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Abstract—The noise in musical audio recordings is assumed
to obey an α-stable distribution. A sparse linear regression
framework with structured priors is elaborated. Markov Chain
Monte Carlo is used to infer the clean music signal model and
the α-stable noise distribution parameters. The musical audio
recordings are processed both as a whole and in segments
by using a sine-bell window for analysis and overlap-and-add
reconstruction. Experiments on noisy Greek folk music excerpts
demonstrate better denoising under the α-stable noise assumption
than the Gaussian white noise one, and when processing is
performed in segments rather than in full recordings.

I. INTRODUCTION

The Gaussian assumption is not suitable for modeling
signal corruption which involves outliers, impulsiveness, and
asymmetric characteristics [1], [2]. The α-stable distributions
are more accurate models for the aforementioned phenomena,
due to their properties, such as infinite variance, skewness,
and heavy tails [3], [4]. Among the α-stable distributions,
the symmetric ones have been extensively studied within a
Bayesian framework, because their probability density function
(PDF) cannot be analytically described in general. A particular
mathematical representation was exploited to infer the α-
stable parameters using the Gibbs sampler [5], while Monte
Carlo Expectation-Maximization and Markov Chain Monte
Carlo (MCMC) methods were introduced in [6], where the
Scale Mixture of Normals (SMiN) representation of α-stable
distributions was exploited. The SMiN property was also used
to model symmetric α-stable (SaS) disturbances within a
Gibbs Metropolis sampler [7]. More recently, a random walk
MCMC approach for Bayesian inference in stable distributions
was introduced resorting to a numerical approximation of
the likelihood function [8]. An analytical approximation of
the positive α-stable distribution by a product of a Pearson
and another positive stable random variable was proposed
in [9]. Finally, a Poisson sum series representation for the
SaS distribution was used to express the noise process in a
conditionally Gaussian framework [10].

Frequently, the distortions in speech and music signals
are localized, such as the CD scratches, when the signal
is corrupted by impulsive noise (e.g., clicks) or when the
waveform is truncated beyond a threshold (i.e., clipped) as well
as when packet losses occur in cordless phones or voice over
IP [11]. The distorted samples can be treated as missing and
reconstruction algorithms could be employed to reconstruct
the missing samples. Substantial efforts have been made to
restore audio signals corrupted by clicks due to old recordings

or scratched CDs by resorting to either autoregressive models
[12], [13], Bayesian estimation of the corrupted samples [14],
neural networks [15] or audio inpainting [11]. Non-negative
matrix factorization was proposed as an alternative to Short
Time Spectral Attenuation (STSA) for the digital curation of
the musical heritage [16].

Here, the distortions in musical audio recordings is as-
sumed to obey a SaS distribution model, extending the study
[17] where a Gaussian white noise is assumed. The signal is
modeled by two Modified Discrete Cosine Transform (MDCT)
bases with the first basis describing the tonal parts of the signal
and the second describing its transient parts [17]. Sparsity is
enforced to the expansion coefficients of each MDCT base by
means of binary indicator variables with structured priors as
in [17]. A standard MCMC technique is employed to estimate
the signal and the α−stable noise parameters, following similar
lines to [8], [18]. The musical audio recordings are processed
both as a whole and in segments by using a sine-bell window
for analysis and overlap-and-add reconstruction, extending the
preliminary work [19]. The experimental results demonstrate
a superior performance with respect to the power of the noise
remaining after denoising and the acoustic perception of the
denoised recordings, when the noise is assumed to be SaS and
the musical recording is reconstructed using the overlap-and-
add method.

The paper is organized as follows. In Section II, the signal
modeling is presented, while in Section III the α−stable
model and the inference of α−stable model parameters is
elaborated. In Section IV, experimental results are discussed
and conclusions are drawn in Section V.

II. SIGNAL MODEL

Let lframe and nframe denote the frame length and the
number of frames. Their product equals the number of samples,
N , in an audio recording. The observed audio signal is mod-
eled by an underlying clean signal represented by two layers
associated to tones or transients, and the corrupting noise [17].
Tones and transients are captured by decomposing the audio
signal into two types of MDCT atoms [20], while noise obeys
a SaS distribution. Let Φ1 = [Φ1,1, . . . ,Φ1,N ] ∈ R

N×N be the
MDCT base with long frame length lframe1 for representing
the tonals and Φ2 = [Φ2,1, . . . ,Φ2,N ] ∈ R

N×N be the MDCT
base with short frame length lframe2 for representing the
transients. Obviously, N = lframei × nframei , i = 1, 2. The
atoms of either basis Φi,k are indexed by k = 1, 2, . . . , N , such
that k = (n− 1) lframei + j where j = 1, 2, . . . , lframei is a
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frequency index and n = 1, 2, . . . , nframei is a frame index.
Let, also, s̃1, s̃2 ∈ R

N be coefficient vectors, and e ∈ R
N×1 be

a noise vector comprising independent identically distributed
(i.i.d.) random variables (r.vs.) drawn from a SaS distribution
with characteristic exponent α, scale γ, and location parameter
δ (i.e., e ∼ fα,0(γ, δ)). Then, the observed audio signal model
x ∈ R

N×1 is expressed as:

x = Φ1s̃1 +Φ2s̃2 + e. (1)

The product property of the SaS distribution [3] suggests
that the elements of e, el, are equivalently represented by
a Gaussian r.v. conditionally independent on the auxiliary
positive stable r.v. ρl [18]:

el ∼ N (δ, ρlγ
2), ρl ∼ fα/2,1

(
2
(
cos

πα

4

)2/α
, 0

)
. (2)

The two vectors s̃1 = [s̃1,1, . . . , s̃1,N ]T and s̃2 = [s̃2,1, . . .,
s̃2,N ]T are sparse, because the clean audio signal contains a
limited number of frequencies. The sparsity in coefficients s̃i,k,
is modeled by means of indicator binary random variables
gi,k ∈ {0, 1}. When gi,k = 1, the corresponding s̃i,k has a
normal distribution. Otherwise, s̃i,k is set to zero, enforcing
sparsity to this coefficient [17]. The parameters of the under-
lying clean signal model are estimated by means of MCMC
inference methods. This means that appropriate conjugate
priors should be chosen for the model parameters in order
to come up with analytical expressions for the corresponding
posterior distributions.

A. Prior Distributions

1) Coefficient priors: The hierarchical prior for the coeffi-
cients is given by [17]:

p(s̃i,k) = (1− gi,k) δ0(s̃i,k) + gi,k N (s̃i,k|0, vi,k) (3)

where δ0(·) is the Dirac delta function and vi,k has a conjugate
inverse Gamma prior described by p(vi,k) = IG(vi,k|ai, hi,k)
with parameters ai and hi,k. hi,k is a parametric frequency pro-
file expressed for each frequency index j = 1, 2, . . . , lframei
by a Butterworth low-pass filter with filter order νi, cut-off
frequency ωi, and gain ηi:

hi,k =
ηi(

1 + j−1
ωi

)νi . (4)

2) Indicator variable priors: The indicator variables of
the first basis corresponding to tonal parts are given a hor-
izontal prior structure and are modeled by a two-state first-
order Markov chain with transition probabilities P1,00 and
P1,11 considered equal for all frequency indices [17]. The
initial distribution π1 = P (g1,(j,1) = 1)) is its stationary
distribution, π1 =

1−P1,00

2−P1,11−P1,00
. The transition probabilities

P1,00 and P1,11 are given Beta priors B(P1,00|aP1,00 , bP1,00)
and B(P1,11|aP1,11 , bP1,11), respectively. The indicator vari-
ables of the second basis corresponding to transient parts
are given a vertical structure. The corresponding transition
probabilities P2,00 and P2,11 are considered equal for all
frames and are given Beta priors B(P2,00|aP2,00 , bP2,00) and
B(P2,11|aP2,11 , bP2,11) as well. The initial distribution π2 =
P (g2,(1,n) = 1) is learned given a Beta prior B(π2|aπ2 , bπ2).

3) Gain parameter prior: The gain parameter ηi of the
filter in (4) is given a Gamma conjugate prior, p(ηi|aηi , bηi) =G(ηi|aηi , bηi) [17].

B. MCMC Inference

The parameters θ = {s̃i, vi, ηi, Pi,00, Pi,11}i=1,2 ∪{
π2, ρiγ

2
}

are sampled from their posterior distribution using
the following MCMC scheme [17].

1) Alternate sampling of (g1, s̃1) and (g2, s̃2): The param-
eters (g1, s̃1) and (g2, s̃2) are alternatively sampled one after
the other. The likelihood of the observed audio signal x is
written as follows

p(x|θ) ∼ exp

(
− 1

2γ2

∥∥∥∥Σρ(x −Φ1s̃1 −Φ2s̃2)

∥∥∥∥
2
)

(5)

where Σρ is a diagonal matrix with diagonal elements
[1/

√
ρ1, . . . , 1/

√
ρN ] and ‖ · ‖ is the 	2 norm.

2) Updating of (gi, s̃i) using Gibbs sampling: Let x̃i|−i

be either x̃1|2 = Φ�
1 (x − Φ2s̃2) or x̃2|1 = Φ�

2 (x −
Φ1s̃1), and ẽi = Φ�

i e. A Gibbs sampler is imple-
mented that samples (s̃i,k, gi,k) jointly. Denoting by gi,−k

the set {gi,1, . . . , gi,k−1, gi,k+1, . . . , gi,N} and θgi the
set of Markov probabilities for gi, g

(l)
i,k is sampled from

p(g
(l)
i,k|gi,−k, θgi , vi, ρiγ

2, x̃i|−i,k) and s̃
(l)
i,k is sampled from

p(s̃i,k|g(l)i,k, vi, ρiγ
2, x̃i|−i,k). A hypothesis testing problem is

set to estimate the first posterior probability for gi,k [21]:

H1 : gi,k = 1 ⇐⇒ x̃i|−i,k = s̃i,k + ẽi,k (6)
H0 : gi,k = 0 ⇐⇒ x̃i|−i,k = ẽi,k. (7)

The following probabilities are used to draw values for gi,k:

p(gi,k = 0|gi,−k, θgi , vi,k, ρiγ
2, x̃i|−i,k) = 1/(1 + τi,k)

p(gi,k = 1|gi,−k, θgi , vi,k, ρiγ
2, x̃i|−i,k) = τi,k/(1 + τi,k)

where

τi,k =

√
ρiγ2

ρiγ2 + vi,k
exp

(
x̃2
i|−i,kvi,k

2ρiγ2(ρiγ2 + vi,k)

)

×p(gi,k = 1|gi,−k, θgi)

p(gi,k = 0|gi,−k, θgi)
. (8)

The posterior distribution for s̃i,k is given by

p(s̃i,k|gi,k, vi, ρiγ2, x̃i|−i,k) = (1− gi,k)δ0(s̃i,k)

+gi,kN (s̃i,k|µs̃i,k , σ
2
s̃i,k

) (9)

where

σ2
s̃i,k

=

(
1

ρiγ2
+

1

vi,k

)−1

(10)

µs̃i,k =

(σs̃2i,k

ρiγ2

)
x̃i|−i,k. (11)

3) Updating of vi using Gibbs sampling: The
conditional posterior distribution of vi,k is given by
p(vi,k|gi,k, s̃i,k, hi,k) = (1 − gi,k) IG(vi,k|ai, hi,k) +

gi,k IG
(
vi,k

∣∣∣∣12 + ai,
s̃2i,k
2 + hi,k

)
[17].



4) Updating of ρiγ2 using Gibbs sampling:

p(ρiγ
2|̃s1, s̃2,x) = IG (ρiγ2|aρiγ2 +N/2,.

bρiγ2 + (‖Σρ(x−Φ1s̃1 −Φ2s̃2)‖2)/2
)

(12)

5) Updating of ηi using Gibbs sampling: The full
posterior distribution of the gain parameter ηi, which
is given a Gamma conjugate prior, is p(ηi|vi) =

G
(
ηi

∣∣∣∣Nai + aηi ,
∑

k
1

1+
(

j−1
ωi

)νi
vi,k

+ bηi

)
[17].

6) Updating of Pi,00, Pi,11, and π2: The posterior dis-
tributions of Pi,00, Pi,11 and π2 are estimated by means of
Metropolis-Hastings (M-H) algorithm as described in [17] with
the corresponding Beta distributions as proposed distributions.

III. α−STABLE MODEL PARAMETER ESTIMATION

Similarly to the signal model, in order to estimate the un-
known SaS parameters of the noise model (2), we sample from
the posterior distribution of the parameters θ = {α, γ, δ} using
MCMC methods with appropriate conjugate priors chosen for
the model parameters.

A. MCMC Inference

1) Updating parameters γ and δ using Gibbs sam-
pling: The conditional posterior distribution for the lo-
cation parameter δ with a Gaussian conjugate prior

is N
(

1
γ2

∑N
l=1

el
ρl

+σδmδ

1
γ2

∑N
l=1

1
ρl

+σδ
, 1

1
γ2

∑N
l=1

1
ρl

+σδ

)
[18]. The full

conditional for γ2, that has an inverse Gamma con-
jugate prior [19], is the inverse Gamma distribution
IG
(
a0 +

N
2 ,

1
2

∑N
l=1(el − δ)2 + b0

)
[18].

2) Updating the parameter α using Metropolis sampling:
The M-H algorithm [22], [23] is used to estimate the parameter
α, since the corresponding conditional distribution for α is
unknown.

(1) At each iteration t a candidate point αnew for α
is generated from a proposal symmetric distribution
q(·|·). That is, αnew ∼ q(αnew |α(t)).

(2) U is generated from a uniform (0, 1) distribution.
(3) If U ≤ A(αnew |α(t)), αnew is accepted, other-
wise αnew is rejected. That is, the candidate point
αnew is accepted with probability min {1, A}. Given
that the proposal distribution q(·|·) is symmetrical
and considering a uniform prior, p(α|α′) = 1

α′ =
1
2 , 0 < α ≤ 2, the acceptance/rejection ratio

A is given by A = min
{
1,

∏N
l=1 p(el|αnew,0,γ,δ)∏N
l=1 p(el|α(t),0,γ,δ)

}
where p(el|αnew , 0, γ, δ) and p(el|α(t), 0, γ, δ) are
SaS probability density functions calculated arith-
metically as in [3], [24]1.

1http://www.mathworks.com/matlabcentral/fileexchange/37514-stbl-alpha-stable-distributions-for-matlab/content/
STBL CODE/stblpdf.m

3) Estimating auxiliary variable ρl with rejection sampling:
Rejection sampling is used to sample from the posterior
distribution p(ρ)

p(ρl|el, γ, δ) ∝ N (el|δ, ρlγ2)·
· fa/2,1

(
ρl

∣∣∣∣2(cos πα4
)2/α

, 0

)
. (13)

The likelihood forms a valid rejection function as it is bounded
from above p(el|δ, ρlγ2) ≤ 1√

2π|el−δ| exp
(− 1

2

)
. Hence, the

following rejection sampler can be used to draw samples from
ρl [18]:

i. Samples are drawn from the positive stable distri-
bution ρl ∼ fa/2,1

(
2
(
cos πα

4

)2/α
, 0
)

.
ii. Samples are drawn from the uniform distribution
ul ∼ U

(
0, 1√

2π|el−δ| exp
(− 1

2

))
.

iii. If ul > p(el|δ, ρlγ2) go to step i.

IV. EXPERIMENTAL RESULTS

Two sets of experiments were conducted. In the first set,
4 noisy instrumental musical excerpts (
 48s long each) from
Greek folk songs from the region of Western Macedonia were
used, which were recorded in outdoor festivities. A clarinet
and a drum are playing in all excerpts. The second set of
experiments was conducted on a 48s long excerpt from a
vocal song devoted to New Year’s Carol that was sung by
Mrs. Athina Korsavidou and recorded in 1930. This song is
included in the collection “Songs of Pontos” released by the
Melpo Merlier Music Folklore Archive [25]. Each excerpt
was sampled at 44.1 kHz resulting in T = 221 = 2097152
samples. The excerpts were also segmented in 17 and 67
segments of 131072 and 32768 samples each, respectively. In
both cases, the segments were overlapping by 1024 samples.
A sine-bell window was used for analysis and overlap-and-add
reconstruction of the full denoised signals.

The proposed denoising algorithm, described in Sections II
and III, was tested for restoring the excerpts as a whole as well
as restoring the segments in every excerpt for the following
parameter values: (a) lframe1 = 1024 and lframe2 = 128,
resulting in nframe1 = 2048 and nframe2 = 16384 frames,
respectively. (b) The Butterworth filter parameters were re-
spectively set to ωi = lframei/3 and ν1 = 6 and ν2 = 4.
(c) ηi and ρlγ

2 were chosen to yield Jeffrey’s non-informative
distribution. (d) The hyperparameters for Pi,00, Pi,11 and π2

were set to aPi,00 = 50, aPi,11 = 1, aπ2 = 1, and bπ2 = 5000.
(e) The Gibbs samplers described in Sections II and III
were run for 300 iterations with a burn-in period of 240
iterations. The estimate of the clean signal was constructed
by s(MMSE) = Φ1s̃

(MMSE)
1 +Φ2s̃

(MMSE)
2 , where MMSE

stands for the Minimum Mean Square Error estimates of s̃1
and s̃2, which were computed by averaging their values in the
last 60 iterations of the sampler.

The performance of the denoising algorithm is measured by
means of the overall output Noise Index (NI), which expresses
the ratio of the original noisy signal power to the estimated
noise power [19]:

NIdb = 10 log10
‖x‖2

‖x− s(MMSE)‖2 . (14)



TABLE I. OUTPUT NI VALUES OF THE PROPOSED ALGORITHM FOR SAS NOISE RESIDUAL AND THE ALGORITHM IN [17] FOR GAUSSIAN WHITE NOISE

RESIDUAL APPLIED ON THE MUSICAL EXCERPTS PROCESSED AS A WHOLE (NO OA) AND IN SEGMENTS BY MEANS OF OVERLAP-AND-ADD

RECONSTRUCTION (OA 1: 131072 SAMPLES LONG, AND OA 2: 32768 SAMPLES LONG).

Ind. Song SaS noise Gaussian white noise
no oa oa 1 oa 2 no oa oa 1 oa 2

1 Kalonixtia (Good night) 35.0 26.6 29.8 48.5 48.4 48.2
2 Loukas (Luke) 39.0 26.5 29.7 51.7 50.8 50.7
3 To endika skorpio (Scatter at

11 o’ clock)
31.7 27.2 31.5 49.2 48.9 49.1

4 Sirto Panagioti (Panagiotis’
Syrtos)

38.8 26.4 29.1 47.1 47.3 47.4

5 Paulos Milas (Paulos Melas) 33.7 27.3 30.0 47.7 47.5 47.4
6 Kalantarts Kali Chronia (New

Year’s Carol)
32.78 26.99 31.32 87.64 87.68 87.65

The smaller NI value, the higher noise power removal is
attained and thus the better denoising performance is obtained.
The output NI values measured for the algorithm developed
in Section II, when α-stable noise residual is assumed in
(1), are listed in Table I for the musical excerpts processed
both as a whole as well as in segments using overlap-and-
add reconstruction. In the same table, the output NI values
measured for the original algorithm proposed in [17] that
resorts to Gaussian noise residuals, are included.

As can be seen in Table I, the assumption of a SaS
noise residual in (1) and the consequent modifications due
to this assumption in the framework proposed in [17] yields
better denoising than the assumption of a Gaussian white-
noise residual. For the SaS noise residual assumption, the
denoising performance is considerably improved, when the
musical excerpts are processed in segments and reconstructed
by the overlap-and-add method. A negligible improvement was
noticed when the musical excerpts are processed in segments,
when a Gaussian white-noise residual is assumed. These con-
clusions are also verified by listening to the denoised musical
excerpts2. When a Gaussian white noise residual is assumed,
the processed audio recordings still contain a considerable
amount of noise together with some new artifacts. When a SaS
noise residual is assumed, the recordings are free from noise,
but some cracks are inserted. In Fig. 1, the significance maps
are depicted, when the fourth Greek folk song is processed by
the proposed algorithm that resorts to SaS noise residual (a1-
a2) and the algorithm in [17] that resorts to a Gaussian noise
residual (b1-b2). By comparing Fig. 1(a1) and Fig. 1(b1), it
is seen that the proposed variant for the tonal layer yields
similar results with the original algorithm in [17]. However,
the performance of the two algorithms differs significantly for
the transient layer. Indeed, more artifacts are present, when a
Gaussian noise residual is assumed (Fig. 1(b2)) than when a
SaS stable noise residual is assumed (Fig. 1(a2)).

The MCMC inference for the SaS parameters is shown
in Fig. 2, where the values of the characteristic exponent α
and the estimated standard deviation

√
ρlγ of the SaS noise

residual averaged across the last 60 iterations of the Gibbs
sampler are depicted for each segment (i.e., superframe) of
the musical excerpt processed by means of the overlap-and-
add method. The corresponding mean values are: α 
 0.2
and α 
 0.25 for the overlap-and-add with 131072 and 32768
samples, respectively, and

√
ργ 
 2.4 and

√
ργ 
 2.6 for the

overlap-and-add with 131072 and 32768 samples, respectively.

2https://www.dropbox.com/sh/quorg0j4uohnevd/AAAN
0ubKbZY4IjjPfS9wlF3a
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Fig. 1. Significance maps of the selected coefficients in Φ1 and Φ2 bases
for the musical excerpt 4. The maps show the MMSE estimates of the noise
indicator variables g1 and g2 for: (a1)-(a2) SaS noise residual and (b1)-(b2)
Gaussian white noise residual in (1). The values range from 0 (white) to 1
(black).

The mean values for the stable parameter δ are of the order
of 10−4 in all cases, as expected.
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Fig. 2. Sampled values of the characteristic exponent α and standard deviation√
ρlγ of the SaS noise averaged across the iterations of the Gibbs sampler

for each segment (i.e., superframe) in the overlap-and-add method.

Spectrograms of a 6s long excerpt extracted from the 6th
vocal song of Pontos that is devoted to New Year’s Carol are
shown in Fig. 3. In particular, the spectrogram of the original
recording dating back to 1930 is shown in Fig. 3(a). The
spectrograms of the denoised recordings that are reconstructed
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Fig. 3. Spectrograms of a 6s long excerpt from the 6th excerpt for the: (a) Original recording. (b) Denoised recording reconstructed by overlap-and-add, when
a Gaussian noise residual is assumed and segments of 131072 samples were employed. (c) Denoised recording reconstructed by overlap-and-add, when a SaS
noise residual is assumed and segments of 131072 samples were employed.

by the overlap-and-add method, when either a Gaussian or a
SaS noise residual is assumed are shown in Figs. 3(b) and (c).
In the latter case, segments of 131072 samples were employed.
The inspection of Fig. 3(c) reveals the superior denoising
performance when a SaS noise residual is assumed.
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Fig. 4. Significance maps of the selected coefficients in Φ1 and Φ2 bases
for the musical excerpt 6. The maps show the MMSE estimates of the noise
indicator variables g1 (a) and g2 (b) for the SaS noise residual. The values
range from 0 (white) to 1 (black).

The MMSE estimates of the indicator variables g1 and g2
for the vocal song are depicted in Figure 4 and they look alike
those estimated for the instrumental song in Fig. 1(a1) and
(a2).

The MCMC inference for the characteristic exponent α
and the estimated standard deviation

√
ρlγ of the SaS noise

residual averaged across the last 60 iterations of the Gibbs
sampler are depicted in Fig. 5 for each segment of the vocal
song is reconstructed by the overlap-and-add method. The
corresponding mean values are: α 
 0.23 and α 
 0.21 for the
overlap-and-add with 131072 and 32768 samples, respectively.√
ργ 
 2.483 and

√
ργ 
 2.406 for the overlap-and-add with

131072 and 32768 samples, respectively.

All the experiments were run on a Mac Core 2 Duo running
at 2.4 GHz with 8 GB RAM. In the first set of experiments,
it took approximately 38 min on average for each 131072
samples long segment to be processed in the overlap-and-add
case for the signal model with the SaS noise residual. The
processing time was reduced to 25 min for each 32768 samples
long segment. It took approximately 10 and 27 hours to process
each excerpt, respectively. When each instrumental recording
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Fig. 5. Sampled values of the characteristic exponent α and standard deviation√
ρlγ of the SaS noise averaged across the iterations of the Gibbs sampler

for each superframe (i.e., segment) in the overlap-and-add method.

was processed as a whole it took around 11 hours. In the
second set of experiments, each 131072 samples long segment
was processed in 43 min on average for the signal model with
the SaS noise residual. For this model, the processing time
was 28.35 min for each 32768 samples long segment. It took
approximately 12 and 31 hours to conclude the processing
of the vocal song. When the vocal song was processed as a
whole it took around 17 hours. However, the greater memory
requirements in the latter case than those of the overlap-and-
add method make the overlap-and-add method with 131072
samples long segments a good compromise between speed and
memory requirements. Not to mention that the overlap-and-
add method is suitable for parallel processing. The processing
times for the signal model with the Gaussian white noise resid-
ual are considerably smaller. For the instrumental recordings,
2 min for 131072 samples long segments, 1 min for 32768
samples long segments, and 45 min for the full recordings
were required. For the vocal song the corresponding processing
times were: 1.5 min for 131072 samples long segments, 30
s for 32768 samples long segments, and 25 min for the
full recording. In this case, no additional effort is needed to
estimate the SaS model parameters, and especially ρl.



V. CONCLUSIONS

A musical audio denoising technique has been proposed
for music signals modeled by two MDCT bases in the fre-
quency domain and residual noise modeled by an α-stable
distribution. MCMC inference has been used to estimate all
the parameters. The experimental results on musical excerpts
from raw noisy recordings of Greek folk songs processed either
as a whole or in segments followed by an overlap-and-add
reconstruction demonstrate that the α-stable noise assumption
is more suitable than the Gaussian white noise one, though
more computationally demanding. Moreover, the overlap-and-
add reconstruction is found to reduce memory requirements
and improve the performance with respect to the NI .
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