Real-time Network-on-Chip Simulation Modeling

Soroosh Gholami-

a. School of Electrical and Computer
Engineering
University of Tehran
Tehran, Iran

Soroosh.Gholami@ut.ac.ir

ABSTRACT

We present a Network on Chip (NoC) model with basic sup-
port for execution in constrained real-time. Actions for the
processing element, switch, network interface, and channel
components of NoC are specified in RT-DEVS, an exten-
sion of the DEVS formalism for real-time modeling. A de-
sirable simulator must execute the actions defined in each
NoC component within finite time periods. Execution of
components’ actions is supported by introducing a new ca-
pability to the DEVS-Suite simulator such that actions can
be executed in real-time. The extended simulator can be
used to develop, simulate, and evaluate the class of NoC
designs that the underlying computing platform can sup-
port. NoC simulation can be used to obtain measurements
such as system throughput and latency metrics under dif-
ferent communication patterns. This work offers a basis for
future research where a NoC simulation can be embedded
in a physical environment and thus enable NoC application
designs and experimentations.

Categories and Subject Descriptors

1.6.5 [Simulation and Modeling]: Model Development;
C.1.2 [Processor Architectures]: Multiple Data Stream
Architectures (Multiprocessors)—Interconnection architec-
tures

Keywords
DEVS-Suite Simulator, Network on Chip, Real-Time DEVS
Modeling

1. INTRODUCTION

Systems on Chips (SoC) are designed by putting several
interconnected cores on a 2-D or 3-D chip. These cores may
communicate with one another using shared buses available
in the chip. The alternative to this approach is Network
on Chip (NoC) in which communication between two cores
is treated as series of packets sent and received using an

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

Simutools 2012, March 19-23, Desenzano del Garda, Italy

Copyright © 2012 ICST 978-1-936968-47-3

DOI 10.4108/icst.simutools.2012.247797

103

Hessam S. Sarjoughian®®

b. School of Computing, Informatics, and
Decision Systems Engineering
Arizona State University
Tempe, Arizona, U.S.A.

Hessam.Sarjoughian@asu.edu

underlying network. NoC is our target system for real-time
modeling and simulation in this paper.

Modeling and simulation approaches are commonly used for
prediction of the behavior or performance of dynamical sys-
tems. Real-time systems are usually too complex for ana-
lytical solutions; therefore, simulation methods are used as
a substitution. However, simulation of a system in logical-
time with its surrounding environment is difficult. This is
when real-time simulation is useful. For example, systems
communicating with a human operator, such as a flight sim-
ulator, requires real-time simulation. In such a situation,
the simulation of the model must be carried out as closely
as possible to physical time.

Several NoC simulation platforms have been designed and
implemented in the recent years. Simulators with low-level
abstractions (Register Transfer Level) [3][15][4] provide an
accurate representation of the system for a wide range of
performance metrics from energy consumption to packet la-
tency. However, because of accounting for low-level interac-
tions among components, simulation execution time is often
prolonged. FPGA-based simulators [21] try to alleviate this
problem by hardware execution. High-level abstractions [9]
provide better execution time but less accurate results.

In this paper, NoC platform is first modeled using RT-DEVS
formalism [13]. In this phase, RT-DEVS capabilities for
modeling a complex system of this sort are described. The
complexity of this phase is also dependent to the level of de-
tail included in the model which is discussed in sections to
follow. The model generated in this phase is then executed
in real-time to provide a real-time simulation of NoC. The
simulation is carried out with the DEVS-Suite tool which is
extended to support real-time execution of RT-DEVS mod-
els. There are many obstacles with detailed real-time simu-
lation of a hardware systems such as NoCs that are further
discussed throughout this paper.

This article is organized as follows. Previous work on both
real-time modeling/simulation and NoC modeling is dis-
cussed in Section 2. In section 3, we overview the RT-DEVS
formalism and our approach for modeling NoC system. Sec-
tion 4 is an introduction to DEVS-Suite tool and modifi-
cations made for the purpose of this research. Experiments
and results are provided in Section 5 and Section 6 concludes
this work.



2. PREVIOUS WORK

DEVS [22] is a modeling and simulation framework which is
capable of expressing hierarchical, discrete event models and
logical time simulation. In the field of modeling and sim-
ulation of hardware components with DEVS, single-cycle,
multi-cycle, and pipeline MIPS32 processors were modeled
in [5]. Furthermore, an approach for modeling hardware
components using DEVS and HLA simulation was proposed
in [18]. In addition, NoC modeling and simulation using
DEVS for both regular and irregular topologies have been
developed in [1]. Several extensions of DEVS such as RT-
DEVS [13] and I-DEVS [16] have been developed.

Modeling of embedded systems with timing constraints is
the main purpose of using RT-DEVS for M&S purposes.
In [10], RT-DEVS formalism was incorporated for designing
embedded control systems for temporal analysis with UP-
PAAL tool. This formalism is also used for modeling a safety
critical system (Railroad crossing control) in [20]. In addi-
tion to RT-DEVS, a DEVS compatible extension to support
hardware-in-loop and real time simulation of a model with
imprecise timing was suggested in [17]. As for simulation en-
vironment of RT-DEVS, in [6] a simulation framework was
proposed in which the model described in RT-DEVS formal-
ism is simulated while communicating with its environment.
This framework requires control over low level aspects of the
system such as Interrupt Service Routines (ISR) which we
want to avoid in order to provide a general purpose frame-
work for real-time NoC system level simulation.

3. RT-DEVS MODELING APPROACH

In this section, we first introduce the RT-DEVS formalism
and then discuss our approach for modeling the NoC plat-
form by going over each component individually.

3.1 Real-Time DEVS Formalism

RT-DEVS is an extension of the DEVS formalism which
supports real-time system modeling [20]. Real-time DEVS
models may be simulated in physical time. Similar to DEVS,
it consists of two classes of models: atomic models and cou-
pled models. An atomic model in RT-DEVS formalism is
defined as follows:

RTAtomic = (X, S)Y, deat, dint, A, ti, 1, A)

X,S,Y: are input events, sequential states, and output
events respectively.

Oext : @ X X — S, external transition function

(where Q is the total set of: @ = {(s,e)|s € 5,0 < e <
£i(5) maz ).

dint : S — S, internal transition function.

A: S =Y, output function.

ti: A— ]Rar’oo X R&m, time interval function.

(in which the first and second real numbers specify the lower
bound and the upper bound of the execution of an action)
1 S — A, activity mapping function.

A: set of actions.

Compared to (Parallel) DEVS formalism [7], in addition to a
set of actions, time advance function is replaced with a “time
interval” function, which provides a window based represen-
tation of time for the execution of actions specified for each

104

state. Also, activity mapping function is added which as-
signs one or more actions to each state of the model [22].
These changes support specifying real-time system models
which may be simulated in physical (wall-clock) time. Since
time is not captured in the coupled model specification, the
coupled model of RT-DEVS is similar to that of DEVS for-

malism.

3.2 Primary and Secondary State Variables
Next states with hold-in times for Parallel DEVS models are
mainly defined using the phase and sigma state variables.
These so-called primary state variables form the basis of how
a model responds to external and internal events. Other
state variables are generally needed as the dynamics of a
model grows in complexity and scale (refer to a switch model
developed for NoC-DEVS [1]). Thus, the state of an atomic
model is described by a tuple (S = phase X 0 X v1 X -+ X vy)
that has one or more state variables in addition to the phase
and sigma state variables. The secondary state variables
can play a significant role in specifying RT-DEVS models.
Specifying state to action mappings — ¥ : S — A (see
RT-DEVS formal specification) can be undertaken system-
atically. They can help in formulating state to action map-
pings such that multiple actions can be defined according to
specific ordering of actions while satisfying real-time simula-
tion execution constraints. The secondary state concept also
aids not only in state to action mappings within each of the
internal and external transition functions but also external
to internal transitions or vice versa.

3.3 State-to-Action Mappings

A finite number of actions can be specified in terms of (phase,
At). The time window for all the actions is specified as
At = tmam _tmzn giVeH tactioni : A — tmzn Xtmamy 0 < tmam_
tmin < 00, tmin > 0. For every given phase, actioni,--- ,
action, can be assigned to it. Each action; has a time win-
dow dot; € {0t1, - ,dtp}, k < p, E?ilf(itj < At. These ac-
tions are sequentially executed to completion in some order
subject to the availability of physical time for A¢. The total
physical time for execution of all the actions is expected to
be within A¢. This requires having time specifications for
every action;. However, one or more actions may not be exe-
cuted if the available physical time is less than At¢. Each pair
of (phase, At) specify a distinct location with a set of actions
mapped to it. Transitions from one location to another are
triggered by the secondary state variables. In general one or
more secondary state variables act as guard to allow one or
more actions to be invoked. An invoked action is completed
iff its relative execution time in physical time is within its
designated §tmin and dtmaer. Otherwise, the invoked action
must be terminated. In other words, partial time constraints
6tj,0 < j < k for all actions action;,0 < i, < p must be de-
fined given the total time constraint At defined for every
phase.

3.4 NoC Modeling with RT-DEVS

All components of NoC should be modeled using the RT-
DEVS formalism described in section 3.1. Then these atomic
models are coupled together to create a novel abstraction of
the NoC system. Our objective is to develop a generic model
which is configurable to various scheduling/routing algo-
rithms and topologies. Using this approach our model would



NI in0 |
IntStatusQ
g out0
8
)
w Switch 2
a W
1t a9 2
&5 5y %9
& & gz
out o % §8m
2 2 a
E 3 8588 =2
PE Ty
RecDatg .g -~ [
=] gl £ 3
(] | x
e % .E
|
% - !: = 1
2 5
a] 0 i 3
2
4 Switch
3

Figure 1: NoC model components

not be application dependent and with the right configura-
tion — via model parametrization and/or extending generic
models to include application-specific structures and behav-
iors — can be applicable to various kinds of workloads. In
other words, generic models may be systematically extended
to be domain-specific models. As illustrated in Figure 1,
NoC consists of four main parts: Processing Element, Net-
work Interface, Link, and Switch [1]. In addition, topology,
buffer, flit, routing algorithm, and arbiter are other parts of
NoC, which should be modeled as a part of the modeling
phase.

Processing Element is responsible for processing data. The
idea of SoC is to connect these separated cores to each other
enabling them to complete a task cooperatively. In order to
concentrate on the networking aspects of NoC platforms,
we consider details such as connectivity, protocol, buffering,
routing, and delays for network model components. There-
fore, excluding all SoC related concerns such as PE mod-
eling, task mapping, memory-chip communication, and in
general the flow of a job in the system from the mapping
phase until completion. As a result, our model of PE is a
simple data generator with extra specifications for operating
frequency and performance.

Network Interface is the interface between PE and Switch.
It is responsible for packetizing and depacketizing. This part
of the system could be implemented in both hardware and
software.

Switch is a key component in NoC in which all the rout-
ing decisions are made. The routing algorithm is responsi-
ble for choosing the best path for the flits traveling around
the chip. This includes deciding about the priority of pack-
ets over each other and choosing the best paths consider-
ing network congestion, link capacity, and packet deadline.
Simplicity and light-weight communication patterns are the
two important properties of routing algorithm that should
be considered.

105

States = {Active, Idle}
Actions = { HeaderDecoder, Arbiter, ChangelntStatus}

_ mDecode Arbiter
TRoutmg - TA/[(LI + TMuz

ChangelntStatus
TChangeSmtus = TMaz

®

outing

\
Inv: t<T,

Routing

Entry = {}, w=0

do() = {}
Exit={},w=0

Decode
Invil<IU22t

do(): HeaderDecoder();
w= o

Change Status R
Inv: 1< T(hangeSm/us
Phase = "Active”
Entry = {}, w=0 y
do(): ChangelntStatus(); w = T);kmlmsmm
Exit= {}, w=0

\ 4

G4 = [statusInconsistent = true]

G} = [Bvent paternat A G1]

Gs = [3I € inBufs : I is nonempty|
=1

G?} = [Event gaternat A G3]
G5 = V1,0 . I € inBufs,O € outBufs : I, O are empty)

Figure 2: Switch model

Link acts as a connector between components of the system.
NoC may incorporate one of synchronous or asynchronous
models of link. Also, both Serial and Parallel links may be
used in NoCs, which are completely different in modeling.
In our model of NoC, asynchronous parallel links are used.
The topology of NoC is described using the input/output
ports available in the DEVS formalism. Also, Buffer could
be a simple first-in-first-out queue, which has a basic model
in DEVS formalism. Clock component is responsible for
synchronizing all or several (dependent to architecture) PEs
in the chip. It is also possible to exclude this component
from the chip which is the method used in this work. In this
case, each PE has an internal clock, which transforms the
chip to a heterogenous one because of the various operating
frequencies and imperfect synchronization among clocks. In
such systems, the use of buffers between PEs are inevitable.

Given the RT-DEVS specification of NoC elements, we model
the details of those elements (definition of actions, priorities,
etc.) using Real-time Statechart [12]. The reason of using
this notation is that some of these details are not captured
in their RT-DEVS specification. To illustrate our comple-
mentary modeling approach, a part of the switch model is
shown in Figure 2 and described below. This model is fur-
ther illustrated in Appendix A and the complete model can
be found in [11].



Banerjee et. al. [2] provided a detailed internal structure
of NoC components in which switch contained five major
elements: Virtual Channel, Header Decoder, Crossbar, Ar-
biter, and Link Controllers. We modeled these operations
for these elements in 4 actions. First, the incoming flits from
input ports are routed by the HeaderDecoder. Then, the Ar-
biter action allocates the appropriate output virtual channel
for the flit. Finally, the packet is sent out by the Send-
OutFlit action. For flow control purposes a ChangelntSta-
tus action notifies neighboring switches of the status of its
buffers. In this simple switch model, there are five locations
in which the first two actions (HeaderDecoder and Arbiter)
are mapped to Routing location, the SendOutFlit action is
mapped to Transmission location, the ChangelntStatus ac-
tion is mapped to the Change Status location, and two other
locations represent waiting and idle phases. The Idle loca-
tion is mapped to Idle phase and the rest of the locations
are mapped to the Active phase. The locations Routing,
Change Status, and Idle are shown in Figure 2.

In Figure 2, in Idle location, At is set to INFINITY. This
means that the model stays in this phase without execut-
ing an action until an external event reactivates the model.
Furthermore, InBuf and OutBuf represent input and out-
put buffers of the switch. Since we use the single-buffer out-
put NoC model, each port possesses an input buffer queue
and a single output buffer. These input and output buffers
are considered as secondary state variables which are used
in conditional transitions (guarded transitions) between lo-
cations. The priority of transitions are specified by their
number. Transition with lower number has priority over a
transition with a higher number. In this part of the system
three transitions are specified. G5 is the guard on transi-
tion from Change Status to Idle. This guard checks whether
input and output buffers are all empty. If true, the switch
component has no task to do and transits to the idle phase.
For a switch to transit to the Routing location (G%), two
conditions must be met. Obviously, there should be a non-
empty input queue with a packet ready to be routed through
the network. However, an external event must occur for such
a packet to enter one of the input queues. Therefore, occur-
rence of an external event (Eventggierna) is considered as a
precondition for this guard. Similar to G%, transition from
Idle to Change Status using G has the precondition of the
occurrence of an external event. In addition, the status in-
consistency flag (statusInconsistent) must be true for this
guard to be satisfied. This flag is true whenever there is
an inconsistency between the status of input buffers of the
switch and the external status which is transmitted previ-
ously.

It is important to note that the above is a simple part of
the switch model and thus intended to shed light on some
of the basic model specification elements of our approach.
The complete model contains five locations and a few other
secondary state variables that are involved in the function-
ality of switch component. Details for the switch model is
provided in Appendix A and [11].

3.5 NoC Simulation Model

RT-DEVS offers basic artifacts that are important for mod-
eling the real-time properties of NoCs (see Section 3.1. How-
ever, there are still obstacles in the way of real-time simula-

106

Interface Level
« Models packet delivery & network interfaces
« Simple approximations of packet latency A
« Incorporated in the early stages of the project
« Provides general behavior of the network

Capacity Level
« Adds resource constraints
« Evaluates the initial performance of the network
« Simple and easily configurable
« Fast in execution

Flit Level
« Individual flits are modeled
« Detail modeling & simulation of router
« Accurate results in terms of latency
« Results are expressed in flit times (cycles)

Faster Execution

b

More detailed, More accurate

Hardware Level
« Area & timing information of components are added
« Latency in terms of absolute time instead of cycles
v « Most accurate and useful because of the absolute timing

Figure 3: Simulation level hierarchy

tion. First, even though the formalism defines physical time
for actions, how the DEVS simulator protocol can specifi-
cally handle minimum and maximum times in physical time
are not provided. Normally in a DEVS-based simulation,
this is not a problem because the simulation is being carried
out in logical time. However, in a RT-DEVS-based sim-
ulation, this could result in missing deadlines if there are
too many actions or events given the executing simulation
platform limitations. Second, actions in a state may have
priorities and sequence of execution and activity mapping
function (in charge of mapping actions to states) does not
specify order or priority of execution among actions mapped
to a specific state.

The similarity of the real-time simulation to the real system
is dependent on the modeling phase and the level of detail in-
cluded. Simulation models specified at the Register Transfer
Level (RTL) are close to their physical realizations; however,
the physical time required for simulation is greater as com-
pared with high level models assuming the use of a simulator
and comparable simulation scenarios. As illustrated later,
in order to reach real-time simulation we eliminate many
details from each component of the system. For example,
a processing element possesses internal buffers, memories,
and ALUs, which are all summarized in a single PE model
in our modeling approach. Figure 3 shows different levels of
network on chip simulations [8].

Our objective in terms of level of simulation is better de-
scribed by the Flit level. Since we are concerned with in-
dividual flits, buffering, routing, and accurate latency anal-
ysis, flit level simulation suits better than the others. The
upper two layers are not accurate enough and our real-time
simulation constraint eliminates the possibility of using the
hardware level simulation because of its lengthy execution
time.

4. DEVS-SUITE SIMULATION TOOL

DEVS-Suite is a simulation environment for developing and
simulating hierarchical and component based models. This
tool combines the capabilities of DEVSJAVA and DEVS



Tracking Environment [14]. This simulator supports exe-
cution of models according to the parallel DEVS formalism.
It provides monitoring capabilities (such as time trajecto-
ries) and automated data collection. The simulator clock
can be set to be faster, equal, or greater than the physical
clock of the computing platform that executes the models.
However, while it is possible to execute models in wall clock
time using a real time factor control provided in the tool,
there is no guarantee for meeting the deadlines for simula-
tions that have high computational requirements. In such
scenarios, the simulator cannot be synchronized with wall-
clock. Therefore, DEVS-Suite is generally considered as a
logical-time simulator. In order to reduce mismatch between
simulation execution speed and simulation data visualiza-
tion, a real-time synchronization was introduced. However,
arbitrary synchronization accuracy cannot be guaranteed.

In addition, DEVS-Suite does not provide direct support for
developing RT-DEVS models. For example, in DEVS-Suite
every operation (action) in the external transition function
can be defined to have its own time advance, but the sim-
ulator protocol does not facilitate orchestrating handling of
multiple operations with external or internal transition func-
tions (see Section 4.1). Therefore, support for RT-DEVS
formalism (model specification and simulator protocol) is
required. Next, a brief overview of the DEVS-Suite simula-
tor is provided.

4.1 DEVS-Suite Simulation Engine

DEVS-Suite tool wuses MFVC (Model-Facade-View-
Controller) design pattern in which a facade layer is added
to the Model layer to provide selected functionality to other
layers. In this scheme, the View and the Controller layers
are in charge of communication with the user by receiving
inputs and visualizing simulation updates sent from the Fa-
cade layer. Controller is responsible for transforming user
inputs to Model layer requests and call appropriate proce-
dures. In the end, Model layer is the core of the simulation in
which atomic and coupled models communicate to carry out
the simulation and provide output results to the View layer
[19]. In this simulator, models are implemented as atomic or
coupled with atomicSimulator and coupledCoordinator be-
ing responsible for executing them. Detailed information
regarding this tool can be found in [14].

4.2 RT-DEVS Simulation Platform for DEVS-

Suite
Modifications to the DEVS-Suite starts with the simula-
tion protocol. A complete simulation protocol with double-
struck edged rectangles representing separate processes is
shown in Figure 4. Since the flowcharts for those processes
are simple and similar to those of the DEVS-Suite’s proto-
col, they are excluded here.

As illustrated in Figure 4, the simulation cycle starts after
an event occurs or the model is initialized with T0. to
have a finite value. The event could be triggered due to
an action not being completed within its maximum allowed
period, receipt of external events, or completion of an action.
In the first decision block, input message bag is checked.
In case of the bag not being empty, an external event has
occurred which is handled by external transition function.

107

Initialize

External
Event

Set Trnax
Set Thnin

Message Bag
is empty?

\

Y

External
Transition

Y

Check For New
Action Set (Current
Phase)

Internal
Transition

\4

Deadline Miss
Handleing

Action Set is
> Generate changed?
Output
T Set Act to Next Action
Set Toar | o
Bel T |

Set Act to its first action

Figure 4: Simulation protocol for RT-DEVS simula-
tion platform

Otherwise, the event could either be the completion of an
action or the missing of an action’s deadline. These two
events are distinguished by comparing §¢ with the maximum
allowed execution time for the action (Timaz). If a deadline
miss is occurred, deadline miss handling is done and then
the next action is picked for execution. Before checking for
deadline violation, another decision block checks whether
the executed action was the last one in its state. If the
action is the last one, internal transition function is called
and then the action set is changed. The first action in this
set is chosen for execution and the cycle continues.

In the Parallel DEVS simulation protocol, completion of
internal events cannot trigger external transition function.
External events can interrupt external and internal transi-
tion functions. The consecutive execution of these two has
only two combinations: external to internal and internal
to internal. The execution period defined for external and
internal transition functions are relative to the simulator’s
clock.

A finite number of actions are independently assigned to
internal and external transition functions. Actions are not
exclusive to internal or external transition functions. The
triggering and execution of the actions is handled by the sim-
ulator’s real-time clock. The absolute event times (i.e., tmin
and tmqe) for every action is specified in its atomic model.
The model’s time periods (i.e., d¢,min and d¢maz) are rela-
tive with respect to the simulator’s real-time clock variables
tiast, teurrent and tneze. A model’s start and end time in-
stances for an action are synchronized with the simulator’s
clock. The time instance at which an action is completed or



terminated is determined by the simulator’s clock. That is,
if an action cannot be completed by the action’s tmas (i€,
tmaz > tnest), the action is terminated and the simulator
may enter its next execution cycle. This is because hard-
ware resource availability is assumed to be bounded. If an
action is completed within ¢,,;, and ¢,,.» measured against
the simulator’s real-time clock, the simulator enter its next
cycle or the simulation is terminated if no more actions are
scheduled. It should be noted that the start and end time
instances of an action specified in the model are not changed
by the simulator.

Confluent function is not supported in this flowchart. It is
hypothesized by some [16] that since two events do not hap-
pen at the same time and a single processor simulator is ca-
pable of handling only one event at each time, the confluent
function is not needed for real-time formalisms. However,
we believe that the occurrence of two or more events at a
time instance is dependent on time granularity and the level
of the abstraction in modeling. Low-granular time causes
multiple events to be perceived by the model at one time in-
stance, although they may have occurred in different times.
In addition, high-level complex models have a higher prob-
ability of receiving multiple events at the same time. Thus,
for infinite granularity, the simulation protocol sketched in
Figure 4 works fine; otherwise, this would result in miss-
ing output events if these multiple events are not manually
checked and handled.

Execution of model can be achieved in three modes — i.e.,
as-fast-as-possible, real-time, or scaled real-time. As noted
above, we are interested in real-time execution where ad-
vances in the simulation clock occur in synchrony with ad-
vances in a wall (or a physical) clock. The simulation clock
(logical clock) is the physical time within the simulator.
The wall-clock represents the time during the execution of
a model that is equal to the rate at which the physical time
progresses. In a real-time simulation, the simulation clock is
synchronized with the wall-clock (such as the clock provided
by hardware) at certain points. This enables the simulation
to be a realistic representation of the physical system as
perceived by human operators.

Synchronization between wall-clock and logical time is nec-
essary for a real-time simulator. Thus, simulation clock is
advanced after the advance of wall-clock. In other words, the
simulation engine must wait for a time advance in wall-clock
and then increment logical time in order to reach real-time
execution. A real-time simulation (as opposed to faster- or
slower-than real-time) of this sort equips us with useful con-
trols, which neither real system nor logical-time simulation
are capable of providing. A hardware system is only able
to raise interrupts and handle them at certain times (clock
edges) and so as the logical-time simulation. However, real-
time simulation (because of its synchrony with wall-clock
and communication with the environment) gives us the abil-
ity to raise and handle events at any time instance, which is
most useful in reactive systems.

5. EXPERIMENTS & RESULTS

In this section, sample NoC system is modeled with the
RT-DEVS formalism and is then executed in the extended
DEVS-Suite simulator. For this purpose, first of all, the

108

PE1

. rechata @
link1

likin @~ passive - finkdut
switch1 o = infinity

PED inportd @- & outpartd start @ idle & outData
Data @
inport! @- idle - outport! stop & P
start @ idle @ outbata
2 . P — PE2
P P . t2cData
o = infinity link2 -
stop @ <
Infini likdn'@  passive  —&iinkdut
© = infinity ST
start idle 8 outpata
stop @
o = infinity

Figure 5: RT-DEVS NoC sample model

components are modeled with the approach presented in this
paper. The specification for the Switch component is pro-
vided in Appendix A. In order to be able to execute the RT-
DEVS models with the properties described in Section 4, we
modified the DEVS-Suite tool to support RT-DEVS models
and the concepts of locations, guard, and transitions. This
model helps to demonstrate the details of the modeling ap-
proach and the capability of the modified DEVS-Suite tool
to handle actions and their timing requirements.

5.1 A Basic NoC Model

A sample RT-DEVS NoC model shown in Figure 5 contains
three processing elements, a switch and two links. A data
collector component is also modeled and implemented to
gather results from model execution cycle.

The PE model is a model with the simple functionality of
receiving incoming flits and generating outputs. The switch
model (refer to Appendix A for a detailed description) re-
ceives flits from PE(Q and routes them to either PEI or PE2
based on their destination addresses. As shown in Figure
5, the Data Collector component starts/ends the simula-
tion by sending a start/stop signal to PE0 which acts as
a producer while other processors (PE1 and PE2) act as
consumers. In addition to starting and ending the simu-
lation, the Data Collector component gathers timing data
from the model components. The timing analysis compares
the simulation clock with the wall-clock with the simulator’s
maximum accuracy set at 10~* second). Performance mea-
surements (i.e., average flit latency and average queueing
times) are calculated.

5.2 Model Configuration

In the set of experiments conducted on this model the ac-
tions for each component are configured in terms of time
windows within which actions are to be executed. Since
our software simulation has time granularity limitations, we
used linear scaling in order to carry out the simulation and
test the functionality of the NoC model and its parts. Fol-
lowing the model for switch described in Section 3.4, the
switch model implemented for the purpose of this experi-
ment contains the same actions and locations. The model
for PE, has a single action (Processing) which generates out-
put (a set of flits) with a random period between its Tinin
and Thnaz. Finally, Transmission action for link delivers the
flits some time between its respective time window. The



Table 1: Performance results for default configura-
tion (PT: Physical Time, ST: Simulation Time)

Avg. Point | Dyas D win

(sec) (sec) (sec)
Flit Latency (ST) 0.18370 0.00189 | 0.00242
Flit Latency (PT) 0.20078 0.00257 | 0.00197
Queueing Time (ST) 0.18023 0.00185 | 0.00236
Queueing Time (PT) 0.19627 0.00254 | 0.00219
Link Latency (ST) 0.00347 0.00006 | 0.00006
Link Latency (PT) 0.00451 0.00021 | 0.00020

default timing configuration is specified below (expressed in
seconds).

e PE — Processing: [.8,.9]

e Link — Transmission: [.002,.005]

e Switch — HeaderDecoder: [.005,.01]
e Switch — Arbiter: [.005,.01]

e Switch — SendOutFlit: [.02,.03]

In this configuration, the processing element generates 8 flits
in each cycle which gives us a packet generation rate between
9 and 10. The difference of this action with other actions is
that other actions work on individual flits instead of a group
of them. Keep in mind that these values are not meant to
represent a real NoC system. The sample model and its
configuration is used to verify the simulator’s correctness
(executing actions within their allowed time windows) and
to show NoC model generates expected dynamics.

5.3 Results & Analysis

First, we executed the model with the default configuration.
Each execution has a warm up period of 30 cycles (enough
for such system) and then a period of 30 cycles for gathering
data. The average results of 5 runs are presented in the first
column of Table 1 (all numbers are in seconds). The second
column (Djree) provides the deviation with the maximum
value among all five runs and the third column (D) the
deviation with the minimum of all five results. As shown in
this table, the difference between the simulation clock (rows
marked with ST) and the real-time (rows marked with PT)
clock is small for each performance measure. All actions are
executed within their time windows. Link latency should be
in the time window of [.002,.005] as in the default configura-
tion. The results show that none of the Transmission action
times have violated their deadlines. Showing the same thing
about other actions is not as straightforward as the Trans-
mission action. Below is a formulation showing the actions
inside the switch are executed according to their specified
timings. The demonstration uses the knowledge that at each
point there are 8 packets in the switch’s input buffer.

Single packet latency: LzeroLoad = -0075 + .0075 4 .015

First packet latency: L1 = LzeroLoad
Second packet latency: Lo = LzeroLoad + L1

Eighth packet latency: Ls = Lzeroroad + L1+ Lo+ -+ L7

109

Table 2: Queueing time based on packet injection

ti(Processing) | Injection Rate | Average QT

(packet/sec) (flit/sec) (sec)
[.8,.9] 9.41 0.198808392
.32, .35 23.88 0.206464698
.28, .31 27.12 1.832193793
.25, .28 30.19 3.442061815
.20, .23 37.21 6.254637832
15, .18 69.57 8.749146720
[.08, .1] 88.89 12.59097263

Therefore, average packet latency is:

Li+Ly+---4+Ls _ .04x (14+24---+38) _ 1775
8 8
Comparing this value (reached analytically) to the values in
Table 1 (reached practically) shows that actions in switch
have also met their deadlines on average.

Increasing the packet injection rate, by changing the time
interval of the Processing action of producer PE, results in
longer queueing times in switch. We tested the model with 7
different injection rates (packets per second) and the results
in terms of average queueing times (in seconds) are shown
in Table 2. The queueing time does not experience a radi-
cal change between the first two points. The reason is that
switch’s service rate is still higher that PE’s injection rate.
However, the queueing time is rapidly increased as the in-
jection rate goes higher. In this situation the rate of packet
injection is higher than service rate. Therefore, flits trav-
eling through the network experience long queueing times.
The simulation experiments were conducted on a Macintosh
platform with 2.4GHz Intel Core 2 Duo processor and 2GB
of memory.

6. CONCLUSION

In this paper, we provided a novel model for NoC system us-
ing RT-DEVS formalism. We contributed to the modeling
approach by introducing the concept of primary/secondary
state variables and Real-time Statecharts which resulted in a
more systematic and simpler modeling approach as demon-
strated in Appendix A. In addition, DEVS-Suite simulation
environment is extended to support execution of RT-DEVS
models in physical time.

We concluded that RT-DEVS formalism is insufficient for
modeling the kinds of details and flexibility that are needed
for NoC. Our work introduces detailed timing specification
for actions and their priorities over each other under vari-
ous time constraints. The resulting modeling elements and
method offer a rigorous approach for specifying real-time
software systems such as NoC. Real-time Statechart support
for real-time specification made this modeling approach the
best choice for our purpose. In addition, Real-time Stat-
echart can be converted to Timed-Automata [12] which in
turn can be used for model checking purposes. This enables
us to use the simulation model for verification purposes as
well.

It is important to emphasize that the possibility of real-time
simulation for a given model is dependent on the underly-



ing computing platform. Although our generic modeling ap-
proach is capable of modeling NoC systems, it is impractical
to simulate every NoC with arbitrary scale and complexity
using existing computation platforms. For example, com-
munication speed in some NoC systems can be several mag-
nitude faster than what may be possible in simulation. In
this situation, assuming NoC as a system operates linearly,
simulation time can be scaled. However, scaling for a real-
time simulation is not straightforward especially considering
embedding NoCs in some physical environment. There are
several other areas requiring research. One is distributed
simulation where a systematic approach is taken to migrate
models for execution on a distributed simulation platform.
The ability of simulating a system in real time needs is di-
rectly related to how much details is to be modeled. Exclu-
sion of details from the target system can lend to real-time
simulation. Obviously, there can be a substantial difference
between a real system and its high-level simulated counter-
part. Currently, determining the right amount of detail to
be included in the model is the responsibility of the modeler.

7. REFERENCES
[1] H. Ahmadinejad, F. Refan, and H. Sarjoughian. NoC
simulation modeling in DEVS-Suite. In Spring
Simulation Conference, Orlando, FL, pages 134-139.
ACM Press, 2011.

[2] N. Banerjee, P. Vellanki, and K. Chatha. A power and
performance model for network-on-chip architectures.
In Proceedings of the conference on Design,
automation and test in Europe-Volume 2, pages
1250-1255. IEEE Computer Society, 2004.

[3] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt,
A. Saidi, A. Basu, J. Hestness, D. R. Hower,
T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood.
The gemb simulator. SIGARCH Comput. Archit.
News, 39:1-7, Aug. 2011.

[4] N. Binkert, R. Dreslinski, L. Hsu, K. Lim, A. Saidi,
and S. Reinhardt. The M5 simulator: Modeling
networked systems. Micro, IEEE, 26(4):52-60, 2006.

[5] Y. Chen and H. Sarjoughian. A component-based
simulator for MIPS32 processors. Simulation,
86(5-6):271-290, 2010.

[6] S. Cho and T. Kim. Real time simulation framework
for RT-DEVS models. Transactions of the Society for
Computer Simulation International, 18(4):203-215,
2001.

[7] A. Chow and B. Zeigler. Parallel DEVS: A parallel,
hierarchical, modular, modeling formalism. In
Proceedings of the 26th conference on Winter
simulation, pages 716-722. Society for Computer
Simulation International, 1994.

[8] W. Dally and B. Towles. Principles and practices of
interconnection networks. Morgan Kaufmann, 2004.

[9] F. Fazzino, M. Palesi, and D. Patti. Noxim:
Network-on-chip simulator. URL: hitp://sourceforge.
net/projects/noxim [24.06.2008].

110

[10] A. Furfaro and L. Nigro. Embedded control systems
design based on RT-DEVS and temporal analysis
using UPPAAL. In Computer Science and Information
Technology, 2008. IMCSIT 2008. International
Multiconference on, pages 601-608. IEEE, 2008.

[11] S. Gholami and H. Sarjoughian. RT-DEVS NoC
modeling with simulation support in DEVS-Suite.
Technical Report TR-ASUCIDSE-CSE-2012-001,
Arizona State University,
http://devs-suitesim.sourceforge.net/, 2012.

[12] H. Giese and S. Burmester. Real-time statechart
semantics. Technical Report TR-RI-03-239, University
of Paderborn, 2003.

[13] J. Hong, H. Song, T. Kim, and K. Park. A real-time
discrete event system specification formalism for
seamless real-time software development. Discrete
Event Dynamic Systems, 7(4):355-375, 1997.

[14] S. Kim, H. Sarjoughian, and V. Elamvazhuthi.
DEVS-Suite: a component-based simulation tool for
rapid experimentation and evaluation. In Spring
Simulation Multi-conference, San Diego, CA, USA,
2009.

[15] M. Martin, D. Sorin, B. Beckmann, M. Marty, M. Xu,
A. Alameldeen, K. Moore, M. Hill, and D. Wood.
Multifacet’s general execution-driven multiprocessor
simulator (GEMS) toolset. ACM SIGARCH Computer
Architecture News, 33(4):92-99, 2005.

[16] M. Moallemi and G. Wainer. Designing an interface
for real-time and embedded DEVS. In Proceedings of
the 2010 Spring Simulation Multiconference,
SpringSim ’10, pages 137:1-137:8, New York, NY,
USA, 2010. ACM.

[17] M. Moallemi and G. Wainer. I-DEVS: imprecise
real-time and embedded DEVS modeling. In
Proceedings of the 2011 Symposium on Theory of
Modeling € Simulation: DEVS Integrative MES
Symposium, TMS-DEVS ’11, pages 95-102, San
Diego, CA, USA, 2011.

[18] A. Saghir, T. Pearce, and G. Wainer. Modeling
computer hardware platforms using devs and hla
simulation. In 2004 Summer Simulation Conference,
San Jose, California, July 2004.

[19] H. Sarjoughian. Component-based simulators:
DEVS-Suite concepts, techniques, and operations.
http://devs-suitesim.sourceforge.net/, Feburary 2009.

[20] H. S. Song and T. G. Kim. Application of real-time
DEVS to analysis of safety-critical embedded control
systems: Railroad crossing control example.
Simulation, 81:119-136, February 2005.

[21] D. Wang, N. E. Jerger, and J. G. Steffan. Dart: a
programmable architecture for noc simulation on
fpgas. In Proceedings of the Fifth ACM/IEEE
International Symposium on Networks-on-Chip, NOCS
'11, pages 145-152, New York, NY, USA, 2011. ACM.

[22] B. P. Zeigler, T. G. Kim, and H. Praehofer. Theory of
Modeling and Simulation. Academic Press, Inc.,
Orlando, FL, USA, 2nd edition, 2000.



APPENDIX

This appendix is provided as a complementary section for
the modeling approach described in this paper. As men-
tioned earlier in the paper, the specifications for the NoC
components can be found in [11].

A. SWITCH RT-DEVS SPECIFICATION

In this section, we provide a summary of the RT-DEV'S spec-
ification for NoC switch component. The model described
here, is more complex than the model partially described in
section 3.4. Our modeling approach for NoC components
is clarified in sections A.1 to A.7 by covering the important
aspects of the switch component. In RT-DEVS specification
approach, the functionality of the target system is presented
in a much more systematic way via actions. We contribute to
this approach by introducing primary/secondary state vari-
ables and the concepts of locations and transitions. The
switch model presented below is a good example for demon-
strating the suitability of this approach for real-time mod-
eling and simulation.

A.1 Introduction to NoC Switch

This component is responsible for routing and forwarding
flits received from network interfaces or switches to other
switch or NIs. The model described in this section uses de-
terministic table based routing scheme. Since the complete
model is lengthy, the following sections provide a selection
of features for illustrating the switch model.

A.2 State, Input, Qutput
States (5), input ports (X) and output ports (Y) of switch
are described below.

phase inBufs outBufs extStatus

—N— SigAma —

S = {Active, Idle} x "o~ x {0,1}" x {0,1}" x {0,1}"
x {0,1}" x {true, false}
~—— —

intStatus  statusInconsistent

X = {(in[0..portNum — 1],{0, 1}"),
(extST[0..portNum — 1],{Ok, Nok})}

Y = {(out[0..portNum — 1],{0, 1}"),
(intST[0..portNum — 1],{ Ok, Nok})}

The simplicity of this modeling approach causes the state
model to be much simpler than DEVS specification [1]. Here,
the switch is either active or idle and various functionalities
are provided by each location and the actions mapped to it
(described in sections to follow). Each switch possesses sev-
eral input (InBufs) and output (OutBufs) buffers for storing
incoming and routed flits. However, these buffers have finite
capacity. Thus, internal status stores the status of each in-
put buffer. Whenever one of the model’s input buffers is full
the respective status is changed into “Nok”. This value is
changed back to “Ok” whenever the buffer becomes non-full.
The statusInconsistent state variable is set to true whenever
an input buffer has changed its status but it has not been
reflected in intST output ports yet. The external status
keeps the status of neighboring nodes so that the switch
knows when it is safe to send out the flits stored in output
buffers.

111

A.3 External Transition Function

External transitions handle the events received via input
ports of the component. In switch, there are two types of
external events: arrival of a flit or status change in a neigh-

boring node. Below one example of each are expressed in
RT-DEVS approach.

Oext(phase, o, inBufs, out Bufs, extStatus, intStatus,
statusInconsistent, e, (in[m], X))
= (phase, o — e, inBufs[m].add(X), outBufs, extStatus,
intStatus, statusInconsistent)  [if inbuf[m] is not full]
= (phase, o — e, inBufs[m].add(X), outBufs, extStatus,
intStatus, true)  [if inbuf[m)] is full]

Oext(phase, o, inBufs, out Bufs, extStatus, intStatus,
statusInconsistent, e, (extST[m], X))
= (phase, o — e, inBufs, outBufs, extStatus[m] = X,
intStatus, statusInconsistent)

The first event, shows switch behavior after the arrival a
flit. The flit is added to the respective input queue and the
model continues with the previous action it was executing.
However, the status of input queues must always be checked
after an insertion. In case of a full input buffer, the model
must change its statusInconsistent state variable to modify
the value of its intST ports later. The second event occurs
when the status of a neighboring node is changed. This
event is handled by changing the external status variable to
the right value.

A.4 Internal Transition Function

Internal transitions are scheduled by the generation of an
output. They change the state of the model based on its
current state. In RT-DEVS, internal transitions occur when-
ever all actions associated with that state are executed.
Switch has a simple and straightforward specification for
internal transitions. Since there are only two phases for
switch (described in A.2), there are only two internal tran-
sitions that are described below.

Oint (“Active”, o, inBufs, outBufs, extStatus, intStatus,
statusInconsistent)
= (“Idle”, 00, inBufs, outBufs, extStatus, intStatus,
statusInconsistent) [If all InBufs and OutBufs are empty]

Oint(“Idle” , o, inBufs, outBufs, extStatus, intStatus,
statusInconsistent)
= (“Active”, Atioc, inBufs, outBufs, extStatus, intStatus,
statusInconsistent) [If at least one of InBufs is not empty]

In the first internal transition, the model changes its phase
into Idle whenever it does not have any flit to route. The
second one demonstrates the opposite situation. In addition
to the phase of the model, the sigma of the model is affected
by the internal transitions. Obviously, the sigma is set to
infinity for the Idle phase. As for the second transition,
the sigma is set based on the model location chosen for this
phase. The locations of the switch and how they are chosen
are described in section A.7. As it is obvious in the specifica-
tion above, internal transitions are concerned with primary
state variables (refer to 3.2) and they do not affect secondary
state variables. So, internal transitions change the primary



y N\

| inBufs ﬂBufs N
outBufs ’ ChangelntStatus() outBufs

extStatus extStatus

inStatus inBufs [i]# full )i e [0, n) inStatusi] = “Ok”

statusInconsistent = true | \statuslnconsistem = false/

- X
| inBufs
ChangelntStatus() outBufs

- - s extStatus
inBufs [i1= full ,ie[0,n) | inStatusi] = “Nok”
\ statusInconsistent = false

N

\

Figure 6: Effect of ChangelntStatus action on sec-
ondary state variables

state variables and then the location of the model is decided
based on secondary state variables.

A.5 Actions, Activity Mapping Function, Time

Intervals
RT-DEVS specifies a set of actions for each model but pro-
vides no accurate definition for them. In this work, an action
is described by its output and effect on secondary state vari-
ables. In contrast to DEVS which creates an output after
each internal transition, our approach does that after the
execution of each action. In order to accurately define the
effect of each action on the secondary states variables we
employ Real-time Statechart modeling as described below.

In order to show the effect of actions using Real-time State-
chart, each possible evaluation of secondary state variables
forms a location. Based on previous knowledge, each transi-
tion in Real-time Statechart may contain an action which is
executed whenever the transition occurs. The action which
its effect is being defined is placed as the action of transi-
tion between two locations. A detailed definition of action
can even split the action into sub-actions which only modify
one state variable at a time. Below, is the list of actions for
switch, their definition using Real-time Statechart, and the
time intervals associated with them.

A = {HeaderDecoder, ChangelIntStatus, Arbiter,
SendOutFlit}

The definition of the ChangelntStatus action is specified in
Figure 6. The ChangelntStatus action checks input buffers
(¢ € [0,n),n = portNum) and changes the internal status
of input buffers to “Ok” if they contain empty cells and to
“Nok” otherwise. In addition, after modifying all intSta-
tus values, it changes the value of statusInconsistent to false
since the internal status and buffer status values are syn-
chronized. Other state variables are left untouched. Other
actions are also defined with the same approach described
above. However, we move on to the next topic because of
lack of space.

Time intervals for the actions specified above are described
by a time window.

ti(Action) = [Tmin, Tmaz)

Time windows for actions in a NoC system are set based on
the hardware specification of the target system.

112

A.6 Output Function

As mentioned before, in our approach, each action generates
an output after completion. Therefore, the output function
should be defined over all action for the switch model. These
definitions are as follows.

—A\(HeaderDecoder) = ()

~A\(ChangelntStatus) = (intST[i], intStatus[i])
[0, NumOfBufs)]

~A(Arbiter) =0

~A(SendOutFlit) = (out[i], outBufs[i].head)

is not empty, for all i € [0, NumOfBufs)]

[for all ¢ €

[if outBufs]i]

In switch model, Arbiter and HeaderDecoder actions do
not generate output. The ChangelntStatus action gener-
ates “Ok” or “Nok” signals on intST ports and SendOutFlit
sends one flit for each output port if their respective output
buffers are not empty.

A.7 Locations, Transitions, Guards

We add two extra locations to the switch model presented
in section 3.4. First, Waiting location which waits infin-
ity until the neighboring node is ready to receive or other
input/output buffers have pending flits.

—Location Waiting

—~Actions: ()

~Guard: [3i € N = outBufs[i] is nonempty A extStatus(t] =
HNOk”}

This location is mapped to Active phase and is activated
whenever there exists an stalled outgoing flit because of the
status of a neighboring switch. The other location added
to the switch model is Transmission. This location is re-
sponsible for sending ready flits out to the next node. This
location is defined below.

—Location Transmission
—Actions: {SendOutFlit}
—Guard: [0 € outBufs : O is nonempty|

Transition to Transmission location is enabled whenever
there exists an output port which contains a ready packet.
Based on the numbering provided on the guards to each lo-
cation, transition to Transmission is second in priority after
Change Status.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.5
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


