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Abstract—The current mobile broadband market experiences
major growth in data demand and average revenue loss. To
remain profitable from the perspective of a service provider (SP),
one needs to maximize revenue as much as possible by making
subscribers satisfied within the limited budget. On the other
hand, traffic demands are moving toward supporting the wide
range of heterogeneous services with different quality of service
(QoS) requirements. In this paper, we consider packet scheduling
problem in the 4th generation partnership project (3GPP) long
term evolution-advanced (LTE-A) system to optimize the long-term
average revenue of SPs subject to differential QoS constraints
for heterogeneous traffic demands. The QoS-constrained control
problem is first formulated as a constrained Markov decision
process (CMDP) problem, of which the optimal control policy
is achieved by utilizing the channel and queue information
simultaneously. Subsequently, based on the proposed CMDP
problem, we further formulated an optimization problem which
stochastically grantees the QoS through a chance constraint.
To make the proposed chance-constraint programming problem
computationally tractable, we use Bernstein approximation
technique to analytically approximate the chance constraint as
a convex conservative constraint. Finally, the proposed scheduling
framework and solution methods are validated via numerical
simulation.

Index Terms—resource scheduling; constrained Markov
decision process; Bernstein approximation; LTE-A; heterogeneous
delay requirements

I. INTRODUCTION

As mobile broadband traffic demand shifts from

voice-dominated to data-dominated traffic, the SP’s revenue is

not keeping pace with the dramatic increase in traffic volume

[1]. In order to remain profitable, SPs are looking at ways to

reduce their costs and improve their revenues. On the other

hand, subscribers require SPs to ensure their QoS for the wide

range of heterogeneous services. To provoke such a scheme

to track the revenue rather than the demand, while fulfilling

the stringent QoS guarantees, one requires an effective

resource scheduling framework. The 3GPP LTE-A, as the

fourth generation of cellular network mobile communication

standard, promotes a flexible resource scheduling by allowing

SP’s desired algorithms to be developed. However, all the key

parameters required to design a resource scheduler such as all

signalling and users’ QoS requirements are specified in details

in the 3GPP LTE-A standard [2].

In LTE-A, the base station (eNodeB) schedules units of

time-frequency resources known as resource blocks among

LTE users. It is trivial to show that SP can maximize its

revenue by allocating the resource blocks to the users which

make the best profit based on channel condition. However, this

resource allocation scheme may suffer from the violation of

the 3GPP LTE-A scheduling constraints and QoS requirements

as described in the following: First, although orthogonal

frequency division multiple access (OFDMA) as the downlink

radio access technology of the LTE-A system allows multiple

resource blocks with different data rates to be assigned to

a single user, 3GPP standard does not support multiple data

rates for a single user in order to avoid excessive signaling

overhead. Thus, to have a 3GPP standard-compliant resource

scheduler we select a common modulation and coding scheme

(MCS) over all resource blocks assigned to a user in our

scheduling policy (refer to section 10.2 in [1]). This constraint

is previously considered in multiple related works such as [3]

and [4], whereas the formulated scheduling problems proved as

NP-hard in these works. Authors in [5] achieved the optimal

solution for the same scheduling problem by proving the

total-unimodularity of the formulated problem and solved it as

an standard linear programming problem. Second, the control

policies which are only adaptive to channel variations can not

guarantee the delay requirements for the real life applications.

To fulfill the QoS requirement of the 3GPP LTE-A standard, the

control policy should be designed based on both channel state

information (CSI) and queue state information (QSI). By doing

so, we can associate the users’ traffic dynamics and channel

variations with the SP’s revenue. There are quite a number

of works that considered the channel and queue information

jointly and proposed a scheme for packet scheduling in

OFDMA systems such as maximum-largest weighted delay

(M-LWDF) [6], but most of them are not proper to use in the

presence of the heterogeneous traffic since they do not provide

bounded delay performance [7].

In this paper, an underlying information-theoretic principle

is combined with a queuing-theoretic approach and attempts

to achieve guaranteed QoS for users as well as maximum

revenue for the SP. We consider a pricing structure that

charges proportionally as the usage increases. So, the maximum

achievable data rates by users are used as the revenue incentive

for the SP. Two mathematical frameworks are proposed.

Essentially, our proposed scheduling frameworks assign each

resource block to the best user and select the best corresponding

MCS for each user while maximizing the overall system

performance (e.g., SP’s revenue) and guaranteeing the QoS
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Fig. 1: Time-frequency resources in LTE-A

requirement for heterogeneous services. Our first mathematical

framework is formed based on constrained Markov decision

process (CMDP) which maximizes the long-term average

SP’s revenue subject to long-term average queue length

constraint. The Lagrangian dynamic programming approach

is used to convert the constrained MDP to unconstrained

MDP. The optimal control policy for unconstrained MDP

is obtained by solving the well-known Bellman’s equation
using value iteration method. As our second framework,

we propose another formulation which maximizes the

instantaneous revenue and provides the QoS provisioning for

heterogeneous traffic using a set of stochastic constraints,

e.g., chance constraints. To preserve the convexity and reduce

the complexity of chance constraint programming, we use

Bernstein approximation [8] to obtain a conservative and

deterministic approximation of the affine chance constraints.

The rest of the paper is organized as follows. Section II gives

an overview of main LTE-A features followed by the system

model. The scheduling problems proposed CMDP framework

are formulated in section III. We propose the method to solve

the CMDP problem in section IV. In section V, the chance

constrained revenue optimization problem is formulated and

the solution to the stochastic optimization is proposed using

Bernstein approximation. Section VI presents the performance

of our scheduling scheme. Finally, section VI draws the

conclusions.

II. MODEL

In this section, the OFDMA downlink system model and

queueing model are outlined. The simplified architecture of the

LTE-A downlink packet scheduler in the eNodeB of the LTE-A

system is shown in Fig. 2. At the beginning of each decision

epoch, eNodeB receives CSI from the users and captures

QSI by observing the users’ buffer. The packet scheduler in

eNodeB makes a decision using this information and based

on the scheduling policy and passes the resource allocation

scheme to the radio access unit. The technology to access the

radio spectrum in downlink is OFDMA, which divides the

bandwidth into a series of flat fading narrow bands [2]. The

radio resource divisions of the LTE-A SP in time-frequency

domains are shown in Fig. 1. One resource block corresponds

to 180 kHz in the frequency domain and one slot (0.5 ms)

in the time domain. The minimum resource allocation unit is

one scheduling block which is comprised of two consecutive

resource blocks spanning a time duration of 1 ms known as

transmit time interval (TTI). The update of the CSI, QSI and

also the resource scheduling decision are carried out once every

TTI.

A. Physical Layer

Consider a downlink OFDMA multiuser LTE-A system, let

U , R, M and P be the sets of users, resource blocks, MCS

schemes and price respectively. Define U = |U|, R = |R|,
M = |M| and P = |P|, where | · | represents the cardinality

of a set. The channel between the eNodeB and any user i ∈ U
is modeled as a frequency selective block fading channel,

assuming that each resource block channel condition remains

unchanged during a time interval of length TTI. At each TTI n,

every user i ∈ U measures the signal to interference plus noise

ratio (SINR) of the reference signals transmitted by the eNodeB

over the channel, quantizes the SINR values and reports a

channel quality indicator (CQI) vector ci(n) to the eNodeB

containing the cij(n) values for all resource blocks j ∈ R.

Afterwards, eNodeB forms the CQI matrix C(n) = [ci(n)] and

selects suitable set of MCS indexes corresponding to the ci(n)
to ensure a certain block error rate target (typically < 10%)

is met while achieving the highest transmit block size. Based

on the 3GPP LTE-A standard, the scheduler should select a

common MCS for each user over all resource blocks assigned

to it at each TTI (refer to section 10.2 in [2]).

Denote x(n) = {xm
ij (n)} as the resource block allocation

strategy at TTI n, where xm
ij (n) = 1 represents that resource

block j ∈ R is assigned to user i with MCS m at TTI

n. Accordingly, denote rmij (n) as achievable data rate when

xm
ij (n) = 1. Further denote r(n) = (r1(n), · · · , rU (n)) as the

achievable data rate of the users at TTI n, where ri(n) is

ri(n) =
∑
j∈R

∑
m∈M

rmij (n)x
m
ij (n). (1)

Consider P(n) = {pij(n)} as the price set for all users i ∈ U
over all resource blocks j ∈ R. In this work, a pricing structure

that assigns a rate per unit of usage and charges proportionately

as the usage increases is used [9]. pij(n) is associated with

i-th user’ maximum achievable data rate over resource block

j, which can be expressed by

pij(n) = αrij(n), (2)

where α is the constant coefficient to charge the user per unit

of data rate and rij is the maximum achievable data rate for

user i over resource block j at TTI n. Basically, rij is used as

the revenue incentive for the SP. Denote extra auxiliary MCS

assignment strategy dmi (n), where dmi (n) = 1 represents that

user i chooses MCS m at TTI n based on the scheduling policy.

We have the following widely-used assumption regarding the

channel gains:



Fig. 2: Packet scheduling in the eNodeB of the LTE-A system

Assumption 1: The sequence of the fading channel variations

follow an ergodic discrete time Markov chain [10]. It is

also assumed that channel states are exactly known (or fully

observed).

B. Source Model and Queue Dynamics

In this paper, we adopt a queuing model such that each

user has a queue in the eNodeB (see Fig. 2). Denote q(n) =
(q1(n), ..., qU (n)) to be the queue lengths of the users, where

qi(n) represents the number of bits in the i-th user’s queue.

Further denote a(n) = (a1(n), ..., aU (n)) to be the incoming

traffic within the n-th time interval, where ai(n) and ai
represent the number of arrival bits and the average arrival

rate to the i-th user’s queue, respectively. We put the following

assumption for the incoming traffic:

Assumption 2: For all i and n, the random variables of

the incoming traffic possess finite mean and finite variances,

meanwhile, they are independent and identically distributed

(i.i.d) over decision epochs.

In the n-th TTI, a batch of a(n) bits in the form of packets

arrive, followed by the departure of r(n) bits. We assume the

incoming traffic a(n) are captured after the packet scheduler’s

decision at time n. The value of a(n) is endogenous parameter,

whereas r(n) is exogenous and affected by the SP’s action.

Hence, the evolution of the queues can be written as

q(n+ 1) = [q(n)− r(n)]+ + a(n), (3)

where [x]+ is componentwise operator defined as max{0, xi}.

C. Control Policy

Consider S(n) = {C(n),q(n)} to be the system state space,

which composes of channel quality information and buffer

state information. A policy is stationary if the decision rule is

independent of the decision epochs. In our work, we assume a

stationary and deterministic scheduling policy Ωs = (ΩR,ΩM)

which is a mapping function from system state space s ∈ S to

the set of resource blocks and MCSs allocation action spaces,

which are given by ΩR(s) =
{
xm
ij ∈ {0, 1}, ∀i ∈ U , j ∈

R,m ∈ M}
and ΩM(s) = {dmi ∈ {0, 1}, ∀i ∈ U ,m ∈ M}

,

respectively.

The policy Ωs = (ΩR,ΩM) should satisfy the practical

constraints required by 3GPP LTE-A standard for all s. These

constraints can be summarized as (i) each resource block can

be assigned to only one user, (ii) each user can choose one

MCS over all resource blocks assigned to it (iii) for each user

the MCS is assigned only over those resource blocks assigned

to it, otherwise the related MCS indicator is assigned to be zero

(iv) the decision variables for resource blocks assignment and

MCS assignment can take only zero or one values. With these

physical constraints, the per stage constraint be mathematically

modeled as∑
i∈U

∑
m∈M xm

ij (n) ≤ 1, ∀j, n (4)∑
m∈M dmi (n) ≤ 1, ∀i, n (5)

xm
ij (n) ≤ dmi (n), ∀i, j,m, n (6)

xm
ij (n), d

m
i (n) ∈ {0, 1}, ∀i, j,m, n. (7)

We limit our policy space to unichain policies [11] and

[12]. Given a unichain policy Ωs, the induced Markov chain

is ergodic and there exists a unique steady state distribution.

Therefore, we have from the little’s theorem that the average

delay of the user i under policy Ωs is according to:

D
Ω

i = lim
N→∞

1

N

N−1∑
n=0

E
Ω[qi(n)]

ai
, (8)

where E
Ω is the expectation under the stationary policy

Ωs. Within the LTE-A network, the QoS requirements of

heterogeneous services are classified to nine QoS class

identifier (QCI) based on their tolerable packet delay budgets

and packet error loss rates (refer to Table 2.1 in [2]). For

example web-browsing can tolerate delay up to 300 ms with

maximum 10−6 packet loss rate. To consider different delay

requirements associated with different QCIs, heterogeneous

queue thresholds β = {βi, ∀i} are assigned for users that

uses different services. For example, for the user which uses

a service with tighter delay budget, we assign smaller β. To

guarantee the delay requirements of different types of traffic

we have

lim sup
N→∞

1

N

N−1∑
n=0

EΩ[1{qi(n)>βi}] ≤ di, ∀i. (9)

where di is the maximum bound for the expected average queue

length of user i.

III. PROPOSED MDP FRAMEWORK

In this section, we start to formally formulate the SP’s

revenue maximization problem. Based on the i.i.d traffic model

and (3), the transition probabilities among the states can be



P[s′|s,Ωs] = P[s(n+ 1) | s(n)={C(n),q(n)},Ωs(n)] = P[C(n+ 1) | C(n)] . P[q(n+ 1)|{C(n),q(n)},Ωs(n)] (10)

written as (10), which can be further compactly written as

P[s′|s,Ωs] =

P[C(n+ 1)|C(n)] · P
[
a(n)=q(n+ 1)−[q(n)−r(n)]+]. (11)

Due to the independence of incoming traffic among different

users, the system state transition follows Markovian property.

Therefore, the transition probability of the Markov chain can

be further written as

P[s′|s,Ωs] = P[C(n+ 1) | C(n)] ·
∏
i

P[ai(n)]. (12)

In our work, we are interested in finding the optimal policy,

denote by Ω∗
s , such that the long-term average reward over an

infinite time horizon is maximized subject to all the per-stage

resource allocation constraints (5) - (8) and the queue length

constraint in (9). Mathematically, the problem is given by

(P1): maximize
Ω

lim sup
N→∞

1

N

N−1∑
n=0

EΩ[
∑
i∈U

∑
j∈R

(pij(n)
∑

m∈M
xm
ij (n))]

subject to constraint (5)− (9)

The SP’s revenue is affected by the queue threshold value

of different users. When the delay requirement of a user is

more stringent (lower β), more resource blocks are seized by

the user regardless of its possible bad channel quality over the

seized resource blocks. This reduces the chance of assigning

those resource blocks to users with better channel condition

and incur revenue loss for the SP.

Remark 1: Note that the optimal user scheduling problem

with delay requirement (P1) is a constrained MDP in essence,

which is widely used to deal with dynamical, multi-objective,

decision problems. Without constraint (9), (P1) can be easily

resolved using traditional value iteration or policy iteration

method [13]. However, it becomes technically challenging

since the delay requirement (9) may couple all the sequential

decisions in addition to per-stage resource constraints. In the

section IV, we shall introduce the concept of Marginal Delay
Cost as an Lagrange Multiplier, which can be proved to be

efficient in solving (P1) with optimality guarantee under some

conditions.

IV. MARGINAL DELAY COST AND THE OPTIMAL

SCHEDULING POLICY

A. Marginal Delay Cost and Optimal Condition

In this section the optimal solution for (P1) is studied. We

define the marginal delay cost for user i, which is denoted

by λi, as the Lagrange multiplier for the delay constraint (9).

Consider the following problem:

(P2): maximize
Ω

lim sup
N→∞

1

N

N−1∑
n=0

EΩ
[∑
i∈U

∑
j∈R

(
pij(n)

∑
m∈M

xm
ij (n)

− λi[1{qi(n)>βi}]
)]

subject to constraints (5)− (8), and λi ≥ 0∀i.
Let RΩ(s(n),Ωs(n)) be the per stage reward that SP can

achieve by choosing resource block action under the policy Ωs

when the system state is s. Define the reward function at stage

n as

RΩ(s(n),Ωs(n))

= EΩ[
∑
i∈U

∑
j∈R

pij(n)
∑

m∈M
xm
ij (n)− λi[1{qi(n)>βi}]].

(13)

Note that the optimal user scheduling problem (P2) with

marginal delay cost λi is equivalent to the Lagrangian function

of problem (P1) after incorporating the delay constraint (9)

into the objective function. Furthermore, we have the following

theorem to show the relationship between (P1) and (P2). The

detailed proof is omitted in this paper for brevity, we have a

similar and detailed proof given in our previous work in [14].

Theorem 1: Let Ω∗ and λi be the optimal policy and the
delay cost for problem (P2). If the delay constraint (9) is strictly
binding with policy Ω∗, then the policy Ω∗ is also optimal for
problem (P1) with λi serving as the corresponding optimal
Lagrange multiplier.

Note that if βi is sufficiently large, such that the delay

constraint (9) for user i is slack at the optimum of problem

(P1), the value of λi = 0. This can be trivially understood by

that the user can tolerate large delay such that the SP does not

need to consider any delay cost. When βi is not sufficiently

large, the value of λi can be determined by using the bisection

method, which can iteratively reach the specified average delay

βi. Denote Ω∗
λi

as the optimal scheduling policy for a given

Lagrangian multiplier λi. The mariginal delay cost for the

scheduling policy Ω∗
λi

is given by

DΩ∗
λi = lim sup

N→∞
1

N

N−1∑
n=0

EΩ∗
λi [1{qi(n)>βi}], ∀i. (14)

It was proved in [15] that DΩ∗
λi is a piecewise linear

non-increasing function of λi. We can find the optimal

Lagrangian multiplier λ∗
i through the following update:

λl+1
i = max(λl

i + γl(D
Ω∗

λl
i − di), 0), (15)

where γl
i = 1

l . The convergence to λ∗
i is ensured due to the

fact that DΩ∗
λi is a piecewise convex function of Lagrangian

multiplier λ. Later on in this paper, we consider that the

marginal delay cost is predetermined to reach a certain average



delay requirement. By doing so, two advantages that facilitate

our following performance analysis and the implementation of

this scheduling policy in practical system are:

• The existence of an optimal policy that is both

deterministic and stationary for Problem (P2) has already

been shown in [11], in which significantly reduces the

implementation complexity. Similar results also appeared

in energy-efficiency and delay-constraint problems in

Cognitive Radio networks [14].

• The marginal delay cost λi represents the delay sensitivity

of the traffic of user i. By using the fixed λi, we can

evaluate how the delay sensitivity of user traffic influences

the optimal scheduling policy of the SP. Moreover, we can

analyze the impact of multiple users with heterogeneous

delay requirements on the optimal scheduling policy,

which actually matches more to the real system.

B. Optimal Scheduling Policy

The structure of our MDP problem can be expressed as

follows:

• State: S = {C,q}
• Action:

{
xm
ij ∈ {0, 1}},{dmi ∈ {0, 1}}

• Reward: RΩ is given in (13).

• Transition probability matrix: P[s′|s,Ωs] is given in (10).

All per stage constraints in (5) - (8) are formed the action

space. In this problem, the channel condition variations across

the users provides the opportunity for the SP to increase its

revenue by using multiuser diversity gain. However, the SP

should make sure that it satisfies the delay requirement of the

traffic of different types. When the SP applies a stationary

policy Ω, the induced Markov chain is recurrent and the optimal

long-term average sum revenue is independent of the initial

state. Under the unichain policy assumption, there exists an

optimal control policy Ω∗ for the problem given in (13), such

that for any state s ∈ S the following Bellman’s equation is

satisfied [13].

V ∗(s) = max
Ω

{
RΩ(s,Ωs) +

∑
s′∈S

P[s′ | s,Ωs]V (s′)
}
, ∀s ∈ S

(16)

where V ∗(s) is the optimal value function for state s and

RΩ(s, a) is the reward function defined in (13). With the

stationarity assumption, time index n is eliminated. The

Bellman’s equation can be derived numerically through Value
Iteration algorithm [13].

Note that by the traffic delay requirement in (9), the expected

delay of each user is guaranteed to be exactly not larger

than the corresponding tolerant, which is, however, somehow

conservative for the SP since violation of the delay requirement

with small probability may be acceptable for some users.

Therefore, we will propose a novel revenue maximization

framework with chance constraint in the next section.

V. REVENUE MAXIMIZATION FRAMEWORK WITH CHANCE

CONSTRAINT

In this section, we formulate the optimization problem of the

SP’s revenue based on stochastic chance constraint on queue

length of the users. Since the queue state of the users vary

in a slower time scale than the channel state of the users,

we consider the slow fading channel, in which the source

of randomness in the SINR value is from long-term channel

variations i.e., path loss and shadowing effects. Consider the

channel gain gij for user i at resource block j to follow

a general probability density function (PDF) fgij (ξ). The

achievable data rate rij(n) for user i over resource block j
at time n can be expressed as

rij(n) = W log2(1 +
pgij
Δσ2

) (17)

where σ2 is power of additive white Gaussian noise as

background noise and Δ is the capacity gap for the bit error

rate and MCS.
The stochastic QoS guarantee for users with heterogeneous

service classes can be expressed as a chance constraint on queue

length of the users as follows

P
{
[qi(n)−

∑
j∈R

∑
m∈M

rmij (n)x
m
ij (n)]

++ai(n) <βi

}
�εi ∀i, (18)

For the given current queue state information (18) grantees

the overflow probability of the user i to be below a predefined

threshold εi in the next time frame. Now, we can model the

revenue maximization problem as follows

(P3): maximize
x,d

∑
i∈U

∑
j∈R

(pij(n)
∑

m∈M
xm
ij (n))

subject to constraints (5)− (8), and (18)

The chance constraint (18) in (P3) makes the optimization

highly intractable due to difficulty of verifying its convexity.

In this work, Bernstein approximation [8] is used to obtain

a conservative convex approximation of the affine chance

constraint in (18). Bernstein approximation is a recent advance

in the field of chance constraint programming that provides a

tractable conservative deterministic and convex approximation

for the chance constraint [16].
Proposition 1: The stochastic queue-constrained problem in

(P3) can be approximated by the deterministic and convex
optimization problem defined as

(P4): maximize
x,d

∑
i∈U

∑
j∈R(pij(n)

∑
m∈M xm

ij (n))

subject to inf�i{Ψi(x, ζi)− 
i log εi} ≤ 0, ∀i (19)

constraints (5)− (8)

where Ψi(x, ζi) = mi−qi + 
i
∑

j∈R
∑

m∈M Λri(

−1
i xm

ij ) +


iΛai(−
−1
i ). Note that we denote Λri and Λai as the cumulant

(log-moment) generating function of the data rate and arrival

process, respectively.
Proof: See Appendix A.
According to [8], the chance constraint in (18) holds if

there exists a 
i > 0 satisfying constraint (19) in (P4). Note

that Problem (P4) is a convex optimization problem which

has a convex subproblem that requires to minimize function

Ψi(x, ζi) − 
i log εi over 
i. According to (23), Ψi(x, ζi) is

convex and differentiable over 
i. Therefore, it is always easy to

obtain the minimum of function Ψi(x, ζi)−
i log εi by setting



the first derivative to be 0. However, it is far from trivial to

solve the Problem (P4) directly by using standard solvers due

to the calculation of the subproblem ”on-the-fly”. In this paper,

the Problem (P4) is solved by the logarithmic barrier cutting

plane method proposed in [16], we omit the details in this paper

due to space limit.

VI. PERFORMANCE EVALUATION

In this section, the performance bound of the proposed

scheduling policies are evaluated in terms of SP’s revenue and

delay for LTE-A downlink system with heterogeneous traffic

types according to QCI Table in the 3GPP LTE-A standard

(refer to Table 2.1 in [2]). We assume a multi-cell system with

hexagonal grid of equidistantly-spaced eNodeB sites. The target

cell is set to be the center cell with 6 neighbor cells, whereas

users of the center cell do not leave it within the simulation. The

proposed scheme is implemented in MATLAB. Without loss

of generality, we assume the frequency granularity of the CQI

measurement to be one RB and the period of the CQI reporting

to one TTI. We set the decision epochs to be equal to the same

time duration of the CQI reports, e.g. 1 TTI. Table I shows the

list of parameters that are considered in our implementation.

TABLE I: Implementation Parameters

Parameter Value
Antennas Configuration 7 hexagonal grid equidistantly

-spaced eNodeB sites

Traffic Model Backlogged traffic model

Total no. of RBs 6
CQI report period 1 ms

Frequency granuality for CQI One RB

ARQ process Zero transmission attempt

TTI 1 ms

A network with three users and two distinct classes of traffic

in terms of arrival rate and queue threshold are used such

that the arrival rates are 0.1packet/TTI and 0.2packet/TTI and

queue thresholds are 120kb/TTI and 50kb/TTI for class 1 and

class 2, respectively. A user from class 2 represents a less

delay-sensitive user, while a user from class 2 represents a

user with stringent delay requirements. A fixed packet size of

100 kb is considered for both classes of traffic. The incoming

traffic rates and delay requirements are determined in a way

that do not result in long queue threshold, therefore the system

is stable and state space dimension does not increase due to

large queue size. Let assume SP acquires one unit of currency

(1 USD) for every 1 kb of data it transmits to each user at

each TTI. The small numbers are considered for simplification,

otherwise considering of large numbers do not changes the

applied method.

In the first test, the SP’s revenue is evaluated for different

combinations of users of different classes. The results presented

in Table II show that generally by increasing the number of

users, e.g., compare row 1 against other rows, the system

achieves higher revenue. However, the improvement in revenue

is less when a users with more stringent delay constraint is

added to the system, e.g. row 3 achieves less revenue than row
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Fig. 3: Average total revenue of the SP for different channel

qualities

2. We also compared the SP’s revenue when there are three

users of class 1 compare to the case that there are three users of

class 2. As it is shown in rows 3 and 6 in Table II, SP’s revenue

is higher when users have more relaxed delay requirement in

the system.

TABLE II: SP’s Revenue for Different Number and Classes of

the Users

Number and class of Average total service
users SP’s revenue (USD)

1 One class 1 5.1875

2 Two class 1 8.5417

3 Three class 1 10.3594

4 Two class 1 and one class 2 8.918

5 Two class 2 7.593

6 Three class 2 8.0218

The delay requirement violation for different classes of traffic

is compared in Table III. The result in row 1 in Table III shows

a zero average delay violation when there is a single class one

user in the system. When the number of users with stringent

delay requirement increases, it results in more delay violation

as shown in rows 2 and 3.

TABLE III: Delay Constraint Violation for Different Number

and Classes of the Users

Number and class of Delay requirement violation
users

1 One class 1 0

2 Two class 1 0.3167

3 Two class 2 0.6073

4 Two class 1 and one class 2 0.6934

Next, we examine the revenue under different channel

qualities for two classes of the users. The channel quality of

the users over all the states S is quantized to 5 levels, in which

channel quality 5 is the best. The Average total revenue over

different channel quality levels is compared when there are

case1: (1,1), case2: (2,0) and case3: (0,2) number of class 1

and class 2 users, respectively. The results in Fig. 3 shows that

when the channel condition improves, SP’s revenue increases

as well. However, the improvement in the revenue is higher

when delay requirement of the users is less stringent.



VII. CONCLUSION

In this paper, we proposed two scheduling policies to

maximize the LTE-A SP’s revenue subject to the heterogeneous

QoS constraints of the users, as well as satisfying the resource

scheduling constraints of the LTE-A system according to the

3GPP LTE-A standard. The mathematical frameworks were

formed based on CMDP and chance constrained problems.

The key contribution in chance constrained problem is to use

Bernstein approximation to transform the chance constrain to a

convex, deterministic and computationally tractable constraint.

APPENDIX A

PROOF OF PROPOSITION 1

To apply the Bernstein approximation for the constraint in

(18), the inequality [qi(n) −
∑

j∈R
∑

m∈M rmij (n)x
m
ij (n)]

+ +
ai(n) < βi can be equivalently expressed as

Fi(x, ζi) ≥ 0, (20)

where ζi = (ri, ai) and

Fi(x, ζi) � βi−[qi(n)−
∑
j∈R

∑
m∈M

rmij (n)x
m
ij (n)]

+−ai(n). (21)

Fi(x, ζi) is in the form of affine chance constraint which

involves linear form of the random variables ζi = (ri, ai).
Based on Bernstein approximation, constraint (18) can be

approximated by

inf
�i

{Ψi(x, ζi)− 
i log εi} ≤ 0, ∀i (22)

where

Ψi(x, ζi) = 
i logE[exp(

−1
i (Fi(x, ζi))] (23)

= βi − qi +
i
∑
j∈R

∑
m∈M

Λri(

−1
i xm

ij ) + 
iΛai(−
−1
i ),

where Λri and Λai are the cumulant (log-moment) generating

function of the data rate and arrival process respectively.

In the sequel, we derive the cumulant generating function

of the random variable ri, which is a function of the channel

gain random variable. The moment generating function (MGF)

of the instantaneous data rate r(γij) = log(1 + γij), where

γij =
pgij
Δσ2 , is given in [17] as follows

Mri.j (y) = E[exp(−yr(γij))]

= 1 +

∫ +∞

0

Q(ln(2)y, ξ)Mγij (ξ)dξ, (24)

where Q(a, u) = Γ(a, u)/Γ(a) is the regularized Gamma

function1 and Mγij (·) is the MGF of γij which is known in

closed-form for many fading distributions [18]. Without loss

of generality, consider the channel gain as an exponentially

distributed random variable with PDF given by fgij (ξ) =
1
μi

exp(− ξ
μi
), where μi is the long-term average channel gain

for user i. Then, Mγij (ξ) can be computed as

Mγi.j (ξ) =
ΔNo

ΔNo − pμiξ
(25)

1Γ(a, u) =
∫+∞
u ta−1e−tdt and Γ(a) =

∫+∞
0 ta−1e−tdt

By substituting (25) in (24), MGF for the data rate can be

obtained. Hence, the cumulant generating function of the data

rate can be achieved as Λri(·) = logMrij (·).
To calculate the cumulant generating function of the arrival

process, e.g., Λai , without loss of generality consider the arrival

process for the traffic of the user i follows Poisson distribution

with parameteras fai(k) =
āk
i e

−āi

k! , where āi presents the

average rate. Λai can be computed as

Λai(y) = logE[eyai ] = log(eλ(e
y−1)) =

λ(ey − 1)

ln 10
. (26)
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