
Flexible Building Blocks for Software Defined

Network Function Virtualization
(Invited Paper)

Aryan TaheriMonfared, Chunming Rong

Department of Electrical Engineering and Computer Science, University of Stavanger, Norway

{aryan.taherimonfared, chunming.rong}@uis.no

Abstract—Current virtual networks offered by IaaS cloud
providers are not under complete control of their tenants. The vir-
tual network configuration is carried out by the service provider,
and the functionality is limited by the provider’s offerings.

This paper presents a new approach for building and main-
taining tenant-programmable virtual networks. This type of vir-
tual networks are the basic building blocks for network function
virtualization, and significantly facilitates the implementation
of network functions in software. Our approach gives tenants
complete control over provisioned virtual network components,
and simplifies the integration with on-premises resources. The
implementation confirmed the practicality and scalability of the
solution, at the cost of a small overhead.

I. INTRODUCTION

The cloud computing model provides on-demand access
to a shared pool of resources [1]. Depending on the service
model, resource types may vary. In the Infrastructure as a
Service (IaaS) model, a customer (i.e. tenant) is supposed to
have the most flexibility and control over provisioned resources
such as virtual machines and virtual networks.

Network virtualization is a powerful abstraction of physical
network substrates, and flexibility is an important aspect of
it [2]. However, this has not been achieved in today’s cloud
services. Virtual networks are not under customers’ control,
and have a very limited flexibility. For instance, a customer
can define a basic IP addressing scheme, or access control
lists (ACLs) at most. Service providers are responsible for
creating and maintaining virtual networks, in collaboration
with infrastructure providers. In a public deployment, network
functionalities are restricted to those exposed by the provider.
While, in a private one, utilizing available functionalities
requires tremendous cooperation of involved entities (e.g.
operation center, internal tenants).

There has been some efforts among service providers for
delivering reliable and efficient network services (including
network virtualization), using Software Defined Networking
(SDN) mechanisms. However, mechanisms are not exposed
to customers, and they may just experience better guaran-
tees and availability. There are several obstacles in exposing
the functionality, including clashing customers’ configurations
(e.g. overlapping RFC 1918 [3] addresses) and fine-grained
access control on APIs.

This paper proposes a new approach for the network
virtualization, which is similar to the full machine virtual-
ization technique, in terms of accessibility and isolation. In
this approach, the cloud provider takes advantage of SDN

mechanisms for creating virtual networks, and tenants utilize
the same mechanisms to take over the control of them.

Each virtual network has a dedicated and isolated set of
networking elements, that are directly accessible and fully
controllable by the tenant. They have negligible performance
overhead on other tenants and the infrastructure, while provide
sufficient management access to the provisioned networking
resources for tenants. For instance, tenants can create tunnels,
tag interfaces, and utilize different forwarding protocols in
their virtual networks, or seamlessly integrate them with their
on-premises resources. Programmable virtual networks are the
basic building blocks for delivering network-aware services or
building specific-purpose overlays.

Section II discusses the background for cloud computing,
and the new paradigms in networking. Section III explains
our approach, its requirements, advantages, and disadvantages.
Section IV studies scalability and performance of the solution.
The related work to programmable virtual networks are briefly
mentioned in Section V. The final remarks are pointed in
Section VI.

II. BACKGROUND

A. Virtual Networks in Infrastructure as a Service (IaaS)
Model

A tenant is a customer of IaaS services and it can have
multiple virtual networks. A virtual network may have multiple
subnets, which are distinguished from each other using their
Classless Inter-Domain Routing (CIDR) blocks. Overlapping
CIDR blocks for different networks’ subnets may or may
not be supported, since it depends on the employed network
virtualization technology.

In OpenStack, VMs are attached to an integration bridge,
and communicate with other entities through a tunnel bridge.
The integration bridge works as a virtual Top of Rack switch,
and tags VMs traffic according to their corresponding tenants.

B. Software Defined Networking and OpenFlow

SDN facilitates new methods for managing and configuring
networks. The key process in SDN is the abstractions between
different layers of networking mechanisms. Shenker et al.
[4], [5] introduces three level of abstractions in the network,
distributed state abstraction, specification abstraction, and
forwarding abstraction. The distribution abstraction provides a
global view of the network, and hides the details of distributed
states from the higher level mechanisms. The specification

QSHINE 2014, August 18-20, RHODES, Greece
Copyright © 2014 ICST
DOI 10.4108/icst.qshine.2014.256308

abstraction builds a simple model of the network, and makes
the abstract configuration decoupled from the physical in-
frastructure. The forwarding abstraction make the forwarding
plane more flexible, by shielding the hardware details from the
control plane. OpenFlow [6] is one approach for forwarding
abstraction, which separates the control plane from the for-
warding plane physically.

An OpenFlow switch has a set of flow tables and a group
table. An OpenFlow controller can add, update, and delete
flow entries in a flow table of the switch. Each flow entry has
a matching pattern, a set of ordered actions, a priority, and
counters. When a packet enters a port, and the highest-priority
matching flow entry in the first table is found, corresponding
actions are applied in order; Then the match data and action
set are sent to the next table. An action can be forwarding the
packet to one or more port(s), dropping, or modifying it [7].

C. Network Function Virtualization

European Telecommunications Standards Institute1 defines
Network Function Virtualization (NFV) [8] as a network
architecture which utilizes virtualization for delivering network
functions. Functions are realized in software that can be
deployed, migrated, and replicated on standard hardware. The
software is decoupled from proprietary hardware, and can
evolve beyond hardware appliances’ lifecycles.

III. TENANT CONTROLLED NETWORKS

In the IaaS model of cloud services, tenants don’t have
access to network devices, which connect their provisioned
resources. They may only have a limited knowledge about the
resource distribution, such as availability zones and regions.
For instance, the underlying network topology, architecture,
and other characteristics are not exposed to tenants.

Moreover, networking mechanisms (e.g. routing protocols)
can not be modified and tenants are bound to decisions made
by providers. A new network function, which is not supported
by the provider, can only be realized in virtual machines.
This has several drawbacks such as significant performance
overhead, possible single point of failure, and placement
challenges (e.g. for middlebox functions).

Providers can not give access to tenants for controlling
their virtual networks, since there is no reliable method for
segregating network configurations and enforcing policies. In
addition, a tenant configuration may have significant impact on
other tenants’ networks, as well as the provider infrastructure.

In our proposed mechanism, a tenant manages a dedi-
cated set of virtual network components using Open vSwitch
DataBase (OVSDB) protocol [9], and programs the data planes
through OpenFlow protocol [7], from a logically centralized
SDN controller. The tenant’s controller is directly connected
to virtual switches, which means there is no additional cost for
passing events and instructions through another software layer
(e.g. infrastructure’s SDN controller). Tenants’ controllers are
decoupled from the infrastructure provider’s controller, so they
can fail independently. Thus, a failure in the infrastructure’s
controller won’t affect tenants’ controllers – assuming there are

1http://www.etsi.org

fail-over forwarding mechanisms; And a failed tenant’s con-
troller won’t impose overhead to the infrastructure’s controller
(e.g. polling costs, liveness checking).

The tenant’s controller maintains a unified view of the
virtual network, and it has insights into the topology, architec-
ture, and resource distribution over the physical infrastructure.
The information helps the tenant to implement new network
functions efficiently, and deploy services properly.

It should be noted that this approach does not necessarily
need tenants intervention. Those tenants who are not willing or
do not have the competence, to control their virtual networks,
can delegate the task to the provider or any other third party.

The solution is implemented on top of OpenDaylight [10]
controller and its OVSDB plugin, with 2762 lines of code,
which is available online2.

A. Components

In addition to the common integration and tunnel bridges,
each compute node has a pair of dedicated integration and
tunnel bridges for each tenant’s network. These tenant network
bridges are created only on compute nodes which are hosting
VMs from that tenant. Integration and tunnel bridges for tenant
xy are denoted by brint-xy and brtun-xy. Virtual bridges in a
compute node are represented by records in the Open vSwitch
(OVS) Bridge table and are part of the same OVS instance.

Moreover, there should be a dedicated transport network
for a tenant. This network type can be maintained by Open-
Stack Neutron or the infrastructure provider. For the sake of
simplicity in this study, the latter is the case here.

A tenant transport network connects tenant’s tunnel bridges
together through endpoint interfaces (Figure 2). The interface
(denoted by ex-xy for tenant xy) type is Internal, and it works
as a connection between the bridge and the host kernel’s
TCP/IP stack. The tunnel endpoint interfaces and an interface
(e.g. eth1) on the physical transport network are attached to
the common tunnel bridge (Figure 1).

Equations (1), and (2) show the number of bridges in a
compute node and the total number of them in the infrastruc-
ture. As it’s shown, the number of bridges in a compute node
increases linearly with the number of hosted tenants. Although,
the number of bridges increases considerably, the overhead is
not significant (Section IV).

|bridgesc| = 2× (|tnsc|+ 1) (1)

|bridges| = (
∑

c∈cns

2×(|tnsc|+1))+ |ons|(2×|tns|+3) (2)

where:

tns = tenant networks set with a running VM
tnsc = tns on a compute node c
cns = compute node set
ons = OpenStack network server set

2https://github.com/aryantaheri/ovsdb

Fig. 1: Dedicated bridges for two tenants in a compute node.

Fig. 2: Logical and physical networks.

When a new VM is scheduled on a compute node, the
presence of tenant bridges is verified. If they didn’t exist, the
tenant bridge pair and the tunnel endpoint interface are created.
Then, the VM’s TAP device (i.e. virtual link layer device)
is attached to the tenant integration bridge and appropriate
forwarding rules are pushed.

B. Connectivity

VMs of a tenant in a node are connected to the tenant’s
integration bridge. This bridge works as a virtual ToR switch
and provides intra-connectivity. However, VMs across compute
nodes communicate through tenant’s tunnel bridges, and this
bridge type handles inter-connectivity. Integration and tunnel
bridges of a tenant are connected using a pair of patch
ports. Figure 1 depicts the networking components in a single
compute node when two tenants are hosted.

C. Tunnels

When a tunnel endpoint interface is added, a udev[11]
rule is triggered, and the interface IP address is pushed to
the OVS Interface table. Upon the table modification, the
SDN controller is notified, and establishes Generic Routing
Encapsulation (GRE) [12] tunnels to discovered endpoints. A
tenant’s network has its individual tunnel set (tntsn). Tunnels
are only established between compute nodes which are hosting
VMs attached to that network. Equations (3) and (4) show the
upper bound of number of tunnels for a network, and total
number of created tunnels in the platform.

|tntsn| ≤

(

|cns|+ |ons|

2

)

(3)

|tnts| ≤ |tns|

(

|cns|+ |ons|

2

)

(4)

where:

tnts = tenant network tunnel set
tntsn = tnts for network n

D. Flow Programming

When there is no matching flow entry for a packet, the
switch sends a Packet-In event to the controller to retrieve
further instructions. The event may contain the full packet or
some parts of the header. The processing time at the controller
and the round trip time, for the event and its response, is costly.
Thus, proactive flow programming of switches is the preferred
method for an efficient forwarding. Therefore, flow rules are
calculated in a deterministic way and pushed to the switches,
when a new entity is added to a virtual network.

Once a VM’s port is attached and tunnels are created, the
controller pushes four types of flow rules (Table I) to relevant
bridges. Whenever a packet traverses a tunnel, it’s marked with
the corresponding tenant network’s segmentation ID (i.e. GRE
tunnel key). The tenant tunnel bridge in the host of the new
VM is called local, and tunnel bridges in other tenant hosts
are called remote.

Rule types are local ingress, local egress, local flood, and
remote egress.

1) The local ingress rule matches the traffic from tunnels on
the tenant network’s segmentation ID (i.e. GRE tunnel
key), then tag it with the tenant’s internal VID and
forward it to the local integration bridge.

2) The local egress rule identifies other VMs’ MAC ad-
dresses on the same virtual network at the remote sides,
and choose designated tunnels for reaching them. The
matching traffic’s VID is removed and the traffic is
forwarded through designated tunnels.

3) The local flood rule matches broadcast or unknown
unicast traffic, and sends them out through all tenant’s
tunnels.

4) The remote egress rule is applied to the remote bridges.
It matches traffic from remote tenant integration bridge
on the destination MAC address, and the tenant’s internal
VID. Then the VID is popped and the traffic is forwarded
through the designated tunnel.

The controller creates O(N) flow entries in each compute
node, where N is the total number of instances which may
belong to several tenant networks. Each tenant network tunnel
bridge has O(Nt) entries, where Nt is the number of instances
on that network.

E. Packet Flow

Figure 3 depicts the packet flow between two VMs which
are attached to the same tenant network, and hosted on two
compute nodes. Traffic from VM3 on node i is tagged in
brint-xy with the tenant network’s VLAN ID on node i. If
the destination VM is not hosted on the same node, brint-xy
sends out the traffic to brtun-xy, otherwise it will be forwarded
locally. When the packet matches relevant flow entries on

Rule Flow Match Actions

Local

Ingress

r-tun→l-tun→l-int tunnel port, GRE key push VID, fw to

patch-port

Local

Egress

l-int→l-tun→r-tun patch port, VID, Dst

MAC

pop VID, mark GRE,

fw to tunnel-port

Local

Flood

l-int→l-tun→r-tun patch port, VID pop VID, mark GRE,

fw to tunnel-port

Local

Egress

r-int→r-tun→l-tun patch port, VID, Dst

MAC

pop VID, mark GRE,

fw to tunnel-port

TABLE I: Flow Rules

Fig. 3: Flows of packets between two VMs of a tenant across
two compute nodes

brtun-xy, it is sent out through the GRE tunnel. Since, tunnel
endpoints are on the same subnet as ex-xy interface, node i
TCP/IP stack routes the packet using ex-xy interface. At this
stage, the common tunnel bridge (br-tun) forwards the packet
to the physical interface eth1 on the transport network. Finally,
the packet is routed through the physical transport network
and reaches eth1 interface on node j, and the reverse process
happens there.

F. Trade-offs

The approach has five major benefits for an enterprise
tenant. First, the tenant directly accesses the control and
management planes using OpenFlow and OVSDB protocols.
Second, each virtual network has a dedicated set of virtual
components (e.g. virtual switches, interfaces, etc.). These two
benefits facilitate the implementation of virtual network func-
tions for a tenant. For instance, one can enforce the required
middlebox functionalities to the provisioned virtual network,
without involvement of the service provider (i.e. lock-in),
or procurement of new proprietary appliances (i.e. additional
costs).

Third, tenants’ tunnel bridges are connected by GRE
tunnels, which facilitate layer 2 isolation of inter-compute
VMs’ communications. Forth, SDN mechanisms can be used
for a unified management of on-premises and off-premises
resources. Fifth, virtual network topology and architecture
are decoupled from the physical infrastructure, which makes
possible transparent modification of the infrastructure.

This approach is not a panacea, and there is a trade-off
between flexibility and performance. By introducing dedicated
components, the start-up time increases and the implementa-
tion becomes more complex.

G. Performance Tuning

Initial results were not satisfactory. Thus, the following
tuning were applied to improve the performance:

• MTU size on VMs: The GRE overhead causes the
packets to be fragmented, and reduces the performance
significantly. By decreasing the MTU size on VMs, GRE
packets won’t be fragmented.

• Vhost net: It reduces the number of system calls and
avoids context switching, by moving packets between the
guest and the host system using the kernel instead of
QEMU.

• Hardware Offloading: Where possible, the offloading
functionalities of the Linux kernel is used to improve the
performance and reduce the CPU load. Tuned parameters
are RX and TX checksumming, Generic Segmentation
Offload (GSO), and Generic Receive Offload (GRO).

• Kernel’s IP neighbour table: The table size is increased
to avoid overflow.

IV. EVALUATION

The proposed approach must scale in a large infrastructure,
with many virtual machines and virtual networks. Thus, several
metrics have been measured including reachability time and
available bandwidth. The experiment is carried out for a
different number of instances and networks, which yields to a
variety of instance distribution over compute nodes, and virtual
networks. Each experiment is applied to two scenarios: first,
tenants don’t have full control (i.e. instances are attached to
the common bridge), and second, tenants have full control
(i.e. tenant instances are attached to dedicated bridges). These
scenarios are denoted by CNB (Common Network Bridges)
and DNB (Dedicated Network Bridges), respectively.

The virtual machine image used for creating instances is a
customized version of CirrOS[13] based on Buildroot[14]. The
VM type is m1.tiny with one VCPU, and 512 MB memory.
The monitoring aggressiveness of experiments is decreased to
moderate its negative impact on the overall performance.

The testbed has five compute nodes, one cloud controller
node, one SDN controller, and one monitoring node. Each
node has an AMD Opteron Processor 4180, 6 cores, 32 GB
memory, and two Gigabit network interfaces. Management and
data (VM inter-connection) networks are separated and use
dedicated interfaces, which are connected to an HP 5406zl
switch. All cloud nodes are running Ubuntu LTS 12.04,
OpenStack Havana, and Open vSwitch 2.0.0.

A. Reachability Time

The first experiment measures the reachability time of an
instance. The period between an instance spawn up request
time (trq) and the first ICMP echo reply received time (tier)
is called instance reachability time (tr). The boot requests are
sent from the platform controller node to the management API
in one batch. And the ICMP echo requests are sent from
the network controller node (i.e. an interface in the tenant
network’s namespace) toward the allocated IP addresses for
each instance. This is an effective metric for the analysis of a
variety of networking mechanisms in a virtualization platform.
Since, the total overhead of not-networking components of the
platform is uniformly reflected in this metric, and it can be
masked among different mechanisms.

Reachability experiment results have eight fields, number
of instances, number of networks, total number of records,

Fig. 4: Average reachability time for DNB

success records, failed records, missing records, average reach-
ability time and the reachability time standard deviation.

Figure 4 depicts the average reachability time, when each
tenant’s network has a dedicated set of bridges and tunnels (i.e.
DNB). The Y axis is the reachability time in milliseconds, and
X axis is the number of instances. Each data series represents
an experiment which has a constant number of networks.
An experiment is divided into sub-experiments with a fixed
number of requested instances. Sub-experiment’s results are
data points of the data series, and show the average reachability
time for the given number of instances when they’re distributed
over the experiment’s networks.

As depicted in Figure 5, DNB does not perform as well as
CNB in this test. It takes longer for a VM to become reachable,
when it is attached to a dedicated bridge, and utilizes dedicated
tunnels. Although there is an extra start up cost in DNB, this
overhead is much less significant when a large number of
instances is requested (e.g. 80 instances). Particularly, when
the instance distribution is uniform, the overhead is negligible
for the last n−|cns| instances, where n is the total number of
instances. In DNB, approximately the first |cns| instances faces
the overhead of bridge and tunnel creation, and the remaining
instances will use existing tenant network bridges.

B. Throughput

The available bandwidth for VMs in a cloud environment is
a critical metric for the performance analysis. The experiment
evaluates the available TCP and UDP bandwidth between the
network controller and VMs, in both directions individually.
Iperf is used for measuring TCP and UDP bandwidth, and for
each direction the transmission period is 20 seconds.

The TCP experiment reports average and standard de-
viation of the available bandwidth for both directions and
the combined one. The UDP experiment reports average and
standard deviation of bandwidth, jitter, transferred datagrams,
and out-of-order datagrams.

Figure 6 shows the average available bandwidth for TCP
(6a) and UDP (6b), when dedicated bridges are utilized. The

Fig. 5: Average reachability time comparison (DNB/CNB)

Fig. 8: Bidirectional TCP bandwidth comparison (DNB/CNB)

UDP throughput is consistent, and fluctuates around 1 Mbps
for a different number of networks and instances. However,
the TCP bandwidth decreases when the number of instances
increases, and doesn’t change significantly when the number
of networks increases for the same number of instances.

Moreover, the TCP bandwidth in each direction for DNB
is presented in Figure 7. It shows that the average throughput
for the VM to controller direction (Figure 7b) is higher
than the opposite one (Figure 7a). This is due to the VM’s
type (i.e. m1.tiny) and its processing power. Generally, RX
operations are more demanding and CPU intensive; Therefore,
the processing power can become a bottleneck for the ingress
traffic toward a VM.

The same set of experiments are performed for CNB, and
results are compared with DNB’s experiments. UDP perfor-
mance for DNB improved slightly, while its TCP performance
degraded about 8% on average (Figure 8). Although, the
performance overhead of DNB for TCP is not negligible, the
delivered functionality is considerable.

(a) Average bidirectional TCP bandwidth (b) Average bidirectional UDP bandwidth

Fig. 6: Average bidirectional TCP and UDP bandwidth for DNB

(a) Average TCP bandwidth from Controller to VMs (b) Average TCP bandwidth from VMs to Controller

Fig. 7: TCP bandwidth breakdown for DNB

V. RELATED WORK

Oktopus [15] is a system where a tenant expresses network
requirements and gets a predictable environment in shared
setting, while provider’s revenue is not significantly affected.
FlowN [16] uses VLAN tagging for creating virtual networks,
and isolating address spaces. A virtual network topology is
completely decoupled from the physical topology and remains
unchanged even after changes in the provisioned resource
distribution. Tenants of FlowN share a common controller,
similar to container-based virtualization, and their VLAN IDs
along switch mapping information are stored in a relational
database (i.e. MySQL).

Keller et al. [17] propose an approach for the abstraction
of a single router for each customer, and argue that it leads
to a better control of the virtual network and reliable service

delivery. CloudNet [18] and SEC2 [19] are architectures which
utilize VPNs to seamlessly and securely connects provisioned
cloud resources to on-premise resources. They isolate cus-
tomers’ virtual networks on the shared infrastructure using
VLAN tagging.

CloudNaaS [20] delivers isolated virtual networks, with
QoS, middlebox functions, and flexible address space. Open-
Flow and VLAN tagging are used for programming flow rules
on switches, and isolating traffics, respectively. These features
are delivered by the service provider, and a customer doesn’t
have direct control of their resources.

Slicing the network (e.g. FlowVisor [21]) is another way of
providing access to a part of the network, and giving complete
access to tenant over that portion. However, network slices are
coupled with the physical network topology, and a tenant can

see a subset of physical topology. Moreover, FlowVisor [21]
doesn’t support cloud platforms, and is not compatible with
the recent versions of the OpenFlow protocol.

NVP [22] is a network virtualization platform for multi-
tenant datacenters. It’s based on a familiar abstraction, so
tenants can apply their enterprise network policies to pro-
visioned virtual networks, without modifications. Each flow
entry’s match and action fields are updated with the packet’s
metadata, to isolate logical datapaths. NVP uses a declarative
language for expressing the logic, which makes the forwarding
state computation decoupled from state transitions and event
ordering. The language is only available for NVP developers,
and can not be used by tenants. Software switching (realized
by OVS) is also an important aspect of NVP, that facilitates
fast innovation and design flexibility.

Our proposed approach differs from NVP in two aspects;
First, NVP uses extra metadata in flow entries to isolate
tenants while DNB creates a dedicated set of entities for each
tenant. Although OVS uses a single underlying datapath across
tenants’ bridges in a compute node, they are isolated from a
tenant’s perspective. Second, in our approach, tenants control
their virtual networks directly, and are not dependent on a
proprietary solution. Thus, they can avoid vendor lock-in.

VI. CONCLUSION

This paper presented a new type of virtual network, with
dedicated components for each tenant. Enterprise tenants can
directly control their virtual networks, enforce policies, apply
configurations, and engineer traffic, much like what they can do
with on-premises resources. Switches in the networks support
OpenFlow and OVSDB protocols, and any controller with
compatible southbound APIs can configure them. The solution
is implemented as a bundle for OpenDaylight controller, and
experiments are performed in an OpenStack deployment. Our
experience shows that the approach is not only practical,
efficient, and scalable, but also has significant benefits for
tenants. The performance overhead is not significant, and the
deployment cost is moderated for a service provider.

ACKNOWLEDGEMENT

The authors would like to thank Madhu Venugopal and
Brent Salisbury for their insightful comments.

REFERENCES

[1] P. Mell and T. Grance, “The NIST definition of cloud computing,”
National Institute of Standards and Technology, Information Technology
Laboratory, Tech. Rep. SP 800-145, Sep. 2011.

[2] T. Anderson, L. Peterson, S. Shenker, and J. Turner,
“Overcoming the internet impasse through virtualization,”
Computer, vol. 38, no. 4, pp. 34–41, Apr. 2005. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1432642

[3] Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J. d. Groot, and
E. Lear, Address Allocation for Private Internets, ser. Request for
Comments. IETF, Feb. 1996, no. 1918, published: RFC 1918
(Best Current Practice) Updated by RFC 6761. [Online]. Available:
http://www.ietf.org/rfc/rfc1918.txt

[4] S. Shenker, M. Casado, T. Koponen, and N. McKeown,
“The future of networking, and the past of proto-
cols,” Open Networking Summit, 2011. [Online]. Available:
http://www.opennetsummit.org/archives/apr12/site/talks/shenker-tue.pdf

[5] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski,
M. Zhu, R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and
S. Shenker, “Onix: A distributed control platform for large-scale
production networks,” in Proceedings of the 9th USENIX Conference

on Operating Systems Design and Implementation, ser. OSDI’10.
Berkeley, CA, USA: USENIX Association, 2010, p. 16. [Online].
Available: http://dl.acm.org/citation.cfm?id=1924943.1924968

[6] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation
in campus networks,” ACM SIGCOMM Computer Communication

Review, vol. 38, no. 2, p. 69, Mar. 2008. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1355734.1355746

[7] Open Networking Foundation, “OpenFlow switch specification,” Apr.
2013.

[8] ETSI, “Network functions virtualisation,” Germany, Oct. 2012.
[Online]. Available: http://portal.etsi.org/NFV/NFV White Paper.pdf

[9] B. Pfaff and B. Davie, The Open vSwitch Database Management

Protocol, ser. Request for Comments. IETF, Dec. 2013, no.
7047, published: RFC 7047 (Informational). [Online]. Available:
http://www.ietf.org/rfc/rfc7047.txt

[10] “OpenDaylight.” [Online]. Available: http://www.opendaylight.org/

[11] G. Kroah-Hartman, “udev – a userspace implementation of devfs,” in
Proc. Linux Symposium, 2003, p. 263271.

[12] D. Farinacci, T. Li, S. Hanks, D. Meyer, and P. Traina, Generic Routing

Encapsulation (GRE), ser. Request for Comments. IETF, Mar. 2000,
no. 2784, published: RFC 2784 (Proposed Standard) Updated by RFC
2890. [Online]. Available: http://www.ietf.org/rfc/rfc2784.txt

[13] “CirrOS.” [Online]. Available: https://launchpad.net/cirros

[14] “Buildroot.” [Online]. Available: http://buildroot.uclibc.org/

[15] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “Towards
predictable datacenter networks,” ACM SIGCOMM Computer

Communication Review, vol. 41, no. 4, p. 242, Oct. 2011. [Online].
Available: http://dl.acm.org/citation.cfm?doid=2043164.2018465

[16] D. Drutskoy, E. Keller, and J. Rexford, “Scalable network virtualization
in software-defined networks,” IEEE Internet Computing, vol. 17, no. 2,
pp. 20–27, 2013.

[17] E. Keller and J. Rexford, “The ”Platform as a service”
model for networking,” in Proceedings of the 2010

Internet Network Management Conference on Research on

Enterprise Networking, ser. INM/WREN’10. Berkeley, CA,
USA: USENIX Association, 2010, p. 44. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1863133.1863137

[18] T. Wood, A. Gerber, K. K. Ramakrishnan, P. Shenoy, and J. Van der
Merwe, “The case for enterprise-ready virtual private clouds,” in
Proceedings of the 2009 Conference on Hot Topics in Cloud Computing,
ser. HotCloud’09. Berkeley, CA, USA: USENIX Association, 2009.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1855533.1855537

[19] F. Hao, T. V. Lakshman, S. Mukherjee, and H. Song, “Secure
cloud computing with a virtualized network infrastructure,”
in Proceedings of the 2Nd USENIX Conference on Hot

Topics in Cloud Computing, ser. HotCloud’10. Berkeley, CA,
USA: USENIX Association, 2010, p. 1616. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1863103.1863119

[20] T. Benson, A. Akella, A. Shaikh, and S. Sahu,
“CloudNaaS: a cloud networking platform for enterprise
applications.” ACM Press, 2011, pp. 1–13. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2038916.2038924

[21] R. Sherwood, G. Gibb, K. Yap, G. Appenzeller, M. Casado, N. McK-
eown, and G. Parulkar, “Flowvisor: A network virtualization layer,”
OpenFlow Switch Consortium, Tech. Rep, 2009.

[22] T. Koponen, K. Amidon, P. Balland, M. Casado, A. Chanda, B. Fulton,
I. Ganichev, J. Gross, P. Ingram, E. Jackson, A. Lambeth, R. Lenglet, S.-
H. Li, A. Padmanabhan, J. Pettit, B. Pfaff, R. Ramanathan, S. Shenker,
A. Shieh, J. Stribling, P. Thakkar, D. Wendlandt, A. Yip, and R. Zhang,
“Network virtualization in multi-tenant datacenters,” in 11th USENIX

Symposium on Networked Systems Design and Implementation (NSDI

14). Seattle, WA: USENIX Association, Apr. 2014, p. 203216. [On-
line]. Available: https://www.usenix.org/conference/nsdi14/technical-
sessions/presentation/koponen

