
VMSimInt: A Network Simulation Tool Supporting
Integration of Arbitrary Kernels and Applications

Thomas Werthmann, Matthias Kaschub, Mirja Kühlewind, Sebastian Scholz, David Wagner
Institute of Communication Networks and Computer Engineering (IKR), University of Stuttgart, Germany

simutools@thomaswerthmann.name, simutools@mkaschub.de,
mirja.kuehlewind@ikr.uni-stuttgart.de, sebastian.scholz@ikr.uni-stuttgart.de,

research@davidwagner.de

ABSTRACT
Integrating realistic behavior of end systems into simulations
is challenging since the mechanisms used in protocols and
applications such as Transmission Control Protocol (TCP)
are complex and continuously evolving. In this paper,
we present VMSimInt, a new approach which allows the
INTegration of arbitrary Operating Systems (OSs) and ap-
plication code into an event-driven network SIMulator by
using Virtual Machines (VMs). In contrast to existing ap-
proaches which integrate parts of OS kernels, our approach
uses unmodified OS kernels, which eases maintenance and
provides additional flexibility. By controlling the time and
all I/O of the VMs, our approach guarantees that external
factors such as the performance of the host do not influence
the simulation outcome, so that simulations are exactly re-
producible. We validated our system against the Network
Simulation Cradle (NSC) by simulating the same models
and comparing the system behavior. In addition, we show
that our approach provides sufficient performance for usage
in day-to-day research.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling Techniques;
I.6.8 [Simulation and Modeling]: Types of Simulation—
Discrete Event

General Terms
Performance, Measurement

Keywords
Network Protocols, TCP Simulation, Virtual Machines

1. MOTIVATION

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SimuTools ’14 Lisbon, Portugal
Copyright 2014 ACM X-XXXXX-XX-X/XX/XX ...$15.00.

contrast to emulation, simulation has the advantage that it
avoids any external influence. Due to the complexity and
rapid development of protocol and application behavior, ab-
stract models often do not reflect the characteristics of real
systems well enough.

The Transmission Control Protocol (TCP) dominates the
traffic behavior in today’s Internet and thus is an impor-
tant factor in the investigation of new proposals. Therefore
providing realistic Operating System (OS) behavior such as
TCP in packet-level simulations is one of the key challenges
for network simulation. In addition, when evaluating TCP
mechanisms like congestion control, it is important to use re-
cent TCP implementations, because, for example, using an
initial TCP congestion window of 10 and Proportional Rate
Reduction (PRR) strongly influences congestion control be-
havior. Most simulation environments either re-implement
protocol standards or re-use code fragments from OS ker-
nels. However, the networking code of modern OSs evolves
fast. Thus these approaches demand high maintenance ef-
fort to keep the implementation up-to-date. Furthermore,
validation of derived models is difficult and often omitted.

Additionally, Internet traffic is strongly influenced by ap-
plication behavior which evolves even faster. Instead of
modeling applications it is often desired to use real appli-
cation code in a simulation environment (potentially on top
of realistic TCP behavior). For example, the loading time
of a web page strongly depends on the number of parallel
TCP connections and their interaction in the network.

In this paper, we present VMSimInt, a new approach for
packet-level simulations which is based on the integration of
Virtual Machines (VMs) into the simulation environment.
Thus it allows using unmodified kernel code, OS mechanisms
or existing applications within the simulation. The main ad-
vantage regarding simulation of transport protocol behavior
is that our simulation approach can use any OS without any
patching, given that it can be run on the virtualized hard-
ware platform. Compared to emulation-based approaches
which connect real computer systems or several VMs on one
computer to a simulated network, VMSimInt provides full
isolation from the host system. The time perceived by a ker-
nel running in a VM is controlled by the simulation frame-
work and completely independent of the host time. This
simulated time does not proceed while the VM’s processor
is operating, so the performance of the host computer or
the virtualization tool does not influence the simulation re-
sults. This allows us to reproduce exactly the same behavior
with multiple simulation runs without any influence, e. g., of
other processes running on the host system.

Network research strongly relies on tests, emulations, or
simulations in a controlled environment to perform studies
on new protocols, network or application mechanisms. In

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy

We implemented VMSimInt as an add-on for the IKR Sim-
Lib [11], a freely available library for event-driven (network)
simulation written in Java. However, it could also be used
by other event-driven network simulators such as ns-3 [10].
VMSimInt uses the QEMU software [2] for hosting VMs.
We patched the QEMU software such that the simulation
environment fully controls the virtual hardware clock of the
VM as well as all input and output processing. Moreover,
a helper program inside each VM allows the simulation en-
vironment to access the socket Application Programming
Interface (API) of the VM and thus to generate TCP traf-
fic. During simulation, packets sent by any VM are not for-
warded to the host’s network but are handled and forwarded
within the simulated network, which is modeled in the sim-
ulation environment. This framework allows defining simu-
lation scenarios consisting of simulation entities, e. g., links
with defined delay and bandwidth and switches, as well as
functions provided by arbitrary OSs and applications.

The remainder of the paper is organized as follows: Sec-
tion 2 provides an overview over different approaches to in-
tegrate transport protocol behavior into network evaluation
tools. Section 3 describes general concepts of our approach
and the implementation of VMSimInt. In Section 4 we vali-
date VMSimInt against the NSC and present a performance
evaluation regarding memory usage and runtime.

2. APPROACHES FOR TCP RESEARCH
In this section we give an overview of approaches used in

existing tools for research on transport layer mechanisms.

2.1 Abstract Model
In literature a wide range of models for TCP exist, e. g.,

modeling the sending rate of a TCP instance for stable sce-
narios. Analytical models are very limited as they usually
focus on single aspects of TCP, e. g., a certain congestion
control algorithm [14]. They often do not reflect real sys-
tems well due to complexity and rapid development of TCP.
Moreover, these models are too abstract for event-driven,
packet-based simulations: they do not provide exact tim-
ings and do not reflect the reactive ACK-clocking of TCP.

2.2 Emulation based on Host Clock Time
Network emulation tools connect a modeled network to

real computer systems. This approach provides realistic
endsystem and transport protocol behavior, but has a strong
dependency on the real time clock of the used computer sys-
tems. Moreover the emulation runs are possibly influenced
by other processes that run in parallel, e. g., background ser-
vices of the OS. Several approaches for network emulation
have been proposed that use real TCP traffic in a simulated
network [9, 4, 15].

It has also become common practice to use VMs for em-
ulation as this saves hardware resources, also for other use
cases than TCP research. Some of these approaches scale
the time basis of the VMs, so that it becomes possible to
emulate a high performance network with many VMs on a
host system with lower performance. However, there is still
a dependency on the real clock time. Mininet [7] and Mod-
elNet [17] are emulators where the time in the VM can run
slower, but is still coupled with the wall clock time of the
host system by a fixed factor. Time Jails [6] is an approach
that manipulates the time basis of VMs to use processing
resources for large scale network emulation more efficiently.

As stated in [7] by the inventors of Mininet-HiFi, perfor-
mance isolation is an important issue: The performance of
the host system and the computation load of background
jobs should not influence the simulation results. Neverthe-
less, ideal isolation cannot be achieved if the VMs still in-
terface the host OS for timing or network communication.
So, results are not reliably and exactly reproducible.
Emulation techniques can provide more realistic results

than a simulation model, but have a higher complexity in
operation and maintenance and do not provide reproducible
results.

2.3 Protocol Implementation
Another approach to get realistic TCP behavior is to em-

bed a full implementation of the protocol into the simulation
program. This can either be achieved by an independent im-
plementation of the standards, or by re-using code of exist-
ing OSs. Often the latter results in more realistic behavior,
since the widely used real system implementations do not
always comply with the standards.

2.3.1 Independent Implementation
A simulation tool can be enhanced by just adopting se-

lected function code from the protocol to exactly cover the
needed behavior. This can be a new implementation or
based on code from existing OSs. Like other simulators,
the native TCP stack of ns-2, a commonly used network
simulator allowing for TCP packet-level simulation, aims to
re-implement relevant functionalities of TCP. Even though
ns-2 is used and maintained by a large community, it can
hardly be validated as the implemented functionality does
not cover the complexity of a real TCP system [8, 20]. Be-
sides, the process of (manually) adopting protocol changes is
time consuming. [18] goes one step further and describes an
extension to ns-2 that allows to integrate certain complete
files of the Linux kernel with a well-defined interface, the
congestion control modules, directly into the simulation.

2.3.2 Adaptation of the Network Stack of a Real OS
To address this problem more generally, the Network Sim-

ulation Cradle (NSC) [12, 13] provides an automated frame-
work converting the network stack of selected versions of
some OSs like Linux or FreeBSD such that it can be used
as a library in user space programs. Further, the NSC de-
fines an interface for network simulators to interact with a
network stack library. The NSC concept has been fully inte-
grated in ns-3 which is the successor of ns-2. This approach
heavily modifies the kernel code and uses internal interfaces
between the protocol stack and the remainder of the kernel.
Manual adaptation is required to apply the framework to
other (new) kernel versions. Currently the latest version of
the Linux kernel that can be used by NSC is 2.6.26, which
was released in 2008. Besides, the NSC only supports IPv4.
Recently, Direct Code Execution (DCE) Cradle [16] was

proposed, which also supports Linux version 3.4. As NSC,
DCE Cradle extracts the network stack from the kernel code.
By using DCE the authors automated the process of mak-
ing several instances of kernel code usable in user space.
While only minor changes to the kernel code itself where
performed, a wrapper is introduced to access kernel internal
function calls. As NSC, DCE bases on internal kernel inter-
faces which might be subject to change. Thus to update to
a new kernel version, typically there is some manual work

required to adapt the wrapper to changed kernel structures.
Similar approaches were proposed for other network sim-

ulators, e. g., OMNeT++ [3].

2.3.3 Integration of VMs Running Full OS Kernels
Another approach is using virtualization technology to in-

tegrate behavior of real systems into simulations. The UML-
Simulator [1] modifies UserModeLinux for this purpose. Due
to its virtualization choice it only supports integrating Linux
kernels and still needs some changes to this kernel. The lat-
est supported kernel is 2.6.11. SliceTime [19] is a more re-
cent approach to integrate VMs into simulation based on the
Xen hypervisor. Due to the choosen concept of connecting
the VMs with the simulation, this approach has timing and
also bandwidth inaccuracies. The NetWarp [21] simulator
is based on Xen, too. It aims to support multicore VMs
on multicore hosts. Therefore the Xen internal scheduler is
modified in a way that the internal times of the VMs are
aligned close to the simulation time. Even if the simulation
specific scheduler can reduce timing inaccuracies, they can
not be eliminated completely.

The approach presented in this paper is based on inte-
grating unmodified kernels and applications into simulations
by using a modified virtualization tool. The virtualization
tool completely decouples the VMs from the host system
by controlling the clock and all I/O. Therefore, in contrast
to emulations using VMs, like Mininet and ModelNet, the
performance isolation in this approach is ideal by design.

Compared to the integration of network stacks, the run-
time overhead of VMSimInt is increased by including a whole
operating system. However, our approach, other than NSC
and DCE Cradle, does not rely on internal interfaces of the
OS kernel. Instead, we interface the kernel via the emulated
hardware of the VM and via a userspace program running
inside the VM. Both hardware support and user space APIs
are known to be stable for a long time (e. g., current OSs
still run on old hardware, and old programs still run on cur-
rent OSs). This significantly eases maintenance, as we can
use new kernel versions without any adaptations. These in-
terfaces do also allow our approach to support closed source
OSs. Although not realized yet, the behavior of the Mi-
crosoft Windows network stack could be included without
changing the OS code at all.

In this section we classified existing approaches for packet-
level simulation of transport protocols. While emulation-
based approaches are not independent of the host system,
simulation approaches which re-use existing code instead
come with higher maintenance cost. Therefore, we chose an
approach which is based on integrating VMs into simulation.
In the following section we present a concept that fully de-
couples the VMs from the host system, and thereby provides
reproducible results in simulations. Although this approach
has more processing overhead than approaches that only in-
clude the relevant part of the code, it is easy to maintain
and simple to extend to new kernel versions.

3. CONCEPT AND IMPLEMENTATION
Our framework (Figure 1) is based on an event-driven

simulation program, which models the network and is con-
trolled by a simulation calendar. To use OS and application
code, this simulation program interacts with multiple VM
instances. The framework allows interactions with the user

userspace interaction

network data

VMVM

simulation
program

network model

VM

Figure 1: Overview of the architecture.

space of the VMs, it intercepts I/O to forward network data
to the simulation program, and it couples the time of the
VMs to the simulation calendar.
Our framework consists of three components: an extended

QEMU running as a separate process for each VM, a QEMU
Adapter class in the simulation program that handles all
communication with a QEMU process, and a relay program
running in the user space of each VM to provide direct access
to the socket API of the OS instance.
Figure 2 shows these components. The QEMU Adapter

encapsulates the VMs in the simulation. The Adapter in-
terfaces the virtual kernel on two layers. The lower layer
(1) interacts with the extended QEMU to control the clock
of the VM and to intercept I/O (e. g., the network inter-
face). The upper layer (2) interacts with the relay program
to make the socket API of the kernel accessible from the
simulation program. When the simulation program triggers
a TCP transmission, it uses the upper layer connection to
write data to a TCP socket, which causes the kernel to write
Ethernet frames to the network interface. The lower layer of
the Adapter forwards these to the simulation environment,
where the simulated network topology might forward them
to another VM instance.
Subsection 3.1 outlines the QEMU extensions as well as

the lower layer of the QEMU Adapter. Subsection 3.2 de-
tails the mechanism to relay the socket layer API into the
simulation program, consisting of the relay program and the
upper layer of the QEMU Adapter.

3.1 Integrating QEMU into Simulation
There are many VM solutions available. We based VM-

SimInt on QEMU [2], because it is Open Source software,
it supports many host and guest platforms, it is widely
used and it supports performance features such as Kernel-
based Virtual Machine (KVM) and Kernel SamePage Merg-
ing (KSM). Further, the software architecture of QEMU is
well suited for our approach: All virtual hardware compo-
nents are split into a virtual device and a device backend.
The virtual device makes the emulated hardware component
available to the OS running in the VM. The device backend
realizes the functionality of the virtual hardware. In the un-
modified QEMU, the backend would connect the VM to a
device of the host computer. We modified this to connect
the guest OS to the simulation program instead.

3.1.1 Extended QEMU
We extended QEMU in two aspects: Clock control and

I/O redirection.
The simulation program controls the system time of the

VMs, i. e., the virtual hardware clocks seen by the guest
OS instances. Thus when the guest OS reads the time, the
current simulation time is returned, and when it programs
a timer, an event is posted to the simulation calendar.

Any network interface of the VMs is connected to a logical
link of the simulated network topology. Thus the simulation
program handles Ethernet frames written by the guest OS
according to the simulation scenario and the simulation pro-
gram may send frames to the guest OS. In addition, the VMs
provide a bidirectional interface to relay data between the
simulation program and programs running in the user space
of the VMs. This can be used to control applications run-
ning in the user space of the VM. It is used by the relay
program as explained in Subsection 3.2

Clock Control.
We differentiate two sources of time: wall clock time and

simulated time. The wall clock time is the real-time as seen
by the host OS. Event-driven simulations do usually not
rely on wall clock time, but define a simulated time. The
simulated time is independent of the wall clock time. During
the execution of an event (an arbitrary task in the simulation
model), the simulated time does not proceed. Time spans
without events are skipped, so the simulated time jumps
from event to event. In average, the simulated time can
either run faster by skipping time intervals without events or
slower if the computational complexity is high (e. g., solving
an optimization problem for a routing decision or computing
channel models in radio networks).

Standard VMs are synchronized to the wall clock time,
i. e., the timing of the guest OS matches that of the host
system. In contrast, in our approach we align the time of
the VM to the simulated time to maintain the benefits of an
event-driven simulation. Software running inside the VMs
only sees the simulated time.

The time inside the VMs is provided by a virtual clock
chip. This virtual clock chip is a High Precision Event
Timer (HPET) that offers sub-microsecond resolution and
also allows the OS to omit fixed millisecond ticks (e. g., Linux
dyntick). The OS can use the HPET interface to read the
current time and to program timer interrupts. We inter-
cepted the virtual clock chip so that reading the current
time returns the simulated time instead of the wall clock
time. In addition, whenever the OS programs a timer inter-
rupt, this is converted to an event which is scheduled in the
simulation calendar. At the scheduled point in (simulated)
time, the simulation executes the event. Thereby, it wakes
up the VM and triggers the programmed interrupt.

To provide reproducible simulation results, we emulate the
VM with an infinitely fast processor (in terms of simulated
time). Each activity of a VM is a result of a simulation
event (e. g., network I/O or expiry of a timer, maybe cre-
ated by the VM’s OS itself). The simulation wakes up the
respective VM and updates the time of the VM to the cur-
rent simulated time. Then the simulation program provides
the required I/O and runs the virtual CPU until it becomes
idle. Subsequently the VM is paused and the simulation pro-
ceeds by executing the next event. While the virtual CPU
is running, the simulated time does not proceed. Thus nei-
ther the simulation program, nor any other QEMU process
performs any task during this time. By strictly serializing
the operations of the simulation program and the VMs, we
trade simulation speed for simulation accuracy. Our ap-

guest kernel

QEMU Adapter

Relay Program

Extended
QEMU

socket obj.

socket obj.

2

data and
control

1

socket socket

net if

IK
R

 S
im

Li
b

2

rogPy ProgPy PRelay Program

Ethernet frames

net if

Figure 2: Architecture of the QEMU Adapter.

proach guarantees that timing and results of the operations
inside the VMs can not be influenced by the host’s environ-
ment (e. g., programs running on the host computer).

Input and Output Redirection.
For network simulations, input and output mainly refers

to packets sent and received over a network interface. To
integrate unmodified applications, it may also include key-
board and mouse events, the graphics output, and serial or
parallel connectors. We created special QEMU backends for
the most relevant of these devices. These backends forward
all output from the VMs to the simulation program, and
allow the simulation program to send input to the VMs.

3.1.2 QEMU Adapter
As described, the QEMU Adapter provides an interface

to deliver and receive Ethernet frames to and from the sim-
ulated network. It also provides a method to send data to
a virtual console and a callback mechanism to process any
console output. This can be used to log kernel output of
the VM (caused by calls to printk), which may greatly help
when evaluating internal kernel states. (Although not de-
picted in Figure 2, the upper layer interaction described in
Subsection 3.2 is also realized via such a virtual serial inter-
face.) In addition, the Adapter could be extended to provide
access to other functions, like requesting screenshots (e. g.,
to record a video) and typing keys at the virtual keyboard.
In addition, the QEMU Adapter is responsible for the

management of the VMs. When the simulation program is
started, it spawns a separate QEMU process for each in-
tegrated VM. During simulation, it communicates with the
QEMU processes through a separate pair of pipes for each in-
stance (not shown in the figures). The control of the VM and
the input and output data of the device backends are multi-
plexed over this connection. When the simulation stops, all
QEMU processes are terminated.

3.2 Relaying Operating System Interfaces
When studying functions and protocols implemented in

the kernel, it is convenient to allow the simulation program
accessing the user space API of the kernel. This concept al-
lows integrating creation of all events, e. g., to open a TCP

connection, as well as all measurement and logging actions
in one scenario. In addition, it eases the use of the system
for studies of transport protocol behavior by allowing to im-
plement the whole simulation model, including models of
network and applications, in one program. This can be used
as an alternative to run real applications inside the VMs.

As shown in Figure 2 (interface (2)), the upper layer of the
QEMU Adapter makes the user space API of the kernel ac-
cessible from the simulation program. To do so, the Adapter
interacts with a small relay program, which is running in the
user space of the guest OS. Its focus is on relaying socket
I/O, e. g., listen or connect, and configuring the guest ker-
nel, e. g., setting sysctl values.

We implemented our relay program in C to run on top of
the Linux kernel. However, it should be portable to other
OSs without much effort.

3.2.1 Relay Program
When a VM boots, a custom init script is started, which

performs basic configuration of the kernel. After configura-
tion, the init script starts the relay program.

The relay program reacts on socket events and control
messages from the QEMU Adapter by calling epoll_wait

in a loop in a single thread. Currently, only TCP (over
IPv4 and IPv6) is implemented, but the interface can be
easily extended, e. g., to cover Stream Control Transmission
Protocol (SCTP). The supported functions for socket man-
agement and socket I/O are listed in Table 1. Some calls
are combined to reduce overhead. We currently do not sup-
port ioctls and handling of out-of-band data. In addition
to the socket interface, the relay program supports reading
and writing files, which can be used to configure the kernel
via the sysctl interface in the procfs.

To call a function, the simulation program sends messages
over a virtual serial interface. The messages transfer all data
which is required to perform the function call (a constant
identifying the function and the function arguments). Each
function call results in a message sent back to the simulation
program carrying the return code, the error number, and the
function output. The simulation program can distinguish
multiple open sockets by their file descriptors.

The relay program also detects events signaled by the ker-
nel using the socket API and notifies the simulation program
about these. Such events are:

• a new connection is established to a listening socket
• a socket becomes ready for reading
• a socket becomes ready for writing

To avoid overhead, the reaction to some events is currently
hardcoded in the relay program (i. e., a new connection is
accepted or the data is read).

As the VM does only execute the relay program, its re-
source requirements are small. Nevertheless, the VM must
be equipped with enough memory to accommodate the con-
figured TCP buffers (which may be tens of megabytes for
large bandwidth delay products).

3.2.2 QEMU Adapter
The QEMU Adapter provides an interface to the simula-

tion environment and abstracts the details of the communi-
cation with the relay tool. This consists of requests from the
simulation program for functions to be called and a callback
mechanism which allows the simulation program being noti-
fied about events in the VM’s userspace, e. g., data becomes

socket(), bind(),
and listen()

create a socket, bind it to a local port
and start listening for connections

socket() and
connect()

create a socket and start to connect
to a remote IP and port

accept() accept a connection request on a lis-
tening socket

close() close a connection / listening socket
read() read data from a socket
write() write data to a socket
getsockopt() read a socket option
setsocktop() set a socket option
getsockname() read local ip and port
getpeername() read remote IP and port

Table 1: Functions supported by the relay tool

link

Pcap
meter

sender
object

receiver
object

queue
QEMU

Adapter
QEMU

Adapter
link queue

Figure 3: Exemplary simulation model.

available for reading. All functions related to a socket are
bundled in a socket object.
When another function calls the Adapter to perform a

function call inside the VM, it blocks and the Adapter sends
a request message to the relay program. The Adapter gives
the VM time to run the virtual CPU until that becomes idle
(as described above). During that time, the relay program
performs the function call and sends a reply message. When
the virtual CPU becomes idle, it is guaranteed that this reply
message has arrived at the Adapter. The Adapter uses the
reply to construct the return value for the upper layer and
returns control to the calling function.

3.3 Embedding the QEMU Adapter
into the Simulation Environment

This subsection describes the simulation environment and
explains how VMSimInt is integrated into a simulation
model.

3.3.1 The Simulation Environment
The used framework for event-driven simulation is the

freely available IKR SimLib [11]. It is implemented in Java
and provides generic building blocks for arbitrary event-
based simulations. The simulation is based on a calendar
that advances the time and maintains events to trigger sim-
ulation entities. Entities are connected by unidirectional
interfaces and exchange information by transmitting mes-
sages over these interfaces. The IKR SimLib provides a
set of entities for handling and manipulating messages to
support network simulation (e. g., queues, traffic generators,
link and switch models). Furthermore, it comes with wide
support for statistical analysis.

3.3.2 Usage of the QEMU Adapter
Figure 3 shows an exemplary simulation model. A sender

transmits to a receiver through a bandwidth-limited link
preceded by a queue. The VM and the relay tool are en-

capsulated in the QEMU Adapter and not visible to the
simulation program directly.

Sender and receiver objects interact with the socket inter-
face of the QEMU Adapter. They contain abstract models
of application behavior. Such a model can, for example, be a
generator which creates blocks of data with random size and
interarrival time. For each of these blocks, the sender ini-
tiates a new TCP connection to the receiver and transmits
the data therein.

The QEMU Adapter wraps Ethernet frames sent by the
kernel into SimLib messages. It forwards these messages to
the simulation model. The assembly of the simulation model
defines the further handling and manipulation of each frame
(e. g., queues and links in the previous example).

Our framework provides a so-called PcapMeter. This me-
ter allows to capture Ethernet frames coupled with time
stamps representing the simulated time. The meter can be
attached to arbitrary measurement points in the simulation
model. The recorded packet traces can then be analyzed
with any tool supporting the pcap format, e. g., wireshark.

3.3.3 Exemplary Internal Message Flow
In this subsection, we present the information flow be-

tween the components on the sender side in the previously
presented scenario. We regard the transmission of one data
block from the sender object to the receiver object.

On initiation, all entities are created and connected to de-
fine the flow of messages in the simulation. For each QEMU
instance a kernel image is started in its VM and configura-
tions are performed (e. g., sysctl values are set). The sender
object is parameterized with the receiver’s address (IPv4 or
IPv6) and port.

At some point in time in the simulation the application
model in the sender decides to send a block of data. The
flow of messages from now on is shown in Figure 4.

The sender object first creates a socket object as depicted
in the QEMU Adapter in Figure 2, passing the configured
destination. It registers a callback at the socket object to be
notified whenever the socket state changes, i. e., it becomes
writable or readable.

The QEMU Adapter translates the socket-and-connect re-
quest to a function call message which it sends via QEMU
to the relay program. On reception of that message the
extended QEMU resumes the VM and forwards the mes-
sage to the relay program. The relay program creates a
non-blocking socket in the VM. It also executes the connect
system call with appropriate address family, destination and
port. The file descriptor of the new socket is sent back to
the QEMU Adapter. This file descriptor is used as identi-
fier in all socket related communication between the relay
program and QEMU Adapter. After the relay program has
completed the processing of the function call message, it calls
epoll_wait to wait for events on the socket or messages on
the control interface.

The connect triggers the kernel to set up a TCP connec-
tion by sending a SYN message to the destination. This
frame is captured by the extended QEMU and forwarded to
the simulation framework that handles it according to the
setup of the simulated network model.

If everything works fine, after some (simulated) time a
response with SYN and ACK set is received by the ex-
tended QEMU. Upon reception of this message the ker-
nel switches the state of that connection to connected and

sender
object

QEMU &
adapter

relay
program

Linux
kernel

Msg is forwarded
& processed in

simulation model
Receiver replies

Frame carrying Syn+Ack

Frame carrying Syn
Forwarding socket fd

Connect to IPv4 /

write() system call

return bytesWritten

write(sendArray)

Forward bytesWritten

createClientSocket()

Frame(s) carrying data

Sends frames
depending on
CC algorithm,

received frames,
MTU etc

return java socket obj

Msg is forwarded
& processed in

simulation model
Receiver replies

IPv6 address

TriggerMsg: fd writable
wakeup callback

R
ep

ea
te

d
un

til
 a

ll
da

ta
 is

 tr
an

sm
itt

ed

socket() system call

connect() nonblocking

return value = 0

epoll_wait()

return fd

system call

epoll_wait() returns

fd writable

system call

Figure 4: MSC of internal messaging in case of send-
ing data. For simplicity, the QEMU Adapter and
the extended QEMU are represented by just one el-
ement.

the epoll_wait returns signaling that socket being writable
now. The relay program forwards this information towards
the socket object where the callback is fired.
The sender object then writes data via the QEMU

Adapter and the relay program into the socket buffer. For
that purpose, the relay program executes write to write the
data to the socket and signals back the amount of success-
fully written data. The sender object continues writing until
the buffer is full or the message is written completely.
With these system calls, an independent process in the

Linux kernel running in the VM is triggered, which will
transmit this data according to its algorithms. In case of
TCP, these algorithms mostly depend on when the kernel
receives frames from the virtual network interface, e. g., ac-
knowledgments from the receiver, and on timeouts. At some
time, the kernel is ready to accept more data from the socket,
wakes up the relay program and signals the socket being
writable again. This process of the relay program writing to
the socket and the kernel independently transmitting TCP
packets is repeated until there is no more data to send.

4. EVALUATION
The evaluation of VMSimInt is split into three parts. In

the first part, we compare our approach to the ns-3 simulator
to validate that it is implemented correctly. In the second
part, we compare the behavior of different Linux kernel ver-
sions. In the last part, we evaluate the runtime performance
of VMSimInt.

4.1 Validation against NSC
To validate our implementation, we can either compare it

to a real setup or to another simulation framework. Using

client router A router B server
rate 1GBit/s,
delay 5ms

rate 1GBit/s,
delay 5ms

rate 5MBit/s,
delay 5ms

switch server
rate 10MBit/s,
delay 50ms

client 1

client N
unlimited

rate, no delay

a)

b)

Figure 8: a) Model for the comparison with ns-3
b) Model for the performance evaluation

a real lab setup is the soundest approach; however it suffers
from inaccuracies (measurement accuracy, influence of OS
schedulers, etc.) and would require us to model the process-
ing time in the simulation. As it is not our goal to model
these effects, we compare our approach with a simulation
setup with NSC in the ns-3 framework. As a third candi-
date of the comparison, we set up the IKR SimLib to use
the NSC. Note that, as we use an unmodified Linux kernel,
it is not necessary to validate the behavior of the TCP im-
plementation. Instead, we aim to verify the correctness of
the integration of VMs into the simulation environment and
the QEMU patches.

We use a simple network model for the comparison, which
is configured equally in all simulators. The model is depicted
in Figure 8 a). Two hosts are connected via a chain of
three bi-directional full duplex links. The middle link is the
bottleneck with a data rate of 5MBit/s, the outer links are
configured to 1GBit/s. Each link introduces a one-way delay
of 5ms, so the resulting Round Trip Time (RTT) is 30ms.
On each side in front of the bottleneck, a drop tail queue
with a capacity of 18750 bytes is installed. The Maximum
Transmission Unit (MTU) is 1500 bytes. For simplicity of
configuration, we used the P2P link model of ns-3. This
adds two bytes of header to each IP packet. We configured
the IKR SimLib models to resemble the same packet sizes.

Over the chain of links, we transmit data in a single TCP
stream from client to server. We start the connection at time
0 and transmit as much data as possible (i. e., the sending
rate is not application limited).

To achieve the same behavior of the TCP stacks, we used
the Linux kernel version 2.6.26 in all three setups, as that
is the latest one supported by the NSC. We configured the
kernels in both simulators with the sysctl values listed in
Table 2. We configured buffer sizes statically, because by
default they are configured dynamically depending on the
available memory. We found that enabling moderate rcvbuf
resulted in (virtual-)machine-dependent behavior of the
three TCP stacks, so we turned it off. To allow an exact
comparison, we switched off the support for dynamic timers
in our QEMU Adapter, as those are also not supported by
the NSC.

We record the transmitted packets at the sender side in a
trace and record the congestion window of the sender using
a getsockopt call. Figure 5 shows the congestion window
over time at the beginning of the TCP transmission. On
the left, it can be seen that the congestion window increases
exponentially during the slow start phase. After packets
have been dropped, the sender decreases the window size
and continues in congestion avoidance mode. The lines in

net.ipv4.tcp congestion control reno
net.ipv4.tcp no metrics save 1
net.core.rmem max 32768
net.ipv4.tcp mem (equal values for min,
default, max)

10485760

net.ipv4.tcp rmem (equal values for min,
default, max)

10485760

net.ipv4.tcp wmem (equal values for min,
default, max)

10485760

net.ipv4.tcp moderate rcvbuf 0

Table 2: Configuration of the Linux kernel used for
comparison of our approach with ns-3.

the plot match well, meaning that the packets are sent at the
same time in all three simulators. Minor deviations exist,
however they are not visible in this time scale.
Therefore, we also analyzed the relative TCP sequence

number from the recorded trace. Figure 6 shows the se-
quence number over time at the point where 10 minutes
have been simulated. Each point in the plot represents a
packet sent by the sender. The spike in the sequence num-
bers results from a single packet being retransmitted due to
an earlier drop. The deviations have added up to a difference
of about 240μs. Closer investigation has shown that the dif-
ference increases approximately linearly with the simulated
time. As the values of the simulations with NSC+ IKR Sim-
Lib and VMSimInt are still the same, and only NSC+ns-3
differs, we assume that these deviations result from differ-
ences in the simulation model or simulation framework (e. g.,
the precision of the calendar).
Our validation simulations have shown that VMSimInt

provides results which aggree to those of NSC+ns-3 with
sufficient accuracy.

4.2 Comparison of Different Kernel Versions
To demonstrate the differences between the TCP imple-

mentations in different Linux kernel versions, we performed
simulations with VMSimInt and two different kernels. The
simulation scenario is the same as described above, except
that the queue size is set to 40 kBytes. The compared kernel
versions are version 2.6.26 from July 2008 and version 3.9
from April 2013. During that time, multiple modifications
have been made to the TCP code. One of those is the in-
crease of the initial congestion window from 3 packets to 10
packets (proposed in 2010 by [5]). To separate this effect
from other changes, we patched the older kernel to allow
configuring the initial congestion window via a sysctl.
Figure 7 shows the congestion window over time. Dur-

ing the slow start phase, the kernels with an initial conges-
tion window of 10 packets behave identically and start more
quickly than the unmodified 2.6.26 kernel. However, after
0.3 s of simulated time, the behavior of those two versions
also differs. This is caused by PRR, which is only imple-
mented in the newer kernel and prohibits that the conges-
tion window is more than halved. During the further sim-
ulation, the plot shows that the congestion control behaves
differently in the latest kernel. Although we did not fur-
ther investigate the differences of the kernels, it is clear that
it is important to use TCP behavior of current kernels for
simulations of small-scale effects.

0 0.5 1 1.5
simulated time [s]

0

5

10

15

20

25

30

35

40

co
ng

es
tio

n
w

in
do

w
 [p

ac
ke

ts
] NSC + ns-3

NSC + IKR SimLib
VMSimInt

Figure 5: Congestion window
over time with three simulators.

599.9 599.904 599.908
simulated time [s]

345.85

345.86

345.87

345.88

345.89

345.9

re
la

tiv
e

se
qu

en
ce

 n
um

be
r

[M
B

yt
es

]

NSC + ns-3
NSC + IKR SimLib
VMSimInt

Figure 6: Sequence number over
time with three simulators.

0 0.5 1
0

10

20

30

40

50

60

70

80

90

co
ng

es
tio

n
w

in
do

w
 [p

ac
ke

ts
]

3 6 9 12
simulated time [s]

2.6.26
2.6.26 (initCwnd=10)
3.9.0

Figure 7: Congestion window
over time with three kernels.

0 20 40 60 80 100 120 140
used TCP stacks

0

20

40

60

80

100

120

140

160

ru
n
ti
m
e
[s
]

NSC

VMSimInt

Figure 9: Simulation runtime for
greedy traffic

0 20 40 60 80 100 120 140
used TCP stacks

0

1000

2000

3000

4000

5000

6000

7000

8000

co
n
su
m
ed

m
em

or
y
[M

B
]

NSC

VMSimInt

Figure 10: Memory consumption
for greedy traffic

0 20 40 60 80 100
used TCP stacks

0

20

40

60

80

100

120

140

160

ru
n
ti
m
e
[s
]

NSC - (1) many connections

VMSimInt - (1) many connections

NSC - (2) one connection

VMSimInt - (2) one connection

Figure 11: Simulation runtime
for light traffic

4.3 Evaluation of Runtime Performance
This section compares the runtime performance of NSC+

IKR SimLib and VMSimInt. The ns-3 simulator is not in-
cluded in this evaluation, because we want to show the dif-
ferences between the approach of running only adapted ex-
tracts of kernel code as a library (as in NSC+ IKR SimLib)
and running full kernels in VMs in external processes (as in
VMSimInt).

The evaluation was done with a simple model (see Fig-
ure 8 b)). In this model one TCP stack, which is acting
as a server, is connected to a switch. Between server and
switch is a link with a rate of 10MBit/s and a constant
one-way delay of 50 ms. On each input of the bidirectional
link a queue with a capacity of 125 kB has been installed.
The model has a configurable number of TCP stacks acting
as clients, which are directly connected to the switch. The
links between clients and switch have no delay and unlim-
ited bandwidth. The clients are sending data towards the
server. In the case of VMSimInt dynamic ticks are enabled
and the VMs are running kernel version 3.10.9. The KVM
feature in QEMU is disabled.

We compare runtime and memory consumption of both
simulators. The comparison was performed on a machine
with an Intel Core i5-2405S CPU and 8 GB of memory, run-
ning a recent Linux distribution (Ubuntu 13.04). The plots
show the mean values of ten runs as well as the standard
deviation in the error bars.

4.3.1 Greedy Traffic
First, we consider a scenario where the clients generate as

much traffic as possible. The simulation was configured to
stop after a simulated time of 180 s.

Figure 9 shows the comparison of the simulation runtime
for VMSimInt and NSC approaches. The results show only
the time to run the simulation, the time for the setup of the
VMs is not considered. (It takes approximately 5 s to start
a VM in our environment.)
The performance of VMSimInt is dominated by communi-

cation and context switches between the simulation program
and the QEMU processes. Thereby, a high cost is introduced
for transmitting packets, executing timer ticks and sending
control messages to or from the relay program. By using
dynamic ticks in VMSimInt, the time spent with process-
ing timer ticks was reduced. The transmissions of packets
and control messages (signaling that the receiving socket is
writable) have the highest influence on the total runtime.
The non linear increase of the procesing time between 2

and 40 stacks can be explained by an increasing number
of ACK packets we observed in this range. As in our sce-
nario all transmissions share a single bottleneck, the num-
ber of data packets is (nearly) independent of the number
of clients. For higher numbers of stacks, the server sends an
ACK packet for each data packet, so the number of gener-
ated packets is constant.
Figure 9 shows that the runtime increases linearly for

the NSC simulator with increasing number of stacks. This
means that the costs for the ticks are dominant, whereas the
costs for the exchange of data packets have less influence.
We plan to investigate the reason for the high performance
difference and further optimize VMSimInt.
The second measurement compares the memory consump-

tion. We used the Resident Set Size (RSS), which can be
obtained from the procfs on Linux machines, as an indicator
for the memory consumption. The RSS gives the number of

pages occupied by a process, including shared libraries. The
result is that the RSS overestimates the memory consump-
tion in most cases.

Figure 10 shows the total consumed memory of NSC and
VMSimInt. As can be seen, the consumed memory for VM-
SimInt increases almost linearly with the number of used
TCP stacks. The offset is introduced by the memory needed
for the Java based simulation tool. The reason for the linear
increase is that every VM needs approximately 45 MB of
memory, whereas the Java memory is almost constant. The
amount of 45 MB memory for each VM is a result of the
minimalistic OS we use in the simulation. It contains only
the Linux kernel and our relay program. The memory con-
sumption of the NSC setup increases slower with increasing
number of used TCP stacks. For small numbers of stacks
the memory requirements of VMSimInt are similar to the
NSC simulator. For higher number of stacks the difference
is significant. However, it is still possible to run those simula-
tions on current desktop computers. We plan to investigate
to which extend KSM can reduce this memory footprint.

4.3.2 Light Traffic
The second performance evaluation is performed with the

same network topology, but different traffic. Each client
transmits 1000 bytes of data on discrete events, with a nega-
tive exponentially distributed Inter Arrival Time (IAT) with
a mean value of 5 s. We modeled two variants of transmis-
sions: (1) For each transfer a new TCP connection is created
and afterwards closed again. (2) Each client maintains one
TCP connection which is opened at the beginning of the
simulation. This connection is used for all transfers.

The simulated time was set to 600 s. As the generated
traffic per client is constant and not limited by the bot-
tleneck link, the amount of transferred data increases with
increasing number of TCP stacks.

As can be seen from Figure 11 for variant (1) the run-
time of VMSimInt increases about proportionally with the
number of stacks. The same holds for the NSC variant, but
the gradient is lower. For variant (2) the difference between
VMSimInt and the NSC approach is much smaller, but still
the NSC approach offers a faster execution.

From the runtime analysis we can conclude that NSC per-
forms better, especially if the network is occupied. This was
expected, as the context switches between the simulation
program and the VMs have a high cost. The runtime per-
formance of the NSC is dominated by the constant tick rate.
In VMSimInt ticks are only needed when they are scheduled
by the guest OS. However, this does not compensate the
higher overhead of the interprocess communication.

As a conclusion from the performance evaluation we can
remark that although VMSimInt has a lower performance
than NSC, it still scales well enough to perform simulations
on typical desktop computers.

4.4 Discussion

4.4.1 Maintenance and Extensibility
With our approach it is possible to use arbitrary OSs, in

particular the latest versions and even closed source OSs.
The extensibility to new kernels is one of the main advan-
tages of our approach. It does not require any modifica-
tion and so it is achieved without further maintenance costs.
This means new concepts regarding protocol design or ker-

nel features can easily be applied in the simulation without
modifying the kernel code.
Nevertheless, we introduced changes in the QEMU soft-

ware. These need to be maintained if a new version of
QEMU should be supported to allow taking advantage of
improved efficiency in virtualization. However, the used
QEMU version does not influence the transport protocol be-
havior. As long as future kernels will support the virtualized
hardware of today’s QEMU, we will be able to run simula-
tions with these kernels without any maintenance effort.

4.4.2 Reproducibility
Simulations must be deterministic and reproducible. VM-

SimInt achieves this by completely decoupling the VMs from
the host system. We neglect processing delays by emulating
an infinitely fast processor, which performs all processing
while the simulated time does not proceed. This makes the
simulation result independent of the available processing re-
sources of the host system.
Our framework does not control the random number gen-

erator of the VM kernel. However, TCP processing does
only depend on the clocks and computation delays which are
controlled by the simulation. Other protocol mechanisms,
e. g., the stateless address auto-configuration of IPv6, are
not fully reproducible with our approach. Nevertheless for
simulations, this approach provides a controlled and repro-
ducible environment, allowing for deterministic results and
thus allowing an in-depth analysis of protocol mechanisms.

4.4.3 Validation
A model has to be validated against real systems. By

using an unmodified OS implementation, we do not need to
validate the transport protocol behavior. In our approach,
validation is only required for the virtualization tool. Our
evaluation results show minor timing differences compared
to the NSC+ns-3 simulation approach and no differences
compared to the NSC+ IKR SimLib setup. Compared to a
real system, e. g., in a testbed set-up, we expect larger timing
differences as we account zero time for any processing within
the VMs and do not model external effects like interrupts.

4.4.4 Scalability
To simulate large-scale networks and perform simulations

on different time-scales, computation time and memory us-
age has to be reasonable. As the comparative results in Sec-
tion 4 show, the execution of full OSs and the more generic
interface to those OSs costs performance. However, we still
deem performance and resource consumption acceptable, as
it does not hinder in typical research workflows.

4.4.5 Protocol & Application Support
In general our approach offers the same protocol support

as provided by the guest kernel. Currently, VMSimInt sup-
ports IPv4 and IPv6 for TCP. We can use the kernels in-
terface to configure protocol behavior, e. g., setting sysctl
values of the Linux kernel. An extension to support SCTP
or User Datagram Protocol (UDP) is straightforward. Fur-
thermore, we can even provide support for real applications.
This allows to follow recent application behavior without
a detailed analysis of the implementation and modeling of
each single application. Our approach allows deploying any
real application in the VM, generating input triggers and
capturing the resulting behavior on the network.

4.4.6 Network Interface
Our framework supports Ethernet as Layer 2 protocol

including address resolution (Address Resolution Protocol
(ARP)). Network simulators often only provide a simplified
message handling (storing, dropping). However, real host
systems do also provide back pressure from the buffer on
the local network interface. We lack support for back pres-
sure of the network interface on the TCP stack. Our guest
kernels can always send a packet to the network. If the speed
of the link connected directly to the sender is the bottleneck,
back pressure can influence the behavior of TCP. This is a
border case, but it’s in focus for our future work.

5. CONCLUSIONS
In this paper we presented VMSimInt, a framework which

integrates VMs into a network simulation tool to provide
realistic OS behavior. Although our focus lies on providing
a realistic TCP implementation, this approach can also be
used to integrate arbitrary software into the simulation.

We extended the QEMU software by adapting the clock to
the simulated time and redirecting any I/O to the simulation
program. With this approach it is possible to guarantee full
isolation of the VMs from the host system, which provides
exact reproducibility independent of the host system. To
simplify the traffic generation we execute a relay program in
the user space of the VM and provide respective interfaces
in the simulation program to perform socket operations.

The interface to the OSs running in the VMs consists of
the hardware emulated by the virtualization tool and the
relay program accessing the OS’s user space API. This in-
terface is generic, i. e., it can support different operating
systems, and it is stable, i. e., it does not have to be changed
when the OS is updated.

We have shown that the simulations performed with VM-
SimInt provide results comparable to the NSC+ns-3 ap-
proach, which is widely used and the basis of recent research
in the TCP area. We have also shown that computation ef-
fort and memory consumption are higher than with existing
tools, but are still viable for typial TCP simulations.

Currently we aim to further optimize our approach with
respect to computation effort and memory. Moreover, we
will extend the simulation by implementing a realistic back
pressure behavior. We also plan to support additional OSs
(like Microsoft Windows) in the VMs.

All source code of VMSimInt is available. It can be re-
quested by e-Mail.

6. REFERENCES
[1] W. Almesberger. UML Simulator. In Linux

Symposium, 2003.

[2] F. Bellard. QEMU open source processor emulator.
www.qemu.org/, October 2013.

[3] R. Bless and M. Doll. Integration of the FreeBSD
TCP/IP-stack into the discrete event simulator
OMNET++. In Proceedings of the 2004 Winter
Simulation Conference, Dec. 2004.

[4] M. Carson and D. Santay. NIST Net: a Linux-based
network emulation tool. ACM SIGCOMM Computer
Communication Review, 33(3), July 2003.

[5] J. Chu, N. Dukkipati, and Y. Cheng. Increasing
TCP’s Initial Window
(draft-hkchu-tcpm-initcwnd-00), February 2010.

[6] A. Grau, S. Maier, K. Herrmann, and K. Rothermel.
Time Jails: A Hybrid Approach to Scalable Network
Emulation. In IEEE Workshop on Principles of
Advanced and Distributed Simulation (PADS), 2008.

[7] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and
N. McKeown. Reproducible network experiments
using container-based emulation. In Proceedings of the
8th international conference on Emerging networking
experiments and technologies (CoNEXT), 2012.

[8] J. Heidemann, K. Mills, and S. Kumar. Expanding
confidence in network simulations. IEEE Network:
The Magazine of Global Internetworking, 15(5), Sept.
2001.

[9] S. Hemminger. Network Emulation with NetEm. In
Linux Conference Australia (LCA), April 2005.

[10] T. R. Henderson, M. Lacage, and G. F. Riley.
Network Simulations with the ns-3 Simulator. Demo
paper at ACM SIGCOMM, Aug. 2008.

[11] IKR Simulation and Emulation Library.
http://www.ikr.uni-stuttgart.de/INDSimLib/, Oct.
2013.

[12] S. Jansen and A. McGregor. Simulation with real
world network stacks. In Proceedings of the 37th
conference on Winter simulation, 2005.

[13] S. Jansen and A. McGregor. Performance, Validation
and Testing with the Network Simulation Cradle.
IEEE 14th International Symposium on Modeling,
Analysis and Simulation of Computer and
Telecommunication Systems, 2006.

[14] J. Padhye, V. Firoiu, D. F. Towsley, and J. F. Kurose.
Modeling TCP Reno performance: a simple model
and its empirical validation. IEEE/ACM Transactions
on Networking, 8(2), Apr. 2000.

[15] L. Rizzo. Dummynet: A Simple Approach to the
Evaluation of Network Protocols. ACM Computer
Communication Review, 27, 1997.

[16] H. Tazaki, F. Urbani, and T. Turletti. DCE Cradle:
Simulate Network Protocols with Real Stacks for
Better Realism. In Workshop on ns-3 (WNS3), 2013.

[17] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan,
D. Kostić, J. Chase, and D. Becker. Scalability and
accuracy in a large-scale network emulator. ACM
SIGOPS Operating Systems Review, 36(SI), Dec. 2002.

[18] D. X. Wei and P. Cao. NS-2 TCP-Linux: an NS-2
TCP implementation with congestion control
algorithms from Linux. In Proceeding from the 2006
workshop on ns-2: the IP network simulator (WNS2),
2006.

[19] E. Weingärtner, F. Schmidt, H. V. Lehn, T. Heer, and
K. Wehrle. Slicetime: A platform for scalable and
accurate network emulation. In Proceedings of the 8th
USENIX Conference on Networked Systems Design
and Implementation (NSDI), 2011.

[20] E. Weingärtner, H. Vom Lehn, and K. Wehrle. A
performance comparison of recent network simulators.
In Proceedings of the 2009 IEEE international
conference on Communications, ICC, 2009.

[21] S. B. Yoginath and K. S. Perumalla. Efficiently
scheduling multi-core guest virtual machines on
multi-core hosts in network simulation. In IEEE
Workshop on Principles of Advanced and Distributed
Simulation (PADS), 2011.

