the event store and secondary
database can be replicated: the simulation can still continue
to run even if one of the store instances fails.

4.2 Challenges
The crucial point of these considerations are causal re-

lations between events and how they enable efficient re-
executions. Otherwise, the fast re-execution of event logs
is only possible by restoring snapshots and applying sub-
sequent events. When event logs are modified (e.g. injec-
tion/modification/deletion of events), or when event han-
dling code is modified, the system must be able to min-
imize the computational overhead to recompute the final
state. We believe that this represents the major research
challenge when applying the event sourcing style to discrete
event simulations. The underlying problem is related to gen-
eral causal relations in distributed computing [15] and vec-
tor clocks [14]. Recent advances in programming models
for event-driven applications like EventWave [3] are promis-
ing to simplify the detection of event relations, but actual
implications for event sourcing are still to be determined.
We argue that additional causality information must be ap-
pended to the events in the simulation code and that explicit
tagging by the developer as part of the programming model
is more promising than purely automated mechanisms.

4.3 Towards a Hybrid Architecture
A particular advantage of a hybrid architecture for both

simulations and applications arises when the actual appli-
cation under simulation can again be implemented using
event sourcing. For instance, business process engines or en-
terprise applications can be simulated using DES, but also

implemented with an architecture using event sourcing. A
hybrid system combining both approaches allows not just
the use of most of the application code for both simulation
and real applications with a unified programming model. It
also uses the same set of tools for development, debugging,
monitoring, and analyses.

Most importantly, this architecture allows the seamless
and instant transition from real-world, status quo applica-
tion state to a simulated progression of the future. For the
aforementioned domains, this is a real improvement when
it comes to performance evaluations, predictions, and other
kinds of analyses. Instead of exporting the current state of
the application and importing it into an external simulation
environment, a hybrid architecture can directly use the ac-
tual event sequence, create branches and execute simulations
of the futures in the background. For example, a “branch”
of a running business process system can be created while
the systems continues to run. In the background, the branch
can now be used as a starting point for a simulated execu-
tion with a behavioral model of users. At the same time,
the original execution continues. At any time, comparisons
of the actual event log and the logs of branched simulations
can be performed.

5. FUTURE WORK & CONCLUSION
We have seen that discrete event simulations and appli-

cations using event sourcing are duals. A discrete event
simulation imitates a real-world scenario over time by gen-
erating and handling events step-by-step. An application
taking advantage of the event sourcing style uses a sequence
of events to map the real world into a persistent, computa-
tional model.

Event sourcing has some interesting properties that we
think are promising for discrete event simulations. By cap-
turing and storing all events and not just the future events
plus the current state, simulations runs can easily be paused,
inspected, and stepped through both forwards and back-
wards. With the help of additional snapshots of the sim-
ulation state and the event log, already executed simula-
tions can be efficiently restored at any point in time of the
simulation. Most notably, event sourcing allows retroactive
changes to the log of events as well as to the code that han-
dle the events. Mapped to discrete event simulations, the
event log does not only make the simulation navigable, it
also enables very interactive development, debugging and
parameterized branching.

We do not consider event sourcing as a silver bullet for
discrete event simulations. Some issues, such as efficient
parallel execution schemes for DES, are not addressed in
particular. But we believe that obvious objections against
an event sourcing style in simulations, namely large amounts
of disk space for event logs and large amounts of memory
for fast access to the current simulation state during execu-
tion, are not valid for modern cloud settings. Storage for
event logs, memory optimized instances for current state,
and computing-heavy instances for the simulation event ex-
ecution are available on pay-per-use models. In return, sim-
ulation development, simulation debugging and simulation
execution can become a more interactive, more explorative,
and more comprehensible, thanks to the explicit event log.

Our current design of a hybrid architecture combines event
sourcing with a traditional discrete event simulation mech-
anism. We already identified the main challenges for taking

advantage of the new opportunities: The execution time of
retroactively changed event histories must beat the execu-
tion time when starting a new simulation run from scratch.
Hence, causal relations of events must be tracked and unnec-
essary re-computations should then be avoided. We plan to
implement a prototype of our current design soon and eval-
uate the practicability of event sourcing for simulations in
practice. According to our road map, we will then address
the integration effort of complex event processing mecha-
nisms such as queries and event stream visualizations.

6. REFERENCES
[1] D. Betts, J. Dominguez, G. Melnik, F. Simonazzi,

M. Subramanian, and G. Young. Exploring CQRS and
Event Sourcing - A Journey Into High Scalability,
Availability and Maintainability with Windows Azure.
Microsoft Developer Guidance, 2013.

[2] C. D. Carothers, K. S. Perumalla, and R. M.
Fujimoto. Efficient optimistic parallel simulations
using reverse computation. ACM Trans. Model.
Comput. Simul., 9:224–253, 1999.

[3] W.-C. Chuang, B. Sang, S. Yoo, R. Gu, C. Killian,
and M. Kulkarni. Eventwave: Programming model
and runtime support for tightly-coupled elastic cloud
applications. In Proceedings of SOCC’13, 2013.

[4] W. De Pauw and S. Heisig. Zinsight: a visual and
analytic environment for exploring large event traces.
In Proceedings of SoftVis’10, 2010.

[5] T. Dreibholz and E. P. Rathgeb. A powerful tool-chain
for setup, distributed processing, analysis and
debugging of omnet++ simulations. In Proceedings of
SimuTools’08, 2008.

[6] M. Fowler. Event sourcing.
http://martinfowler.com/eaaDev/EventSourcing.html,
2005.

[7] M. Fowler. CQRS.
http://martinfowler.com/bliki/CQRS.html, 2011.

[8] R. M. Fujimoto. Parallel discrete event simulation.
Commun. ACM, 33:30–53, 1990.

[9] R. M. Fujimoto, A. W. Malik, and A. J. Park. Parallel
and distributed simulation in the cloud. SCS M&S
Magazine, 3, 2010.

[10] P. Helland and D. Campbell. Building on quicksand.
In CIDR, 2009.

[11] G. Hohpe. Programming without a call stack -
event-driven architectures. Technical report,
eaipatterns.com, 2006.

[12] D. Krahl. Debugging simulation models. In
Proceedings of the 37th conference on Winter
simulation, 2005.

[13] A. Margara and G. Cugola. Processing flows of
information: from data stream to complex event
processing. In Proceedings of DEBS’11, 2011.

[14] F. Mattern. Virtual time and global states of
distributed systems. In Parallel and Distributed
Algorithms, 1988.

[15] R. Schwarz and F. Mattern. Detecting causal
relationships in distributed computations: in search of
the holy grail. Distrib. Comput., 7:149–174, 1994.

