
Simulation-based Deadlock Avoidance and Optimization in
Bidirectional AGVS

Iryna Felko
Department of Computer Science

TU Dortmund
D-44221 Dortmund, Germany

iryna.felko@udo.edu

ABSTRACT
Autonomous guided vehicle systems (AGVSs) are popular in
production systems, container ports, and intra-logistics. An
efficient deadlock avoidance algorithm preventing long vehi-
cle blockings and solutions to idle vehicles blocking others
are required for bidirectional AGVSs. A symbiotic simula-
tion resources scheduling decision support method is devel-
oped, including identification of route segments where dead-
locks can potentially occur and an accordingly integrated
banker’s algorithm. Based on multiple online what-if simu-
lations, the best deadlock safe resources schedule is deter-
mined for each short period just before the vehicles move.
This proactive what-if analysis of resources utilization, al-
ternative routes and dynamic parking strategies allows the
minimization of the vehicles’ total blocking time. Combining
symbiotic simulation and a real time control of autonomous
guided vehicles increases the AGVS’s efficiency – in terms
of deadlock safety and minimizing the total vehicle blocking
time. This method enables AGVS performance evaluation
under arbitrary dispatching, routing, scheduling and guide-
path design strategies.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Types of Sys-
tems—decision support, logistics; I.2.8 [Artificial Intelli-
gence]: Problem Solving, Control Methods, and Search—
heuristic methods, scheduling

Keywords
symbiotic simulation, autonomous guided vehicle, deadlock
avoidance, DES, banker’s algorithm, idle vehicle dynamic
positioning

1. INTRODUCTION
Autonomous guided vehicles (AGVs) are advanced ma-

terial handling devices used to transport pieces among the
workstations in manufacturing facilities, warehouses and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2010 ICST, ISBN 78-963-9799-87-5.

transshipment terminals ([15], [8]). Usually AGVS are di-
rected by a central real time controller ([15]) operating AGVs
and implementing control strategies for tactical decisions.
Operating vehicles in such a system implies dealing with
well-known highly complex traffic problems such as collision
prevention, deadlock avoidance and scheduling. This paper
focuses on deadlocks that are caused by guidepath sharing in
a bidirectional AGVS (autonomous guided vehicle system).
The related work on the field of deadlock avoidance in ma-
nufacturing systems has been done ([9], [19], [16]). Often
the drawbacks of strategies that are used in practice remain
the restrictivity which often leads to a decrease of resource
utilization in a system. A deadlock avoidance strategy in
bidirectional AGVSs taking the total blocking time of vehi-
cles into consideration needs improvement.

In AGVSs resources are assigned to vehicles and released
from vehicles after reaching the next checkpoint position
on the guidepath, thus resulting in a sequential resources
assignment problem specification. If the system contains
shared resources, decisions to appropriately assign resources
to vehicles can have serious effects on system performance,
e.g. resulting in blocking as a temporary effect. A deadlock
occurs when blocking develops into a circular waiting situa-
tion involving at least two vehicles ([6]). Then the activity
of involved AGVs comes to a halt until it is resolved by ex-
ternal intervention. In this paper, the method for deadlock
avoidance for an AGVS modelled as a sequencial resource
allocation system (RAS) ([19]) is developed. The method
considers the total vehicle blocking time caused by vehicle
interference and waiting time as a side effect of deadlock
avoidance, thus determining the resources schedule minimiz-
ing the total travel costs. Another important issue studied in
this paper, which has been considered in the online simula-
tion, is idle vehicle positioning ([11]). Most scheduling prob-
lems suppose that, vehicles can stay on their last job’s des-
tination position, however this is not true with some AGVS
that do not have dedicated docking and parking locations
for vehicles. We define the idle vehicle positioning problem
for such systems and also integrate developed strategies into
the online simulation ([10], [2], [1], [14]), which enables us to
analyse their performance. AGVS is modelled as DES. The
corresponding model contains the predefined set of vehicles’
routes and is used in a deadlock avoidance algorithm. Of
course, discrete event simulation of AGVs is not a new idea,
but a combination of deadlock avoidance algorithms with an
online simulation allows one to determine the best resource
assignment strategy for each short period just before the
vehicles move, thus supporting and optimizing an AGVS.

The progress of developed what-if simulations is surely de-
terministic, but this assessment of the future can be used
to detect future critical conditions and to compare the im-
pact of choosing different alternative and parking routes on
the total vehicle blocking time. Online simulation systems
that interact and exchange information in real time with the
physical system are still missing on the field of AGVSs. The
rest of this paper is organized as follows. Section 1.1 de-
scribes the sequential resource allocation and greedy dead-
lock avoidance strategies existing in the reference system.
Section 2 develops a deadlock avoidance strategy based on
vehicle routes comparison. The AGVS model and optimiza-
tion are described in section 3 along with an example. The
integration of the banker’s algorithm into the online simula-
tion is discussed in section 4. A description of an idle vehicle
problem and solutions to it are presented in section 5. Fi-
nally, the last section presents some conclusions drawn from
our work and some prospects for further research issues in
the field of AGVS.

1.1 Preliminaries
In our resources scheduling model the AGV’s route is

known in advance and is represented as a sequence of re-
source sets p =< rs1, rs2, ..., rsn >. A resource set rsi con-
sists of a path e(vj , vk) and its destination position vk (both
corresponding to an edge and a vertex in a guidepath graph
([19]). The resource set assigned to a vehicle corresponds to
an atomic movement of the vehicle from one position to the
next adjacent one. Before a vehicle movement is permitted
the corresponding resources set has been requested and suc-
cessfully granted by a scheduler instance. Initially a vehicle
allocates some position v1 and before moving requests a first
resource set rs1 = {e(v1, v2), v2} on the assigned route. Be-
ing granted the needed resources it moves to the next point
v2 along the path e(v1, v2). Reaching the position v2 it re-
leases the allocated initial position v1 and requests the next
resources set rs2 = {e(v2, v3), v3}. The vehicle’s operations
order is relevant to the scheduling process. For further con-
sideration the representation of the AGV’s route is reduced
to a sequence of positions p =< v1, v2, ..., vn >.

The reference system ([18]) uses a greedy deadlock avoi-
dance strategy based on dynamic zone planning ([15]). Dy-
namic zone planning is an efficient method to avoid dead-
locks and collisions, where zones are not fixed and can be
changed according to the traffic flow in the system. The
main idea is, that when a vehicle arrives at a zone, the con-
troller checks for the presence of another vehicle in this zone.
If a vehicle is already traveling in this zone, then the vehicle
intended to enter that zone has to wait until the other has
passed. Thus, a requested resource set is only granted to
a vehicle, if all resources of the route are available at once.
This strategy is effective with regard to deadlock avoidance
excluding all potential vehicle interferences but is inefficient
with regard to resource utilization.

2. IDENTIFICATION OF CRITICAL PATH
SECTIONS

We give a formal description for the emergence of dead-
lock if two AGVs move along the same path in the opposite
direction. As described in the preliminaries, consider a given
AGV route as a sequence of resource sets; such a route can
be represented as a sequence of positions. For such a given

ai

V1

driving direction

aj

V2

driving direction

aj+1

bk+1

ai−1

bl−1

Figure 1: The deadlock with involving vehicles V1

and V2: V1 allocates position ai and requests a next
position aj = bk, since V2 allocates position aj and
requests a next position ai. Both AGVs are blocked
and must wait for resource release.

route, all positions will be covered in the order defined by the
sequence. E.g. the route for AGV V1 is p = (a1, a2, ..., an)
and the route for AGV V2 is q = (b1, b2, ..., bm). If two
given AGVs move along the same path in the opposite di-
rection, it holds that ai, ..., aj = bl, ..., bk, bl, ..., bk ∈ rev(q)
and |ai, ..., aj | ≥ 2. If such similar segments in two re-
source sequences can be found, the corresponding path seg-
ments will be shared by both competing AGVs. To avoid
a deadlock shared path segments can be occupied by only
one vehicle at a time. Figure 1 illustrates a deadlock oc-
curence for two vehicles V1 and V2 moving along the same
path in the opposite direction. Examining the sequence p
and the sequence rev(q), we can find a correspondence be-
tween two routes, namely a shared subsequence of positions
ai, ..., aj = bl, ..., bk with a length ≥ 2 (at least two resources
are required for forming a deadlock involving two AGVs). If
we do find such a shared subsequence, the following sufficient
condition may hold for the occurence of a deadlock involv-
ing V1 and V2: The position ai has been allocated by V1 and
the next position in V1’s resources sequence is ai+1. The
position bj has been allocated by V2 and the next position
in V2’s resources sequence is bj+1. Furthermore ai = bj+1

and bj = ai+1.
This situation represents a classical deadlock, no AGV

can continue processing its assigned route. The requested
resources ai+1 and bj+1 can only be granted if the currently
allocated resources ai, bj are released by both AGVs, but no
resources can be released because the requested resources are
not available. Such deadlock situations would typically be
resolved manually. We define a resource sequence ai, ..., aj as
a critical section belonging to V1. Since ai, ..., aj = bl, ..., bk

and the critical section is a shared subsequence of resources
that must be used in the given order, the critical section of
AGV V2 is defined as bk, ..., bl.

We developed an algorithm for determining critical path
sections for all AGVs in a system. Such critical path sec-
tions represent a structural precondition for the deadlock
occurence: If AGVs allocate resources within the same cri-
tical section simultaneously or if one AGV enters a critical
section while the other one is already within, a deadlock will
occur.

The length of a critical section is bounded below by 2.
With a critical section of a length greater than 2 a dead-
lock would arise somewhere along the critical section if no
of involved AGVs is not either rerouted or forced to wait out-
side the considered critical section. Representing an AGV
route as a sequence of check points, we convert the two con-
sidered AGV routes into resource sequence notation p =
(a1, a2, ..., an) and q̃ = (bm, bm−1, ..., b1), with the resource

an...aj+1

aj = bkai = bl

bk+1 ... b1

b1 is allocated by AGV V2

ai−1...a1

a1 is allocated by AGV V1

bl−1...bm

Figure 2: The relation between the path p = (a1, ..., ai−1, ai, aj , aj+1, ..., an) for AGV V1 and the path q =
(b1, ..., bk, bk+1, bl, bl−1, ..., bm) for AGV V2, where ↔ denotes guide paths.

sequence of the second AGV being considered in reversed
order.

We extend the above ideas to find all pairs of segments
with the length bounded below by 2, one from each of two
long sequences, such that there is no other pair of segments
with greater homology. This problem corresponds to the op-
timal local alignment problem in molecular sequence analy-
sis, so the Smith-Waterman algorithm can be applied to find
all similar segments in two resources sequences ([21], [17]).
The Smith-Waterman algorithm uses a dynamic program-
ming method for generating the alignment matrix provid-
ing sequence alignment score values. Ordinarily, the Smith-
Waterman algorithm computes an optimal local alignment
for two given sequences. If we consider and follow all paths
with a length ≥ 2 in the generated alignment matrix, all
local alignments can be determined.

2

V1

3

1

4 5

V2

Figure 3: The part of transportation net with high-
lighted drive directions of AGVs. The AGV V1 has
to travel the route A = (2, 3, 4, 5) and the AGV V2 has
to travel the route B = (5, 4, 1, 3, 2), both represented
as a sequences of check points in the transportation
net.

Consider the example in figure 3 where two vehicles share
the same subsequence of positions. The corresponding align-
ment matrix M computed by the Smith-Waterman algo-
rithm on the sequences A and B is illustrated on figure 4.
s[i, j] contains the score value and the appropriate arrow

for the entry that has maximized this score. The value 2
in s[2, 2] is the alignment score for the first similar subse-
quence s1 = (2, 3). The next value 2 in s[5, 4] in the lower
right corner of the table is the alignment score of a subse-
quence s2 = (4, 5) of A and B′ = rev(B). For i, j > 0,
the value s[i, j] depends only on whether ai = bj and the
values s[i − 1, j − 1], s[i − 1, j] and s[i, j − 1], which are
computed before s[i, j]. To reconstruct the elements of ho-
mologous subsequences, follow the arrows in s[i, j] from the
lower right corner. Each ↖ on the path corresponds to an
entry for which ai = bj is a member of a local alignment.

Consider one part of the transportation net represented
in the figure 2. The solution of the local optimal alignment
problem delivers correlations for two resource sequences p =
(a1, a2, ..., an−1, an) and q̃ = (bm, bm−1, ..., b2, b1) resulting
in similar subsequence s1 = (ai, aj = bl, bk). The result of

j 0 1 2 3 4

i bj 2 3 4 5

0 ai 0 0 0 0 0

1 2 0 1 0 0 0

2 3 0 0 2 1 0

3 1 0 0 1 1 0

4 4 0 0 0 1 0

5 5 0 0 0 0 2

Figure 4: The alignment matrix M .

the comparison of the sequences p and q̃ are:

p = a1 ... ai−1

s1z }| {
ai aj aj+1 ... an

q = bm ... bl−1 bl bk| {z }
s1

bk+1 ... b1

As a result of the comparison all determined critical sec-
tions have to be distinguished and each considered resource
sequence has to be separated in segments. Then the re-
source sequence consists of segments corresponding to the
critical sections and such segments containing the rest of
the resource sequence. The following example illustrates the
sequence separated in segments:

p = [a1 ... ai−1] [

s1z }| {
ai aj] [aj+1 ... an]

q̃ = [bm ... bl−1] [bl bk| {z }
s1

] [bk+1 ... b1]

The segment [ai aj] is the critical section determined for the
first considered route p. The segment [bk bl] is the critical
section for the second route q. These segments are the result
of sequence alignment and a useful indicator that the route
segment [aiaj = blbk] will be shared by both AGVs. If both
considered AGVs allocate resources within the same criti-
cal section s1 and request the resources in the given order
a deadlock will occur. These insights have been used to de-
velop an adequate deadlock avoidance strategy. Hence the
deadlock avoidance policy may ensure mutual exclusion for

Algorithm 1 Preprocessing procedure

Require: Not empty set R with cardinality n ≥ 1 containing resources sequences
Ensure: All local alignments for all n resources sequences
1: for all Ri such that 0 ≤ i ≤ n − 1 do
2: for all Rj such that 0 ≤ j ≤ n − 1 ∧ i �= j ∧ Ri and Rjhas not been compared do
3: R′

j ← reverse(Rj)
4: A ← smith waterman(Ri, R

′
j) {Smith-Waterman procedure returns a set A of all local alignments}

5: if A �= ∅ then
6: R̃i, R̃j ← split resources sequences Ri and Rj according to identified critical sections
7: Create mapping for Ri to tupel (Rj , R̃i) and for Rj to tupel (Ri, R̃j) {The tupel (Rj , R̃i) consists of the compared

resources sequence Rj and the corresponding splitted resources sequence R̃i}
8: end if
9: end for

10: end for

resource utilization within the critical section. Before grant-
ing V1’s resources request, the policy checks if a competing
AGV V2 has already allocated resources inside this critical
section. If so, V1’s resource request will be rejected, which
results in V1 being blocked as long as V2 holds resources in
the critical section. In the case that both competing AGVs
want enter the critical section at the same time, the decision
maker instance has to determine a schedule for participating
AGVs, i.e. the order of resource allocation. This decision
impacts the global blocking time in the system either nega-
tively or positively. Hence the problem under study is not
only deadlock avoidance during real-time control but also
a simulation-based scheduling mechanism. In our proposed
framework we demostrate a simulation predicting future sys-
tem performance based on current decisions on resource al-
location by running in fast mode. The results of the fast
mode analysis will be used by the decision maker instance
in control mode to avoid deadlocks and to minimize total
blocking times in the system.

The deadlock avoidance preprocessing procedure (see al-
gorithm 1) perfoms a resource sequence comparison for routes
of all active AGVs in the system. It is possible that a re-
source sequence contains shared subsequences with more
than one other resource sequence in more than one local
alignment segment. Then the information about resources
sequences is stored in a predefined data structure contain-
ing a mapping of a considered resource sequence ri to com-
pared routes r1, ..., rz and determined critical sections for
all compared routes. Once the data structure has been con-
structed, the information about critical sections and corres-
ponding routes can be efficiently acquired at runtime. The
Smith-Waterman algorithm runs in O(c2), c being the ave-
rage route length for the given transportation net. The pre-
processing procedure must be performed for all n routes,
resulting in a runtime complexity of O(n2c2). When a new
route is added to the system, the corresponding resource se-
quence is compared with resources sequences of all existing
routes.

3. ONLINE SIMULATION METHOD
The main goal of the developed online simulation method

is to determine the system performance in terms of global
blocking and processing times, which is a primary perfor-
mance measure that can be negatively affected in case of a
deadlock in AGVS scheduling. If a deadlock occurs, the total
blocking time tb increases until the deadlock is resolved ei-

ther automatically or manually. Thus, the simulation-based
scheduling mechanism for resources assignment is developed
using online simulation as a look-ahead scheduling and dead-
lock avoidance module. In the online AGV simulation, we
use our model of physical state resources allocations by vehi-
cles including all operating and idle AGVs. This model of a
physical system is our picture of reality and is used in ”what-
if” simulations ([1], [2], [14]) to determine how resources as-
signment to vehicles should be to process as effectively as
possible.

Assume that two AGVs Vi and Vj compete for resources
within the same critical section. Two situations are then
possible. In the first case, the AGV Vi has reached the
critical path section first and already allocates the required
resources inside the critical section. In the second case, two
AGVs have reached the critical path section at the same
time and request the needed resources concurrently.

Taking information about the deadlock threat into ac-
count, the scheduler instance has to make a decision re-
garding the resources assignment and permit the one of two
competing vehicles Vj to enter the critical path section. This
decision implies that one of the competing vehicles has to
wait until all resources within the critical section have been
released by Vi.

Each time competing AGVs are identified, i.e. resources
within a critical section are requested, a set of ”what-if” si-
mulations is started. A ”what-if” simulation is initialized
with a potential future system state, as it would be if the
chosen vehicle has obtained the required resources. The
number of ”what-if” simulations started is the same as the
number of competing AGVs for the considered critical path
section. A single simulation runs until it has reached a state
in which all AGVs have completed their assigned jobs. If
a resource assignment leads to a deadlock this ”what-if” si-
mulation can be terminated. We compare the results of
different resources assignments in the same simulated future
and evaluate the impact of subsequent scheduling decisions
on the total blocking time tb, i.e. the deadlock occurence
rate. Comparing these simulation results determines the
best deadlock safe execution order for the given set of routes.
This best execution order is applied directly to the physi-
cal system; the resulting system state is then fed back to
the simulation, which makes the simulation a symbiotic one
([1]).

Given the current allocations of all vehicles, the alloca-
tions and corresponding vehicle movements for the next step
are computed. In each ”what-if” simulation resource alloca-

s1 sj sn

sb sc se sf sg

sd sh

Idle vehicle Vk blocking

Vj has been identi↓ed

Deadlock
state

is identi↓ed;
stopping the
corresponding

what-if

simulation

Sub-optimal total
blocking

time; stopping
the

corresponding
what-if

simulation

s0 : initial system state (all vehicles

allocate their initial positions)

Computing of

parking routes for Vk

s1 s... sz

Computing of alter-

native routes for Vj

s1

Vj with alternative route 1

s... sw

V1 becomes its

required resources
Vj

Vn

ViV1

V1

Vj

Vk with route 1
...

Vk with

route z
...

Vj with alterna-

tive route w

Vl

Vn

Vn

Figure 5: Exploration of a system state space.

tions of a system for time t and the effect of choosing a
vehicle being assigned its required resources within the crit-
ical section are estimated. All possible vehicle movements
can be evaluated via a one-step simulation procedure to de-
termine whether it results in a deadlock and to determine
the corresponding total blocking time. Given a set of re-
sources will be assigned to all active vehicles in the system
in the next time step, the algorithm considers the system
state if all movements are made. In our model we assume
that there are no AGV failures and that processing times
and AGV speed are deterministic due to the nature of the
autonomous system. During one simulation step, each ac-
tive AGV being assigned its needed resources may act. The
results of these actions are updated synchronously and the
simulation advances.

The system state is modeled as follows: it contains the
number of AGVs operating in the system. For each vehicle
the following information is stored: the currently allocated
resources; the whole vehicle’s route, i.e. complete sequence
of required resources; the requested resources set, i.e. re-
sources required for the next vehicle move; the total blocking
and driving time; the boolean flag, if the vehicle is forced
to wait. Note, that only active resources requestors (ve-
hicles) and existing critical sections/other shared resources
have an influence on the decisions within a what-if simu-
lation. Then a system state space is explored as shown in
Fig. 5. V1, ..., Vn being competing vehicles requesting re-
sources within the same critical section and/or other shared
resources, i.e. competing for the same path/point. All possi-
ble resources asignments are considered and results in differ-
ent system states s0, ..., sw. The transition from one state to
another one corresponds to the simulation of vehicles’ moves
until conflicts occur. The state sd is the termination state,
i.e. all jobs are completed and evaluation of total blocking
time can be performed.

231
V1

10 4 8 9

V3

5 76

V2

(3, 2)(1, 3)

(3
,
4
)

(4
,
5
)

(5, 7)(6, 5)

(10, 4) (4, 8) (8, 9)

Figure 6: The initial physical system state and
routes to be traveled by vehicles V1, V2 and V3 (The
assigned positions are marked with a blue back-
ground).

3.1 Example
The following example shows how distinct what-if simu-

lations (WIS) are initialized and executed. There are three
active vehicles V1, V2 and V3 in the AGV system. The cor-
responding guidepath graph and vehicles’ initial positions
are illustrated in Fig. 6. Their routes can be represented as
sequences of resources sets (as explained in section 1.1).

The route of V1 is RV1 = ({1}, {(1, 3),3}, {(3, 4),4},
{(4, 5),5}, {(5, 7),7}), the route of V2 is RV2 = ({6},
{(6, 5),5}, {(5, 4),4}, {(4, 3),3}, {(3, 2),2}) and the route
of V3 is RV3 = ({9}, {(8, 9),8}, {(4, 8),4}, {(10, 4),10}).
These sequences of resources sets can be represented as se-
quences of guidepath positions that may be passed through
by vehicles in the predefined order:

• RV1 = (1, 3, 4, 5, 7),

• RV2 = (6, 5, 4, 3, 2),

• RV3 = (9, 8, 4, 10).

These resources sequences containing only positions will be
compared with each other as described in algorithm 1. For
the first two routes RV1 and R′

V2 we obtain one homologeous
subsequence s1 = (3, 4, 5):

RV1 = 1

s1z }| {
3 4 5 7

R′
V2 = 2 3 4 5| {z }

s1

6

Exploring the information about the detected critical sec-
tion s1 the first two routes can be separated into regions
corresponding to the critical section and to the rest of the
route. The separation of V1’s route yields

[{1}],
s1z }| {

[{(1, 3), 3}, {(3, 4), 4}, {(4, 5), 5}], [{(5, 7), 7}],
since positions 3, 4, 5 are contained in s1. For V2’s route, the
result is

[{6}],
s1z }| {

[{(6, 5), 5}, {(5, 4), 4}, {(4, 3), 3}], [{(3, 2), 2}].
V3’s route does not share critical sections with other routes,
so it consists of only one segment RV3 = [{9}, {(8, 9), 8},
{(4, 8), 4}, {(10, 4), 10}].

23
V1

1

10 4 8

V3

9

5 76

V2 is blocked

(3, 2)(1, 3)

(3
,
4
)

(4
,
5
)

(5, 7)(6, 5)

(10, 4) (4, 8) (8, 9)

Figure 7: The first what-if scenario, in which V1 is
being assigned its needed resources {(1, 3), 3}.

231
V1 is blocked

10 4 8

V3

9

5
V2

76

(3, 2)(1, 3)

(3
,
4
)

(4
,
5
)

(5, 7)(6, 5)

(10, 4) (4, 8) (8, 9)

Figure 8: The second what-if scenario, in which V2

is being assigned its needed resources {(6, 5), 5}.

Then the system state corresponding to the real system
state as shown in Fig. 6 is created. It displays current re-
sources allocations. As the simulation advances, the next ve-
hicles’ requests of required resources are proceed. V1 needs
the resource set ReqV1 = {(1, 3), 3}, V2 needs ReqV2 =
{(6, 5), 5} and vehicle V3 requests ReqV3 = {(8, 9), 8}. Ad-
ditionally, V1 allocates resource 1, whereas V2 and V3 al-
locate resource sets with only one position, 6 and 9, re-
spectively. Both resources requests of vehicles V1 and V2

are contained in the identified critical section s1, precisely
ReqV1 = {(1, 3), 3} ∈ [{(1, 3), 3}, {(3, 4), 4}, {(4, 5), 5}] and
ReqV2 = {(6, 5), 5} ∈ [{(6, 5), 5}, {(5, 4), 4}, {(4, 3), 3}].
Both AGVs want to enter the critical section concurrently
and the scheduler instance must reject the resources request
for at least one AGV. Otherwise a deadlock involving AGVs
V1 and V2 within the critical section (3, 4, 5) will occur.
Only one vehicle may enter the critical section at a time.
So one vehicle will be permitted to enter the critical section
and another one will be forced to wait. Two what-if simula-
tions are initialized with the described current system state
in order to find out which vehicle may be chosen to enter
the critical section.

The first what-if simulation is run with V1 chosen for re-
ceiving its needed resources, where V2 is blocked and must
wait. The resulting situation is shown in Fig. 7.

The second what-if simulation is run with V2 being as-
signed its resources and V1 being blocked until V2 releases
all resources within the critical section s1. The resulting
configuration is shown in Fig. 8.

We now consider the first what-if simulation, where the
requested resources have been assigned to vehicles V1 and
V3. Suppose both vehicles need the same time Δt to travel
along paths (1, 3) and (8, 9). At the next simulation step the
next resources sets in the sequences are requested. These are

231

10 4
V1

8

V3 is blocked

9

5 76

V2 is blocked

(3, 2)(1, 3)

(3
,
4
)

(4
,
5
)

(5, 7)(6, 5)

(10, 4) (4, 8) (8, 9)

Figure 9: The what-if simulation, in which V1 is be-
ing assigned its requested resources {(3, 4), 4}.

23
V1 is blocked

1

10 4
V3

8 9

5 76

V2 is blocked

(3, 2)(1, 3)
(3

,
4
)

(4
,
5
)

(5, 7)(6, 5)

(10, 4) (4, 8) (8, 9)

Figure 10: The what-if simulation, in which V3 is
being assigned its needed resources {(8, 4), 4}.

ReqV1 = {(3, 4), 4} and ReqV3 = {(4, 8), 4}, since V2 is still
blocked outside of the critical section.
As {(3, 4), 4}∩{(4, 8), 4} �= ∅, there is a simple competition
for position 4. In this case the next set of what-if simulations
is initialized to find out which vehicle should be chosen to
pass through first.

If the requested resources set ReqV1 = {(3, 4), 4} is as-
signed to V1, the vehicle V3 is blocked, too (see Fig. 9). It
waits until V1 reaches position 5 and then releases the re-
source 4. Thus the blocking time for V2 increases to tb(V2) =
2 (if we assume the costs for traveling the path are 1 and
this assumption holds for all paths in the considered guide-
line graph: costs for traveling the path (3, 4) plus costs for
traveling the path (4, 5). At the same time V2’s blocking
time is bounded by tb(V2) = 4. When the what-if simula-
tion terminates, i.e. all routes have been processed, the total
amount of blocking time for all vehicles is tb = 2 + 4 = 6.

The next what-if simulation delivers the worst resulting
blocking times: The requested resources ReqV3 = {(4, 8), 4}
are assigned to V3 and V1 is forced to wait (see Fig. 10).
It is blocked until V3 reaches position 10 and releases the
needed resource 4. This execution order of vehicles forces
V2 to wait longer for the needed resources, as then V1 is still
inside the critical section and is blocked, too. The blocking
time is tb(V1) = 2 and the blocking time of V2 increases to
tb(V2) = 6 until V1 reaches position 7, thus resulting in a
total blocking time for all vehicles tb = 2 + 6 = 8. In our
simple example the execution order of the vehicles according
to the simulation scenario shown in Fig. 9 will be reported
for further decision support of the central controller. The
precomputed optimal vehicles schedule can then be applied
in a real time. The vehicle best suited for assignment of
the needed resources will be propagated online by the deci-
sion support instance. For more complicated instances also

WIS1 WISi WISn

online simulation

evaluation using branch-
and-bound technique

preprocessing Critical sections
data

physical system
(the processing
AGVs)

model building

central controller

Model input

The set of routes
provide
information about
resources
sequences

Current resources allocations

vehicles execution order/
idle vehicle route/best
alternative route

Resource
scheduling and
routing decisions

Figure 11: Symbiotic simulation system architecture

alternative routes will be considered (see section 5).

3.2 Optimization using branch-and-bound te-
chnique

The online simulation method is responsible for generation
and simulation of different what-if scenarios (see Fig. 11). A
what-if scenario is initialized with an image of a real system
state. Only different configurations of resources assignments
during the simulation distinguish a what-if scenario from
another one. After the results of several correspective what-
if simulations are obtained they can be evaluated and then
recommended to the controller before a decision can be made
in real time.

We have applied a branch-and-bound optimization tech-
nique for operating the reactive simulation run and for find-
ing the optimal resource allocation schedule. Each simula-
tion run investigates the performance of a different scenario
of the resource allocation decisions between competing ve-
hicles. The objective function is the sum of total blocking
times of vehicles in the system for a given set of transporta-

tion tasks. If a deadlock occurs it holds
nP

i=1

tbi = ∞, n being

the number of vehicles operating in the system. The goal
is to find a deadlock safe resources schedule minimizing the
sum of total blocking times. While waiting times are un-
avoidable, additional blockings can occur involving idle ve-
hicles if no reparking or rerouting is done. Different execu-
tion orders of vehicles on critical sections and junctions, and

also developed reparking strategies (see section 5), all repre-
senting a valid solution space, lead to different performance
measurements resulting from the corresponding what-if si-
mulations.

Using the developed deadlock avoidance policy, the infi-
nite blocking time of deadlocked vehicles can be avoided, but
waiting times for involved vehicles must be enforced. Then

the value of the objective function
kP

j=1

tbi results in a what-if

simulation, j ∈ E and E being the set of vehicles forced for
wait.

Using a branching technique resulting from the exclusive
resource allocation within the same critical section, the solu-
tion space can be divided. In our case for each possible and
valid solution a single what-if simulation will be initialized.
The vehicle being assigned its needed resources is chosen
and the execution order of AGVs during the simulation is
determined. This way decisions on resource assignment are
made during the simulation. The solution space can be rep-
resented as a binary decision tree, where resources requests
of AGVs are granted or not. The solution determined by the
greedy heuristic (described in section 1.1) can be computed
efficiently in polynomial time. Then the upper bound U for
the objective function value is known, its value being U+.
The lower bound L is the best known solution. If resources
schedule contains no blocking times its corresponding value
L+ is equal to 0.

When a what-if simulation results in a deadlock as an
effect of the prior decisions on resources assignments, the
objective value is equal to infinity. In this case the inves-
tigation of the corresponding subproblem can be aborted
and the simulation can be terminated. Otherwise the opti-
mum can potentially be found within the considered what-if
simulation WISi. Then the upper bound value Li can be
determined. If Li > U+, the optimal solution cannot be
found within the considered what-if simulation. Then this
simulation can be terminated not yielding the optimal ve-
hicle schedule. If Li ≤ U+, the execution order minimiz-
ing total vehicles blocking time can potentially be identified
in further simulation processing. In our case all initialized
what-if simulations proceed in first-in-first-out order.

When an idle vehicle blocking others is identified in the
system, a set of reactive what-if simulations are initialized.
Then different solution strategies (see sec. 5) are gone through
in corresponding what-if simulations. The value of the ob-
jective function can be determined for each selected dynamic
positioning strategy. A solution space contains alternatives
in second-best routes and idle vehicle positioning routes in-
fluencing directly the vehicles’ total blocking time in a usual
manner (further critical sections, possible deadlock forma-
tions, occurence of further blockings caused by idle vehicles).
All these possible developments in the future and the conse-
quences of decisions made for the current WIS can be eva-
luated using a branch-and-bound technique for determing if
the current WIS could lead to the best execution order of
AGVs or should be terminated.

4. INTEGRATION OF A BANKER’S ALGO-
RITHM

We describe a variant of the banker’s algorithm ([6], [13],
[19]) for deadlock avoidance in AGVS and its integration
into online simulation. In the banker’s algorithm, processes

3
V3

4 52

V1

1

V1 start

8
V2

6 12
V3 start

7

9

V2 start

10 11

Figure 12: A deadlock has occured: each AGV needs
one more resource than currently available before
allocated resources can be released.

are required to declare their maximum claims of resources in
advance. The information about these maximum resource
claims corresponding to the vehicle routes is normally avail-
able as AGV routes have been computed in advance. When
a new request of resources needed by an AGV is made, the
banker’s algorithm would grant the request if the resulting
system remains in a safe state, i.e. even in the worst case
that all processes (AGVs) request their maximum claims,
there is still a schedule of vehicles allowing all requests to
be granted. Applying the original banker’s algorithm in
AGVSs, deadlocks can be avoided but restrictions can oc-
cur. It is possible that a request is denied because it is
putting the system into an unsafe state, even though the
system is deadlock-free. The banker’s algorithm only knows
the maximum claims from each process, thus causing situa-
tions known in the literature as restricted deadlocks making
the algorithm inefficient in resource utilization. If we knew
that an AGV never needs all resource sets in the sequence
simultaneously and which critical sections exist, the original
banker’s algorithm can be efficiently integrated into online
deadlock avoidance strategies.

In a what-if simulation the deadlock avoidance can be ex-
tended using the original banker’s algorithm to guarantee
the deadlock safety of the AGV’s execution order recom-
mended to the physical system. With the information about
currently allocated resources and additionally required re-
sources before the current allocated resources can be re-
leased, a banker’s algorithm may be applied to determine
whether granting a resource request to a vehicle is safe. The
original banker’s algorithm can be modified knowing the ex-
isting critical sections as opposed to the complete resources
sequences for each AGV. A given set of resource requests is
checked for resources contained in the same critical section.
If there are any, the corresponding vehicles are identified and
at least two what-if simulations are initialized. Then a vehi-
cle forced to wait and a vehicle permitted to enter the critical
section are known. The set of resource requestors is reduced
by one waiting vehicle. If no reduction would be performed
the original banker’s algorithm would declare the resulting
system state as unsafe and resources requests would not be
granted. Thus, the only reduced set of resource requestors
is considered when testing system safety. Additionally, the
rank vector (i.e. the vector of maximum needed resources)
for each AGV is reduced to the current route segment, either
corresponding to the critical section or to the rest of a route
that contains the requested resources. For the reduced set of
resource requestors the system state safety condition must

3 4 52

V1

1

8
V2

6
V3

127

9

10 11

Figure 13: Deadlock avoided with a banker’s algo-
rithm.

hold only for the route segment containing already requested
resource, since an AGV rarely needs all resources belonging
to the route simultaneously. In the online simulation, the
resource requests will be granted if the resulting state is safe
by applying the banker’s algorithm considering only vehicles
chosen to request their needed resources. The correspond-
ing what-if simulation proceeds only if the resulting state is
safe and generates one feasible solution which can be com-
pared with possible another solutions. Deadlock states could
potentially be detected within a set of what-if simulations
without checking a state safety before. Applying a banker’s
algorithm provides additional safety and reduces a conside-
red state space, because only safe states are generated and
considered in further what-if simulation processing. We can
only avoid deadlocks if the assumed system state is safe for
considered execution order of vehicles, i.e. all future states
form the given one are safe.

We introduce an example for deadlock avoiding using a
banker’s algorithm. Suppose three vehicles V1, V2 and V3

sharing a critical section with each other (see Fig. 12). As
soon as vehicle V1 requests position 3 and V3 requests the
position 4 two what-if simulations corresponding to the con-
current resource users V1 and V3 will be initialized. We show
that regardless of mutual exclusion on critical path section
[3, 4] complicated deadlock situations involving more than
two AGVs can still occur. Consider in the first what-if si-
mulation the request of V3 to be granted; V3 has entered
the critical section [4, 3] and V1 is waiting at position 2 for
passage of V3. V2 has requested the resource 3. Since po-
sition 2 is allocated by V1, this request cannot be granted;
then V1 has already entered the critical section [2, 3] shared
with the requesting vehicle V2. Therefore V2 is blocked at
position 8 obstructing V3 having right of way and request-
ing position 8 in the next step. The circular wait condition
is satisfied. Thus a deadlock has occured regardles of the
deadlock avoiding policy considering only critical sections
being effective for only two involved AGVs sharing criti-
cal section. The banker’s algorithm with reduced maximum
claims can be used within a what-if simulation.While the ve-
hicle V1 is constrained for entering the critical section [3, 4]
and must wait at position 3 for V3 passing through, V2 is still
blocked too. When V3 requests its needed resources. Then
the system safety test is performed with the following data:
ReqV3 = {4} and rank(V3) = {4, 3}, rank(V1) = {3, 4},
rank(V2) = {8, 3}. For rank(V3) = {4, 3} all resources
are available in the system. But granting V3’s request, the
banker’s algorithm identifies the resulting system state is
unsafe: V3 would allocate position 3 and release position

4. No execution order including all vehicles could be deter-
mined obtaining the resources claims rank(V1) = {3, 4} and
rank(V2) = {8, 3}, these could not be completed. Using this
information, the first what-if simulation can be identified as
resulting in a deadlock if V3 enters the critical section [4, 3]
and receives right of way before V1 (see Fig. 13). This WIS
can be terminated and the corresponding execution order of
vehicles is reported to the central controller as one leading
to a deadlock.

5. DYNAMIC PARKING STRATEGIES
Vehicle idleness is unavoidable in autonomous guided ve-

hicle systems ([11]). If no vehicle depot or parking locations
are defined in the transportation network, idle vehicles may
be distributed over the transportation network. In this case
idle vehicles could block other vehicles whose route contains
their current parking position.

We develop strategies to resolve blockade situations in-
volving an idle vehicle and based on the work of [5], [20], [3],
[12], [7] and [4]. Several assumptions have been made in our
framework: when a vehicle becomes idle, it allocates some
dwell point until a transport order is received. In our frame-
work we develop strategies for (a) disposing idle vehicles and
(b) determing home locations for vehicles. The objective of
these strategies is to minimize the total blocking time in
the system. Both strategies are integrated into the online
simulation. If a blockade involving an idle vehicle occurs,
what-if simulations with two developed blockade resolving
strategies are initialized. The results of these what-if simu-
lations are analyzed and the strategy concluding minimum
blocking times can be used for decision support by the real-
time controller. The decision maker instance then proposes
to the physical system either to dispose the idle vehicle or
proposes an alternative route for the blocked vehicle. We
define the idle vehicle blocking problem:
Suppose that an idle vehicle allocating some dwell point is
given. Assume that no special parking positions are given in
the system and the current transport orders pool is empty
(i.e. new transportation tasks cannot be assigned to the idle
vehicle). The vehicles that have finished the assigned trans-
portation jobs will not be sent to predefined parking posi-
tions. Then an idle vehicle can become an obstacle for other
operating vehicles in the system. These would be blocked
by the idle vehicle Vi. Formally it holds for the idle vehicle
Vi:

1. Vi allocates the dwell-point pk being the final position
in Vi’s last travelled route,

2. ∃j, j �= i, i, j ∈ {1, ..., n} and n is the number of
AGVs in the system. If it holds pk ∈ route(Vj) and
the position pk has not been covered by Vj , yet, block-
ing will occur. We denote Vj as a potentially blocked
vehicle.

Then it is known in the system that vehicle Vj will be
blocked requesting the position pk. This blocking case can
be prevented in advance if Vi can be disposed or an alter-
native route for Vj can be determined. The effectiveness
of both strategies for minimizing the total blocking time
is evaluated using an online-simulation method. If an idle
blocking others is identified or predicted in the system the
online simulation is triggered to try both the displacement
route for the idle vehicle and the alternative route for the

blocked vehicle for performance comparison. Then a deci-
sion can be made on the basis of resulting total blocking
time and the best route can be suggested for the physical
system fast enough to avoid idle vehicle blocking.

5.1 Idle vehicle displacement routing
We propose a polynomial-time shortest-deviation-path

search algorithm to find a new displacement route for an idle
vehicle Vi based on [12], [4]. Consider the route of a poten-
tially blocked vehicle Vj that is given and can be represented
a sequence of positions route(Vj) = 〈(v1 = vs), (v2), ..., (vt)〉,
where vs ist the start position node and vt is the desti-
nation position node in the route. Furthermore it holds
for the idle vehicle Vi that its currently allocated position
vh ∈ route(Vj). Hence Vj ’s route can be split at vh in
two subroutes w1 = 〈(v1 = vs), (v2), ..., (vh−1)〉 and w2 =
〈(vh), ..., (vt)〉. Assume that the potentially blocked vehicle
Vj moves along the first subroute w1; once vh−1 is reached
Vj becomes blocked. So the shortest deviation from the sub-
route w2 = 〈(vh), ..., (vt)〉 including a new dwell point v′

h has
to be determined. For each route point vi ∈ w2 each edge
ej = (vi, u), u /∈ w2 is considered. The shortest deviation
path leading from the origin position vh to the new destina-
tion position u = v′

h is computed. The deviation path costs
are defined as c(w) = min{c(vh, vi) + c(vi, u)|vi ∈ w2, u /∈
w2}. For all n determined deviation paths the shortest path
is selected as w′ = min{c(w1), ..., c(wn)} and then assigned
to vehicle Vi. When computing the shortest deviation path
the lower bound for path cost can be determined from al-
ready computed paths. If some path with greater costs than
the upper bound occurs the computation for this path can
be aborted. In the next iteration the following deviation
point vi ∈ w2 can be selected for computation. An addi-
tional condition may hold for the new dwell point v′

h that
is necessary to prevent further idle vehicles blocking others:
v′

h is not already a dwell point for some other idle vehicle
and v′

h is not a position that other vehicles still have to pass.

5.2 Alternative routes for blocked vehicles
Alternatively, redirection routes for potentially blocked

vehicle can be determined ([4], [12]). First we define a
set of forbidden edges as P = 〈e1, ..., em〉 containing all
ei ∈ E+

vh
∪ E−

vh
, vh is a dwell position of the idle vehicle

Vi. For each edge ei = (vj , vk) ∈ P holds that vj = vh

or vk = vh. All input and output edges of the node vh

in the given transportation net are defined as forbidden
edges and all redirection routes may not contain ei ∈ P
avoiding request of position vh. In our method we use the
Hoffman-and-Pavley algorithm ([12]) to determine the best
alternative route not containing forbidden paths. The al-
gorithm computes the k-shortest path as redirection from
the k − 1-shortest path. All redirections for some path
p = 〈vs, ..., vt〉 can be obtained by determining for each
node vi ∈ p some edge e = (vi, u), u �= vi+1 and the
path from this redirection node u to vt. So the alterna-
tive route is composed of the path from the origin position
vs to the redirection node u and the shortest path from node
u to destination node vt. Formally it holds for the redirec-
tion path q = 〈(u0), ..., (um = vt)〉 of Vj ’s original route
w = 〈(v1 = vs), ..., (vt)〉:

• ∃x, x ∈ {1, ..., t} and x < m∧ x < t, such that vi = ui

with 0 ≤ i ≤ x. The node sequences in two paths are
identical up to the index x;

• There is some redirection node ux+1 �= vx+1 from the
original route w;

• For each edge ei in the redirection path q holds that
ei /∈ P . And finally 〈(ux+1), ..., (um = vt)〉 is the shor-
test path from the ux+1 to vt.

From the set of all computed redirection routes the shor-
test one is selected and assigned to the potentially blocked
vehicle Vj .

6. CONCLUSIONS
This paper introduces the application of symbiotic simu-

lation to avoid deadlocks and to minimize the total vehicle
blocking time caused by vehicle interference that arises in
an AGVS. The algorithm for determining critical sections
according to the given routes set is developed. The algo-
rithm identifies critical sections, i.e. paths that may not be
travelled by vehicles in opposite directions at the same time.
We use a critical sections approach for developing the dead-
lock avoidance policy; the vehicles are permitted to enter
the critical section successively. All possible execution or-
ders of vehicles could potentially be involved in a deadlock
and competing vehicles allow us to initialize a set of what-if
simulations and provide us with a mechanism to simulate
the resulting system state.

The AGVS is modelled as a discrete event system. Ac-
cording to possible resource assignment decisions, a set of
what-if scenarios can be generated. Using such models and
taking into account information about critical sections, pos-
sible competing vehicle interferences and alternative/parking
routes added to the system, the vehicles execution orders are
determined to make decisions about resources assignments
and vehicle movements in real time on the basis of the know-
ledge about the resulting system performance in the future.
Comparing the results of multiple what-if simulations, mini-
mization of the total vehicle blocking time can be achieved.
Then the corresponding schedule will be recommended to
the physical system. The simulation is used for studying
the impact of choices about resources assignments to the
vehicles on the total blocking times of the AGVs under the
developed deadlock avoidance policy.

The main advantage of the developed online simulation
method is that it helps studying the performance of an
AGVS running in parallel with it and that decision im-
pacts can be evaluated via simulation before the real system
state changes avoiding possible bad resource assignments
and routing decisions. Further enhancement of the deve-
loped deadlock avoidance strategy is forecasting of cyclic
deadlocks by vehicles’ routes analysis. If computational re-
sources for running online what-if simulations in parallel
with a real system are available, resource schedules and dif-
ferent routing scenarios can be computed and evaluated in
advance. Future work will include dynamic updating of the
model and further investigations of the methodology of the
complex adaptive symbiotic simulation and their application
to AGVSs.

7. REFERENCES
[1] H. Aydt, S. J. Turner, W. Cai, and M. Y.-H. Low.

Research issues in symbiotic simulation. In Winter
Simulation Conference, pages 1213–1222, 2009.

[2] H. Aydt, S. J. Turner, W. Cai, M. Y. H. Low,
P. Lendermann, B. P. Gan, and R. Ayani. Preventive
what-if analysis in symbiotic simulation. In WSC ’08:
Proceedings of the 40th Conference on Winter
Simulation, pages 750–758. Winter Simulation
Conference, 2008.

[3] R. Bellmann. On a routing problem. Quarterly of
Applied Mathematics, 16:87–90, 1958.

[4] J. A. de Azevedo, J. J. E. R. S. Madeira, E. Q. V.
Martins, and F. M. A. Pires. A shortest paths ranking
algorithm. 1990.

[5] E. W. Dijkstra. A note on two problems in connection
with graphs. Numerische Mathematik, 1:269–271,
1959.

[6] E. W. Dijkstra. Cooperating sequential processes,
technical report ewd-123. Technical report, 1965.

[7] D. Eppstein. Finding the k shortest paths. SIAM J.
Computing, 28:652–673, 1998.

[8] M. P. Fanti. Event-based controller to avoid deadlock
and collisions in zone-control agvs. Int. J. Prod. Res.,
40(6):1453–1478, 2002.

[9] M. P. Fanti, B. Mmaione, S. Mascolo, and
B. Turchiano. Performance of deadlock avoidance
algorithmis in flexible manufacturing systems. Journal
of Manufacturing Systems, 15(3):164–178, 1996.

[10] R. Fujimoto, D. Lunceford, and A. L. Uhrmacher.
Grand challenges for modelling and simulation:
Dagstuhl report. Technical report 350, Schloss
Dagstuhl. Seminar No 02351, 2002.

[11] A. J. R. M. Gademann and S. L. van de Velde.
Positioning automated guided vehicles in a loop
layout. European Journal of Operational Research,
127(3):565–573, December 2000.

[12] P. Hoffman. A method for the solution of the nth best
path problem. Journal of the ACM, 6:506–514, 1959.

[13] R. C. Holt. Some deadlock properties of computer
systems. ACM Comput. Surv., 4(3):179–196, 1972.

[14] F. Kamrani and R. Ayani. Simulation-aided path
planning of uav. In Winter Simulation Conference,
pages 1306–1314, 2007.

[15] T. Le-Anh and M. D. Koster. A review of design and
control of automated guided vehicle systems. Research
Paper 2004-030-LIS, RSM Erasmus University, 2004.

[16] R. Lochana Moorthy, W. Hock-Guan,
N. Wing-Cheong, and T. Chung-Piaw. Cyclic deadlock
prediction and avoidance for zone-controlled agv
system. International Journal of Production
Economics, 83(3):309–324, March 2003.

[17] S. B. Needleman and C. D. Wunsch. A general
method applicable to the search for similarities in the
amino-acid sequence of two proteins. Journal of
Molecular Biology, 48:443–453, 1970.

[18] openTCS. http://www.opentcs.org.

[19] S. A. Reveliotis. Conflict resolution in agv systems.
IIE Transactions, 32:647–659, 2000.

[20] W. Schmid. Kürzeste Wege in Strassennetzen mit
Wegeverboten. Verlag der Bayerischen Akademie der
Wissenschaften, München, 2001.

[21] M. S. Waterman and T. F. Smith. Identification of
common molecular subsequences. J. Mol. Biol.,
147:195–197, 1981.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

