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ABSTRACT

In this work we address state recoverability in advanced op-
timistic simulation systems by proposing an evolutionary al-
gorithm to optimize at run-time the parameters associated
with state log/restore activities. Optimization takes place
by adaptively selecting for each simulation object both (i)
the best suited log mode (incremental vs non-incremental)
and (ii) the corresponding optimal value of the log interval.
Our performance optimization approach allows to indirectly
cope with hidden effects (e.g., locality) as well as cross-object
effects due to the variation of log/restore parameters for dif-
ferent simulation objects (e.g., rollback thrashing). Both of
them are not captured by literature solutions based on an-
alytical models of the overhead associated with log/restore
tasks. More in detail, our evolutionary algorithm dynami-
cally adjusts the log/restore parameters of distinct simula-
tion objects as a whole, towards a well suited configuration.
In such a way, we prevent negative effects on performance
due to the biasing of the optimization towards individual
simulation objects, which may cause reduced gains (or even
decrease) in performance just due to the aforementioned hid-
den and/or cross-object phenomena. We also present an
application-transparent implementation of the evolutionary
algorithm within the ROme OpTimistic Simulator (ROOT-
Sim), namely an open source, general purpose simulation
environment designed according to the optimistic synchro-
nization paradigm. Further, we provide the results of an
experimental study testing our proposal on a suite of simu-
lation models for wireless communication systems.

Categories and Subject Descriptors

C.2.4 [Computer Communication Networks]: Distribu-
ted Systems— Distributed Applications; D.1.3 [Program-
ming Techniques|: Concurrent Programming— Distribut-
ed Programming, Parallel Programming; 1.6.8 [Simulation
And Modeling]: Types of Simulation— Discrete Event,
Parallel
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1. INTRODUCTION

Parallel and distributed computing techniques are known
to be a classical means to build high-performance simulation
systems. This is done via the partitioning of the simulation
model into distinct objects which concurrently execute sim-
ulation events on traditional clusters, on SMP/multi-core
machines and/or even on desktop grids [20]. The central
problem in the design/development of this type of simula-
tion systems is related to synchronization, whose aim is to
allow causally consistent (e.g., timestamp-ordered) execu-
tion of simulation events at each simulation object [13].

Among the synchronization approaches proposed in lit-
erature, optimistic synchronization [15] is one of the most
promising. It avoids block-until-safe policies for event pro-
cessing and guarantees causal consistency via rollback re-
covery techniques, which restore the system to a correct
state upon the a-posteriori detection of consistency viola-
tions. This type of synchronization has been shown to ex-
hibit performance relatively independent of both the looka-
head of the simulation model and the communication latency
between the concurrently running simulation objects. It re-
sults therefore viable and effective for a wide spectrum of
application-specific and infrastructure-related settings. On
the other hand, the design/development process of opti-
mized supports for state recoverability is a major obstacle
for the construction of efficient optimistic simulation sys-
tems. This process is additionally hardened when complete
transparency vs the application layer is also pursued.

In this work we tackle state recoverability via log/restore
techniques, and present an evolutionary approach for the
adaptive tuning of the parameters determining the operating
mode of the log/restore layer. These parameters correspond
to the current log mode (incremental vs non-incremental)
and the current log interval (number of events between sub-
sequent log operations). They are expressed as a gene as-
sociated with the simulation object, thus log modes and in-
tervals associated with the whole set of simulation objects
express the genotype. Whenever the algorithm performs a
mutation on the genotype, the offspring generation is eval-
uated through a liveness function based on the throughput
of committed events in order to assess the goodness of the



changes. Hence, the evolution is followed through, making
the genotype configuration mutate according to a reward.

Since our approach is only based on the a-posteriori eval-
uation of the liveness function, the evolutionary algorithm
has the ability to cope with run-time dynamics that are not
(and would be difficult to be) catched via analytical mod-
els of the log/restore overhead, which are typically used as
a means for performance optimization (see, e.g., [25,27]).
Among the most relevant dynamics we can mention locality
variations (potentially hampering the performance of opti-
mistic systems due to the large use of buffers for, e.g., state
logs) and the variation of the rollback pattern (e.g., the
frequency of rollback) due to cross-object effects associated
with changes of the log interval (and thus of the expected re-
covery latency) of different simulation objects (the so called
thrashing effect [24]). Furthermore, the used liveness func-
tion does not mandatorily require (very) fine grain (e.g., mi-
crosec) timers for its evaluation, since event throughput can
be (re-)evaluated according to a coarser grain period (e.g.,
millisec/sec). Hence, our solution can be deployed on both
dedicated and shared computing platforms, where coarser
information on actual CPU usage can be gathered via stan-
dard services offered by, e.g., the operating system.

We also present an application-transparent implementa-
tion of the evolutionary algorithm within ROOT-Sim (ROme
OpTimistic Simulator), a C/POSIX-based open source simu-
lation environment relying on the optimistic synchronization
paradigm [14]. This implementation exploits an application-
transparent dual-coding mechanism that provides the sup-
ports for the optimized coexistence of incremental and non-
incremental log/restore modes according to the “pay for what
you get” paradigm. Further, we report experimental results
for an assessment of the viability and efficiency of our pro-
posal when tested on a suite of simulation models for mobile
communication systems.

The remainder of this work is structured as follows. In
Section 2 we discuss related work. In Section 3 the evolu-
tionary algorithm is presented, together with implementa-
tion details. Section 4 is devoted to experimental results.

2. RELATED WORK

Log/restore mechanisms constitute the traditional means
for supporting state recoverability in optimistic simulations,
and have been deeply investigated in literature. The out-
coming proposals deal with the design/implementation of
log/restore architectures (either incremental or not) [26,29,
34,37], the definition of heuristics and/or the definition of
analytical models to be used as the base for, e.g., run-time
optimization of the log interval [10,24, 26,27]. Compared
to the present proposal, none of the above works cope with
coexistence and dynamic switch between incremental and
non-incremental log modes. Also, the proposed analytical
models of the log/restore overhead explicitly neglect hidden
run-time dynamics (e.g., locality effects), which are indi-
rectly captured by the presented evolutionary approach.

Mixtures of incremental and non-incremental log modes
have been studied in [6, 12, 33], where multiplexed or hy-
brid log protocols are provided. Differently from our pro-
posal, these studies do not provide application-transparent
design/implementation of the protocols. Also, these propos-
als dynamically adjust the log/restore layer parameters on
the basis of analytical models of the overhead which still
explicitly neglect run-time dynamics possibly exhibiting a
relevant impact on performance.
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In terms of architectural design/implementation, a work
close to the present proposal is the autonomic log/restore
architecture we have presented in [36]. This is based on an
application-transparent coexistence of incremental and non-
incremental log modes. However, like the aforementioned
works, this solution optimizes log/restore parameters by re-
lying on an analytical model not targeted at capturing the
above discussed locality and thrashing effects. A direct ex-
perimental comparison between this solution and the one
provided in this paper (see Section 4) will show how such a
lack can lead to suboptimal performance.

As for application transparency, the results in [30, 31]
provide a log/restore architecture for federated simulations
based on the High-Level-Architecture (HLA). These solu-
tions rely on kernel level memory protection mechanisms
offered by the operating system to detect memory accesses
and to trigger incremental copies of the accessed pages. Con-
trarily, the architecture in which we embed our evolutionary
algorithm supports the incremental log/restore mode via a
lightly instrumented version of the application modules al-
lowing the tracking of memory updates with arbitrary gran-
ularity. Consequently, the log/restore overhead associated
with the approaches in [30, 31] is likely higher (e.g., since
logging exhibits page size granularity) and affordable only
when comparable with the cost of interoperability services
supported by HLA middleware. The present work targets
more traditional optimistic simulation engines, typically re-
lying on a restricted set of services (see, e.g., [23]), where
the relative cost of log/restore operations can represent a
dominating performance factor.

3. ALGORITHM DESIGN AND
IMPLEMENTATION

3.1 Background on Evolutionary Algorithms

Evolutionary Algorithms (EA) are a class of stochastic
optimization methods that simulate the process of natural
evolution to build adaptive systems [3,5,8]. This class of
methods operates on a set (named population) of candidate
solutions (each one named individual), which is iteratively
modified. To provide more precise indications on EAs, let
us consider an arbitrary optimization problem with k objec-
tives, which are all to be maximized and equally important.
A solution to this problem can be described in terms of a
decision vector (x1, 2, ..., Tn) in the decision space X.
A function f : X — Y evaluates the quality of a specific
solution by assigning it an objective vector (y1, Y2, .., Ym)
in the objective space Y .

Now, let us suppose that the objective space is a subset of
the real numbers, i.e., Y C R, and that the goal of the op-
timization is to maximize one single objective. By the fact
that there exists a total order on R, a solution z* € X can be
considered better than another solution 22 € X if y* > 32,
where ' = f(z') and y* = f(z?). On the other hand, in the
case of a vector-valued evaluation function f with ¥ C RF
and k > 1, the comparison of two candidates z' and z may
not lead to a single optimal solution, i.e., there (might) not
exists only a single optimum in the objective space. Follow-
ing the concept of Pareto dominance, an objective vector '
is said to dominate another objective vector y? (y* = y?) if
at least one component of y* is greater than the correspond-
ing component of 4% and there is no one component which
is smaller. Accordingly, we can say that a solution ' domi-
nates x* (2! = %) if f(2') dominates f(x?). Therefore, we



can see that several optimal objective vectors (representing
different trade-offs between the objectives) can be found.

The set of optimal solutions in the decision space X is
denoted as the Pareto set X* C X, and its image in the
objective space is the Pareto front Y* = f(X™) C Y. Since
generating the Pareto set can be computationally expensive
(and often unfeasible), the main goal of an EA is to find an
approximation of the Pareto set X* [11,18,32].

EAs are based on two building blocks referred to as se-
lection and wvariation As for the former, we can distinguish
between mating and environmental selection, aimed, respec-
tively, at (i) picking promising solutions and (ii) determining
which of the newly generated individuals are kept in mem-
ory. Concerning variation, it takes a set of solutions and
systematically or randomly modifies them in order to actu-
ally generate a potentially better population.

The selection process usually consists of two stages: fitness
assignment and sampling. In the first stage, the individu-
als in the current population are evaluated in the objective
space and then assigned a scalar value, the fitness, reflecting
their quality. Afterwards, a so-called mating pool is created
by random sampling from the population, according to the
fitness values. Then, the variation operators are applied to
the mating pool, which are usually the recombination and
mutation operators.

The recombination operator (also known as crossover)
takes a certain number of parents and creates a predefined
number of children by combining parts of the parents, with
a certain probability chosen in order to mimic the stochas-
tic nature of evolution. By contrast, the mutation operator
modifies individuals by changing genes (i.e., small parts in
the associated vectors) with randomly selected values within
a predefined range, according to a given mutation rate. Fi-
nally, an environmental selection determines which individ-
uals from the population and the modified matin pool form
the new population, deterministically choosing the best in-
dividuals for survival.

Natural evolution is simulated by an iterative computa-
tion process, starting from an initial population which is cre-
ated at random, or according to a predefined scheme. A loop
consisting of the evaluation, selection, recombination and/or
mutation steps is executed a certain number of times. Each
loop iteration is called a generation, and often a predefined
maximum number of generations serves as the termination
criterion of the loop. At the end, the best individuals in the
final population represent the outcome of the EA. Evolu-
tionary programming tends to emphasize a mutation-driven
search, where mutation acts on strings. Special effort is put
into elitism, i.e., the issue of how to prevent non-dominated
solutions from being lost, as shown in [9,17,21,38-40].

3.2 Problem Formulation

As hinted, the goal of our proposal is to develop an evo-
lutionary log/restore subsystem capable of simultaneously
optimizing log/restore parameters for all the simulation ob-
jects involved within the run. These parameters reflect both
(i) the mode according to which log operations occur for a
simulation object, namely incremental vs non-incremental,
and also (ii) the interval (classically evaluated in terms of
executed events) in between subsequent log operations. In
case the log mode is incremental, the cost of each log opera-
tion can be reduced (compared to non-incremental logging),
since only dirty portions within the object memory layout
are logged. However, we need to pay some cost for track-
ing write operations occurring within that layout, which
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depends on application-proper execution patterns (read vs
write intensive) as well as on the specific architecture used
to support memory-write tracking. On the other hand, for
both incremental and non-incremental logging, a state recov-
ery operation upon rolling back may require the reprocess-
ing of intermediate events in between the latest logged state
image and the point corresponding to the causality error.
This reprocessing phase is referred to as coasting-forward,
and typically exhibits an expected cost proportional to the
length of the interval in between subsequent logs [24].

As pointed out in the Introduction, beyond the above cited
direct costs associated with the adopted log/restore parame-
ters, we may also have hidden effects, such as locality effects
(see, e.g., [19]) and the so-called thrashing phenomena. The
latter is related to the variation of the latency of the state
restore procedure (e.g., due to variations of the coasting-
forward latency after a re-tune of the log interval), which can
produce cross-object interactions negatively affecting perfor-
mance. In particular, the work in [24] has experimentally
shown the potential for an increase in the rollback amount
(exactly referred to as thrashing) in case of large increase in
the log interval. This phenomenon has been associated with
the potentially significant increase of the expected coasting-
forward latency experienced for larger log interval values,
which may induce (further) drift of the logical time across
different simulation objects while the run goes on.

The above scenario gets even more complicated when con-
sidering that log/restore parameters have an impact on the
execution dynamics of other core protocols employed to sup-
port optimistic synchronization. In particular, they have
an impact on the so called fossil collection protocol, which
is used to reclaim memory buffers associated with obsolete
logs and events. Specifically, upon the calculation of the new
value for the commit horizon of the optimistic run, referred
to as Global Virtual Time (GVT) (), the latest logged state
image with time lower than GVT is searched so that all the
logged state information associated with older snapshots is
discarded. On the other hand keeping in memory the lat-
est snapshot preceding the GVT does not suffice for guar-
anteeing state recoverability, since all the simulation events
with timestamp in between that snapshot and the GVT also
need to be retained. In fact, they could be needed in case
of a coasting-forward phase starting exactly from that snap-
shot. Given this constraint, the larger the interval between
subsequent state logs, the larger the amount of simulation
events that cannot be collected, and the lower the actual
locality for the optimistic run. Such an interaction between
log/restore and fossil collection has been addressed in liter-
ature by heuristically bounding the log interval of each sim-
ulation object to values on the order of 40/50 events [10,27].
However, no approach attempts the determination of log in-
terval values optimizing combined effects in relation to fossil
collection.

By the above discussion, the selection of an optimal con-
figuration for log/restore parameters, keeping into account
both direct and indirect effects on the final perceivable per-
formance is far from being a trivial task. This is also the
reason why, as discussed in Section 2, most of the optimiza-
tion approaches provided in literature tune the configuration
of log/restore parameters on the basis of analytical models

LGVT calculation is a form of global predicate which is
based on information associated with in-transit and/or un-
processed messages. It is used to determine the current
commitment horizon along the simulation time axis, prior
to which no causality violation is guaranteed to ever occur.



Table 1: Log Interval Values Expressed by the Gene

Log Interval Range | [1-8] | (8 -12] | (12 - 15]

(15 - 40]

Represented Values all each 2 each 3 each 5

that keep into account exclusively direct effects (e.g., the
expected overhead for taking each single log).

On the other hand, executing the reproductive cycle of
even a simple EA on long individuals and/or large popula-
tions requires high computational resources. In fact, eval-
uating a fitness function for every individual in order to
compute its quality as a solution is usually a very costly
operation, affordable only in case FEAs are used as off-line
algorithms. This situation is not perfectly suitable for an ad-
vanced optimistic simulation environment, where optimiza-
tions must be performed at run-time.

Furthermore, EAs usually try to explore the search space
seeking the solution to one single problem. In the context
of this work, the environment is constantly changing, i.e.,
there can be continuous variations in the execution pattern
or in the workload associated with the overlaying simula-
tion application. So the evolutionary algorithm optimizing
log/restore parameters must promptly adapt the individual
with respect to those fluctuations.

We bridge the above aspects via an innovative proposal
that works on a very compact population and provides a fit-
ness function, based on the throughput of committed simula-
tion events (expressing the amount of productive simulation
work), which is sensitive to environmental changes. These
features allow to (i) compute the fitness of the current se-
lected candidate in a fast way, and (ii) make the platform re-
active to changes in the application execution pattern, which
is obtained at runtime for the whole execution.

In our proposal, the configuration of the log/restore sys-
tem is represented as a bit string, whose sub-portions (genes)
represent the current values of the log/restore parameters
associated with each simulation object. In such a scenario,
compactness deals with keeping the size of the genotype
(namely the size of each gene) small. This is directly re-
lated to pragmatical effectiveness of the evolutionary ap-
proach since reduced size would provide faster convergence
towards an optimized configuration via genes evolution. On
the other hand, we do not want to loose expressive power
while representing log/restore parameters via a reduced size
gene. To cope with this aspect we decided to exploit lit-
erature results, in particular all those results (e.g., [10,27])
that have shown how the overhead directly imputable to
log/restore can significantly vary for variations of the log
interval around small values (e.g., a few units). On the
other hand, such an overhead varies in a much less signifi-
cant manner in case of variations of the log interval around
larger values (e.g., on the order of tens). Overall, we decided
to express the log interval within the gene associated with a
simulation object by bounding it to 40. However, not all the
possibilities within the admissible interval [1,40] are really
expressed by the gene. In particular, the representable log
interval values are non-uniformly scattered across that in-
terval, with higher density towards the lower extreme value
1, and reduced density towards the upper extreme value 40.
More precisely, our gene expresses each possible log interval
in case of corresponding small values, while it skips express-
ing some log intervals for corresponding larger values. In
more details, the log/restore gene associated with each simu-
lation object is expressed in our proposal by five bits (which
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we suggest to be embedded within a byte for optimizing
machine instruction patterns for accessing and manipulat-
ing the genes within any implementation one could devise
from our proposal). The most significant bit indicates the
log mode (1 for incremental and 0 for non-incremental, also
referred to as full log mode), and the least significant four
bits are used to access an array that maps 16 different log
intervals in the range from 1 to 40 according to the above
mentioned non-uniform approach as expressed by Table 1.
An example of genes associated with four simulation objects
is reported below:

10001010 00001110 00001000 10000000
115 F |35 F |10 11

Additionally, the evolution of the genotype is carried out
by evolving sets of genes in an independent manner. Specif-
ically, the aforementioned bit string is split across all the
involved simulation kernel instances, so that each instance
has a complete view of the log/restore configuration for the
simulation objects it is currently handling. According to this
architectural view, the evolution, driven by modifications of
the genotype, occurs according to a distributed scheme that
directly maps onto a multi-objective optimization where the
objective vector (y1,...,ym) is such that:

e m corresponds to the number of simulation kernel in-
stances involved within the optimistic run, and

e y; expresses the throughput of committed simulation
events by the i-th kernel instance, across all the hosted
simulation objects, within a GVT cycle (i.e., in be-
tween two subsequent GVT calculations).

In this way, we avoid each kernel instance to have a com-
plete panorama on the current log/restore configuration of
every simulation object and of the fitness of such a con-
figuration (as a whole), which would require some sort of
coordination, possibly producing performance degradations.
In other words, the above approach allows each simulation
kernel to locally evolve parts of the genotype as soon as the
new value of the GVT (and hence of the fitness value y;)
is available, without the need for waiting for a coordination
phase in which locally evaluated event rates are exchanged
across the kernels in order to define a unique event rate value
to be used for the assessment of the fitness of the current
genotype configuration as a whole.

On the other hand, the evolution of the portions of the
genotype hosted by different kernel instances gets correlated
by the a-posteriori evaluation via the fitness function. In this
way, in case the i-th kernel instance observes a negative vari-
ation of y;, possibly caused by a suboptimal configuration
across portions of the genotype hosted by different kernel
instances, it will trigger a mutation of its own portion that
will adjust the local configuration in order to provide ac-
tual synergy with the configuration portions hosted by the
other kernels. Alternatively, it will trigger a similar gene re-
arrangement on those kernels. In both cases, the genotype
evolves so to move away from configurations that are dis-
tant from the Pareto set, thus actuating configurations that
likely approximate one element of this set.

3.3 Gene Mutation

Our evolutionary algorithm can be considered a Genetic
Modifying Algorithm (GMA). Specifically, whenever we re-
ceive a reward value from the system (i.e., we are able to



assess the current system performance), we select those por-
tions of the configuration which can be considered to have
provided an improvement or a worsening in the computation
efficiency. In particular, whenever we have an enhancement
in performance, we can claim that changes in the genotype
that have occurred at the last evolution step, have produced
a better fitting individual, so we impose a mutation on those
parts of the genotype that were not touched in that evolution
step. On the other hand, whenever we detect a deteriora-
tion in performance, we can argue that the fenotype’s poor
quality comes directly from the current genotype. In this
case, we restore the snapshot of the genotype prior to the
last mutation, and resume performing mutations on it.

The genotype is started up in a random configuration.
Then the first transformation that occurs over this configu-
ration is associated with a random mutation. In particular,
a new string of bits is randomly generated and installed as
the current genotype. The above mutation, as well as any
subsequent mutation, is triggered upon the computation of
a new GVT value.

In every phase the i-th kernel knows the reward asso-
ciated with the current and the previous genotype snap-
shots, namely the corresponding values of y; expressing the
throughput of committed events by this kernel instance. De-
pending on the result of the comparison of these reward val-
ues, four possible actions can be taken by the evolutionary
algorithm in order to evolve the portions of the genotype
hosted by the i-th kernel instance:

e The last genotype configuration shows a significant im-
provement (over a certain threshold) with respect to the
previous configuration. In this case the genotype (rep-
resentation) undergoes a driven mutation step. The
parts of the current configuration that differ from the
previous configuration are kept, since they are likely
responsible for the improvement, while the rest of the
genotype is randomly modified to continue the evolu-
tionary process.

e The last genotype configuration shows a significant wors-
ening (over a certain threshold) with respect to the pre-
vious configuration. In this case, the previous genotype
snapshot is used to resume the evolution according to a
driven mutation step. Specifically, the parts of the pre-
vious gene configuration that differ from the last con-
figuration are kept since their modifications are likely
responsible for the worsening. The remaining parts of
the genotype get randomly modified to continue the
evolutionary process.

e The last genotype configuration shows a non-significant
improvement (under a certain threshold) with respect
to the previous configuration. In this case a new geno-
type is created randomly starting from the last adopted
configuration.

e The last genotype configuration shows a non-significant
worsening (under a certain threshold) with respect to
the previous configuration. In this case, a new geno-
type is created randomly. However, the older genotype
configuration (and its associated throughput) is kept,
instead of the last used one, for the comparison in the
next evolution phase.

The corresponding evolutionary algorithm pseudo-code is
provided in Figure 1.
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Upon event: new GVT
REWARD_CURR <— NEWLY_COMMITTED/TIME_SINCE_LAST_GVT;
if REWARD_CURR > REWARD_OLD then
DIFF < (GENE_OLD & GENE_CURR);
GENE_OLD <— GENE_CURR;
GENE_NEW <— (rand & —DIFF) | (GENE_CURR & DIFF);
else if REWARD_CURR < REWARD_OLD then
switch(GENE_OLD, GENE_CURR);
DIFF < (GENE_OLD ¢ GENE_CURR);
GENE_OLD <— GENE_CURR;
GENE_NEW < (rand & —DIFF) | (GENE_CURR & DIFF);
REWARD_CURR <— REWARD_OLD;
else if REWARD_CURR > REWARD_OLD then
GENE_NEW <— rand;
GENE_OLD <— GENE_CURR;
else
GENE_NEW <— rand;
REWARD_CURR <— REWARD_OLD;
end if
REWARD_OLD <— REWARD_CURR;

Figure 1: Evolutionary algorithm pseudo-code (used
by each kernel for updating the local portion of the

genotype).

3.3.1 Discussion

Amongst the above four evolutionary steps, the third and
fourth steps can be considered as the ones more tightly
linked to a very casual generation of new individual configu-
rations. On the other hand, the strength of an EA relies on
its ability to provide mutations that are actually oriented to
improvements of the individual vs the external environment.
This would entail a form of avoidance of purely casual muta-
tions, at least for stable environmental conditions, in order
to mimic a kind of evolution process where the history of
genotype configurations of better fitting individuals is kept
(at least partially) over the subsequent evolution steps. As
for this aspect, we note that the purely casual determina-
tion of a new configuration according to the third/fourth
step above likely can not repeatedly happen many times
in case the environment is stable. This is because, for a
same environmental configuration (e.g., application execu-
tion pattern) the likelihood of keeping a very similar perfor-
mance level while repeatedly selecting a random genotype
likely decreases from generation to generation. On the other
hand, in case of continuous environmental variations (where
repeated selections of random genotypes might be induced
by the above third/fourth step due to casual interactions
with environmental changes), such a purely casual selection
process represents the strength of the evolutionary process,
since the history of the genotype improvements is no more
reflected in genotype adequacy vs the changed environmen-
tal conditions.

As a last note, the driven evolutionary process embedded
within the first and second steps listed above, have been con-
ceived according to the classical hypothesis that the recent
past behavior is expected to be representative of the immedi-
ate future. In particular, these evolution steps assume that
a significant improvement or decrease of the reward function
is mostly related to good or bad past choices while modifying
the genotype, and not to relatively fast variations of the en-
vironmental conditions. This assumption can be subverted
since reward variations might be directly induced by envi-
ronmental variations having a strong, direct impact on the
reward metric. As an example, when the (average) event
granularity associated with the running simulation model
changes over time, this is reflected into changes of the y;
value observed by the i-th kernel, which might be negative



even though the genotype modification by that kernel would
have fit the original event granularity configuration. In such
a case, by structure, the evolutionary algorithm will likely
bias its execution (in subsequent adaptations) towards step
three and step four. Thus the above depicted purely-casual
evolutionary process will be triggered which will lead, over
time, to a different genotype configuration, optimized for the
newly materialized environmental conditions, once (and if)
they become stable (at least for a while).

3.4 Implementation within ROOT-Sim

We have implemented the evolutionary log/restore algo-
rithm within the ROme OpTimistic Simulator (ROOT-Sim).
This is an open source, general purpose platform developed
using C/POSIX technology, which is based on a simulation
kernel layer that ultimately relies on MPI for data exchange
across different kernel instances. The platform transparently
supports all the mechanisms associated with parallelization
(e.g., mapping of simulation objects on different kernel in-
stances) and optimistic processing, which is carried out in
compliance with the Time Warp protocol as specified in [15].
The platform API exposed to the application programmer
is quite simple, and consists of one service, namely Schedu-
leNewEvent (), and two callbacks, namely ProcessEvent ()
and OnGVT(). The corresponding execution semantics are
provided below:

e ScheduleNewEvent () allows injecting a new simulation
event within the system, to be destined to whichever
simulation object, either locally hosted by the same
kernel instance, or by a different kernel instance. The
input parameters specify the destination object, sim-
ply identified via a numerical code, the timestamp for
the event to be scheduled, and the event payload (as a
flat sequence of bytes).

e ProcessEvent () supports the actual processing of sim-
ulation events. By this callback the kernel gives con-
trol to the application layer, in particular to a specific
simulation object, in order to execute a single simu-
lation event. The identity of the dispatched object is
specified by the numerical code univocally identifying
the object within the system, which is passed as input
parameter to the callback together with the payload of
the event, and the event timestamp.

e OnGVT() allows passing control to the application layer
by also providing a reference to a committed snapshot
of the simulation object. This facility can be used to
support (periodic) audit of the object state trajectory,
or to support distributed termination detection via the
verification of application level stable predicates as dis-
cussed in [7].

ROOT-Sim embeds advanced mechanisms for transpar-
ently supporting non-incremental log/restore of simulation
object states scattered across non-contiguous, dynamically
allocated memory chunks [35], and a complementary exten-
sion based on transparent, light instrumentation techniques,
allowing the tracking of memory updates occurring within
the dynamic memory map, so to enable log/restore incre-
mentality [22]. The dynamic memory map associated with
whichever simulation object is controlled by ROOT-Sim via
a simulation kernel level hook of standard services offered
by the malloc library. In particular, each time a memory
allocation/deallocation occurs, the hook intercepts the call
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and, depending on whether we were executing within appli-
cation or kernel level contexts, different actions are taken.
In case the execution was in kernel mode, then the actual
service offered by the malloc library gets executed. Other-
wise, the service call is redirected to the memory map man-
ager [35], which serves dynamic memory allocation/release
operations via a second level pre-reserving scheme (on top
of the real malloc services). In this way, dynamic mem-
ory buffers destined to the use by whichever simulation ob-
ject are mapped to blocks of contiguous virtual addresses so
to maximize locality (which likely favors log/restore opera-
tions, implemented as pack/unpack to/from log buffers) and
to minimize the size of second level meta-data used to track
chunks currently allocated within the state layout.

To enable incremental logging, the memory-map man-
ager has been successively integrated with a compile/linking
time instrumentation tool (which has been tailored for IA-
32/x86-64 architectures and the ELF) allowing transparent
integration of a lightweight tracking mechanism of update
operations occurring within the scattered memory-map as-
sociated with the object state [22]. Every application level
module is instrumented via the insertion of a call to an as-
sembly monitor right before each memory-write instruction.
The monitor retrieves the exact address of the memory-write
instruction via the Program-Counter return value registered
within the monitor stack-frame, and uses it to access a hash
table acting as a cache of disassembling records, which tells
the monitor how to reconstruct (on the basis of the cur-
rent value of CPU registers) the exact address/size of the
memory area to be dirtied by the memory-write instruc-
tion. According to this design, the tracking mechanism for
write operations operates with arbitrary granularity, thus
the architecture is capable of identifying memory updates at
the level of each single chunk dynamically allocated within
the simulation object memory map. Actually, incremen-
tal logging has been enabled in ROOT-Sim even in cases
where the memory map of any object gets altered via a
third party library. In fact, beyond capturing any memory
allocation/release, even occurring inside a library (via the
aforementioned hook), standard libraries are wrapped in or-
der to determine touched memory areas within the object
state layout via the corresponding parameters (?).

In a very recent advance [36] we have further extended
the instrumentation tool so to provide supports for coexis-
tence of incremental and non-incremental logging. In par-
ticular, automatic ELF rewriting schemes have been used
to transparently create, starting from the same set of ap-
plication level modules, two different text sections within
the ELF, one containing a non-instrumented version of the
compiled modules, and the other one containing the instru-
mented counterpart. These two sections are then transpar-
ently placed within different virtual memory sections using
standard 14 facilities. Further, the corresponding symbol
tables are modified by our preprocessing/instrumenting tool
in order to expose the application interface requested by
the underlying simulation kernel, namely the event handler
callback, via differentiated symbols. In this way, once the
executable is finally built and run, a kernel level run-time
switch between the two different log modes simply involves
reassigning the callbacks’ pointers within the ROOT-Sim
APT to the entry point symbol associated with the corre-

%In this way third party libraries are not instrumented, thus
remaining available for conventional use to the simulation
kernel.



sponding version of the dual-coded application level mod-
ules. Also, each log mode is supported according to a highly
optimized run-time scheme, where memory update tracking
gets completely excluded (thus avoiding at all the associ-
ated costs) whenever the kernel decides to switch to the
non-incremental log mode. Such a dual-coding mechanism
was complemented via analytical performance models used
to built an autonomic manager able to dynamically switch
to the well suited log mode (and correspondingly tune the
log interval) [36]. The autonomic manager mandatorily re-
quires monitoring fine-grain latency parameters (e.g., the la-
tency for processing each single event, or for taking each sin-
gle incremental /full log) appearing within the performance
models. This has been done by relying on the gettimeofday
service, offering access to elapsed-time timers (not real CPU
usage timer). Such a solution results therefore tailored for
scenarios where the computing platform is reserved for the
optimistic simulation run.

3.4.1 Implementation Details

We have added data structures and control logic exactly
implementing the evolutionary log/restore algorithm on top
of such an optimized dual-coding architecture, thus inherit-
ing that, whichever log mode is evolutionary selected for a
given execution phase, it is run in a highly optimized man-
ner. On the other hand, a change in the design direction has
been adopted for what concerns the supports for the evalua-
tion of the reward function (namely the throughput of com-
mitted events y; on each kernel). In particular, we decided to
rely on real CPU usage, instead of elapsed-time timers, since
this approach allows employing the algorithm also in sce-
narios where the computing platform is shared among mul-
tiple applications, thus widening its applicability compared
to the autonomic approach provided in [36]. Mainstream ex-
amples of those kind of shared environments are related to
Cloud Computing technology, where virtualized infrastruc-
tures possibly devoted to the optimistic simulation run are in
their turn hosted (possibly according to sharing policies) by
a real computing environment. To capture real CPU usage
information we have exploited the getrusage service, which
belongs to the standard API provided by POSIX compli-
ant operating systems. This service is not able to capture
CPU usage with granularity at the level of microseconds,
since it relies on software level times maintained by POSIX
compliant kernels. On the other hand, GVT recalculation
in optimistic simulation platforms typically occurs accord-
ing to periods on the order of tens of milliseconds, or even
seconds, in order to keep the overhead of the GV'T protocol
low. Hence, real CPU usage for intervals with granularity
on the order of at least tens of milliseconds can be safely
catched via such a standard operating systems service. This
provides accuracy to how in our implementation the fitness
function (i.e., the reward y;) gets evaluated for a give geno-
type configuration.

As a last note, the extension of the memory map manager
presented in [22], tailored to support incremental logging, is
based on an approach that allows state recovery operations
by accessing log chains that can contain both full and incre-
mental logs according to an interleaved scheme. Also, even
when operating according to the incremental mode, some
full logs can be sparsely forced to optimize recovery oper-
ations and, more important, to enable effective fossil col-
lection operations upon GVT calculations. By this design
approach, any switch between full and incremental logging
by our evolutionary algorithm only entails setting the (per
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simulation object) log-mode flag, and updating the afore-
mentioned callback pointers to be used as application ac-
cess points within the dual-coding scheme. Overall, the un-
derlying state recovery logic transparently supports correct
state reconstruction even in case a mix of incremental and
full logs needs to be accessed within the log queue, without
the need for any additional synchronization aimed at explic-
itly avoiding the possibility to rollback to a simulation time
when a different logging approach was being used for the
corresponding forward computation phase.

4. EXPERIMENTAL RESULTS

As test-beds for the experimental study we have used
two different wireless-system simulation models adhering to
GSM technology. The first model refers to GSM coverage
along a ring highway while the second model refers to wire-
less coverage of a square urban area. In our simulations,
communication channels are modeled in a high fidelity fash-
ion via explicit simulation of power regulation/usage and
interference/fading phenomena on the basis of the current
state of the corresponding cell (also expressed as a func-
tion of current meteorological conditions). The power reg-
ulation model has been implemented according to the re-
sults in [16]. Specifically, each modeled GSM cell tracks
via dynamically-allocated data structures, channel alloca-
tion and power management information for ongoing calls.
Upon the start of a call destined to a mobile device currently
hosted by a given GSM cell, a call-setup record is instanti-
ated within the simulation model via dynamically-allocated
data structures, which gets linked to a list of already active
records. Each record gets released when the correspond-
ing call ends or is handed-off towards a different adjacent
cell. In the latter case, a similar call-setup procedure is ex-
ecuted at the destination GSM cell. Upon call-setup, power
regulation is performed, which involves scanning the afore-
mentioned list of records for computing the minimum trans-
mission power allowing the current call-setup to achieve the
threshold-level SIR value. Data structures keeping track of
fading coefficients are also updated while scanning the list,
according to a meteorological model defining climatic condi-
tions (and related variations). The climatic model accounts
for variations of the climatic conditions (e.g., the current
wind speed) with a minimum time granularity of ten sec-
onds. The employed simulation models have been devel-
oped for execution on top of the ROOT-Sim environment in
a way that each simulation object models a single GSM cell.
The ProcessEvent callback issued by the ROOT-Sim ker-
nel involves therefore the update of individual cells’ states,
and cross-object events are essentially related to hand-offs
between different cells.

The platform used for testing our proposal is a 64-bit
NUMA machine composed by two AMD Opteron 6174 pro-
cessors and 32GB of RAM memory. Each processor has 12
cores that share a 12MB L3 cache, each core has a 512KB
private L2 cache and 2200MHz speed. The software archi-
tecture consists of 64-bit Suse Enterprise 11, with Linux
Kernel, version 2.6.32.13. The compiling and linking tools
used are gcc 4.3.4 and binutils (as and 1d) 2.20.0.

In the experimental study we have measured the follow-
ing two key performance indicators: (A) The variation of
the amount of committed events per wall-clock-time second
(which we refer to as event rate) achieved while simulating
specific virtual time periods, represented by the variation of
the GVT on the x-axis. Actually, this parameter indicates



the speed according to which a given virtual time period is
simulated. The higher the event rate, the faster the execu-
tion while simulating a given virtual time period. (B) The
cumulated amount of committed events vs the wall-clock-
time for the simulation run. This parameter expresses the
ability of each log/restore configuration to commit events
(and hence to carry out useful simulation work) while the
wall-clock-time goes ahead, hence we have a representation
of how fast the simulation model is executed vs wall-clock-
time, which is a representation of the perceived execution
speed. Actually, the reported event rate is sampled over
a single run (for easiness of showing) while the number of
cumulated events (throughput) is the average over 10 runs,
for which we also report the standard deviation. Also, we
have set to the fixed value of 5% the threshold determining
the changes in the event throughput triggering the different
evolutionary step in the proposed algorithm. A study on the
sensibility vs variations of this threshold, and on the possi-
bility to adapt the threshold value dynamically is demanded
to future work.

We report plots for a comparison of the evolutionary al-
gorithm provided in this article vs the autonomic solution
in [36] (based on analytical modeling of the direct effects of
log/restore tasks). This solution has been already shown to
outperform approaches alternatively based on the use of in-
cremental or non-incremental log/restore, but not support-
ing optimized coexistence of the two different modes. In
other words, we compare the evolutionary approach against
an highly optimized log/restore solution. However, to show
that the experimental study has been carried out in the con-
text of a competitive parallel execution scenario, we also re-
port performance data related to serial execution of the sim-
ulation models based on the calendar queue scheduler [28].

Figures 2(a) and 2(b) show the results for the GSM cover-
age network along the ring highway around the city of Rome,
namely the Grande Raccordo Anulare (GRA). The length of
GRA is 68 Km and GSM connectivity is guaranteed via 8
GSM cells, each offering up to 9 Km of coverage along the
highway. Hence, for this model, we have 8 simulation ob-
jects, each hosted by a different kernel instance running on a
dedicated core on the underlying machine. As in the actual
system organization supported by in the charge Telecommu-
nication Company, each cell hosts 1000 radio channels [2].

We have simulated a whole week of operativity of the GSM
coverage system along the highway, by explicitly accounting
for dynamic day-time traffic variations, and differentiated
climatic conditions. Statistics about the vehicle-traffic vari-
ations have been derived from [1]. Simulated night-time pe-
riods are characterized by near-zero utilization factors (cor-
respondingly less than 800 vehicles run along the highway
in night periods), while rush hours may lead to definitely
higher channel utilization factors. For non-weekend days, we
have a whole day split into a night-time period, with mini-
mal channel utilization factor, and the remaining part of the
day into alternate rush and normal traffic hours. Day-time
normal/rush periods lead in our simulations to an increase
in the call arrival frequency per cell, and hence to an increase
in the channel utilization factor, which depends on the rela-
tive density of vehicles along the ring highway on the basis of
the statistics in [1], and on how the mean of an exponential
distribution for the call inter-arrival time varies according
to that density. Specifically, the average channel utilization
factor gets up to 55% in rush periods considering an average
call duration of 120 seconds, with oscillations that can lead
to even higher peaks. According to [1], weekend days have
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a different workload, which exhibits a behavior in between
normal and night ones. Exact traces for calls involving mo-
biles along the highway could not be directly used due to
privacy issues.

By the results, we see that, the autonomic system exhibits
a slightly better perfomanche during nigh-time periods and
weekends. This is due to the fact that when the system is
lightly loaded, there is reduced competition for the cache
against the underlying simulation kernel (we recall that for
this test-bed we have a single object mapped to a kernel in-
stance), since the object modeling the cell exhibits a reduced
size state due to the minimal number of records allocated for
ongoing calls. In this scenario, the autonomic system is ca-
pable of depicting with a higher precision application-level
dynamics, and at the same time the effects of hidden dynam-
ics (such as locality variations due to interactions between
application and kernel layers) are not so relevant.

This is not the case for day-time periods, where the size
of the simulation objects’ states can grow significantly (es-
pecially for rush hours), and the access/update pattern of
the state upon the occurrence of the events, together with
housekeeping operations by the kernel (e.g., log operations)
may produce secondary locality-variation effects which are
indirectly captured by the evolutionary algorithm.

Furthermore, in the cumulated-committed-events plot we
can see that, although the autonomic configuration pro-
duces a curve with a sheer slope during the night and week-
end periods, the evolutionary algorithm produces a better
throughput during the overall execution, since the workload
associated with day-time periods exhibits runtime dynamics
which, as said above, cannot be completely captured by the
autonomic system.

In Figures 2(c) and 2(d) we present the event rate and
the number of cumulated events (throughput) for the second
test-bed application, which simulates 2048 GSM micro-cells
(showing classical hexagonal shape), still managing 1000
channels, serving a square urban area. The correspond-
ing 2048 simulation objects are equally distributed across
24 instances of the simulation kernel, each one running on
one of the 24 cores available within the computing platform.
The application layer simulates a variable traffic workload,
which is split into several phases of a same duration, to each
of whom a particular system’s average workload is associ-
ated. The workload, expressed in terms of arrival rate of
calls to each cell, varies in between a minimum and maxi-
mum value which lead, respectively, to about 5% and 25%
of the highest workload sustainable by the telecommunica-
tion infrastructure (in terms of channel occupancy). Phases
are distinguished between even and odd ones, the former
having a workload which is always increased towards the
maximum value, the latter having a workload which is de-
creased towards the minimum. Call duration and hand-off
intervals are selected according to an exponential distribu-
tion [4], whose mean value is, respectively, 120 seconds and
300 seconds.

The results show that, although both the autonomic and
the evolutionary approaches present an event rate which,
as natural, depend on the execution dynamics characteriz-
ing specific phases, the evolutionary algorithm provides a
better throughput. In fact, in Figure 2(d) we see that the
curve associated with the evolutionary algorithm presents
a slope steeper than the autonomic, producing an enhance-
ment in the performance of about 20%. We argue that this
gain is related exactly to the fact that optimization of the
log/restore parameters by relying on performance models
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Figure 2: Experimental results.

only expressing direct effects of the associated operations
(as the autonomic scheme does) does not capture significant
aspects, which acquire further relevance for this test-bed ap-
plication (compared to the previous test-bed). In fact, the
definitely larger amount of simulation objects hosted by each
kernel instance likely induces, e.g., higher contention within
the caching hierarchy. This occurs not only in relation to
the larger amount of virtual addresses accessed (in phase
interleaved mode) while the hosted simulation objects are
alternatively dispatched for event execution on a same ker-
nel instance (compared to the case in which a single object
is hosted), but also because housekeeping operations by the
kernel need to span a larger amount of virtual addresses due
to, e.g., event lists and log queues to be maintained.
Further, we can see that the fluctuations in the evolution-
ary algorithm event rate, due to the algorithm intrinsic of
searching for a better solution (we recall that the algorithm
always tries to explore the search space to determine whether
the environmental settings underwent some changes), never
produce an extreme worsening in the event rate itself (even
when a currently optimum value has been reached), thus
keeping its mean value above the one by the autonomic
scheme. In addition, we want to emphasize how this behav-
ior allows the algorithm to take into account environmental
changes in a fast way, causing its learning curve to be really
sharp, and allowing the system to cope with environmental
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changes in a way which is definitely comparable to the auto-
nomic’s, which is on the contrary based on a closed-formula
and on time measurements, thus providing a mode switch
as fast as possible.

As for the comparison with serial execution, we have re-
ported a zoomed view over the amount of committed events
achieved by the serial run in the proximity of the wall-clock-
time interval where the parallel runs get completed. By the
results we see that the speedup by the parallel run is on the
order of 1.5 for the smaller ring-highway model (with 8 sim-
ulation objects running on 8 cores), and is on the order of
30 (i.e., super-linear) for the larger urban area model (with
2048 simulation objects running on 24 cores).

The above discussed results provide a view of the overall
performance achievable by our proposal. Given that the
autonomic model was strongly optimized, since it was based
on analytical and dynamic (re-)selection of well suited log
intervals, and given that it had been proven to outperform
classical checkpointing schemes, this is a significant result.

5. CONCLUSIONS

In this paper we have presented the design and implemen-
tation of a log/restore layer for optimistic simulation sys-
tems based on an innovative evolutionary algorithm. The
algorithm constantly explores the search space of possible
configurations of log intervals and log modes (incremental



vs non-incremental), looking for an effective approximation
of one element of the Pareto set, which is expected to pro-
vide the optimized performance. Further, the effectiveness
of the approach has been tested with real-world case studies
related to wireless connectivity along a ring highway, and on
a square urban area.
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