
Supporting Drug Prescription via Predictive and
Personalized Query System

Samamon Khemmarat and Lixin Gao
Department of Electrical and Computer Engineering

University of Massachusetts Amherst, Massachusetts, USA
Email: {khemmarat,lgao}@ecs.umass.edu

Abstract—Drug prescription requires consideration of several
factors, such as drug interactions and side effects. The process is
further complicated by the fact that the presence of some drug
properties, such as side effects, depends on patient characteristics,
such as age and gender. Our goal is to provide a tool to
assist medical practitioners in prescribing drugs. We develop
an approach to query for drugs that satisfy a set of conditions
based on drug properties. Furthermore, the approach tailors the
answers to a given patient profile. We utilize drug information
from multiple sources. However, data from these sources are
usually noisy and incomplete as they are either manually curated
or automatically extracted from text resources. To cope with
incomplete and noisy data, our approach considers both the
answers that exactly match and those that closely match the
query. We represent drug information as a heterogeneous graph
and model answering a query as a subgraph matching problem.
To rank answers, our approach leverages the structure and the
heterogeneity of the drug graph to quantify the likelihood of
missing edges and integrates the likelihood into the scores of
the answers. Our evaluation shows that for quantifying the edge
likelihood, our graph-based approach can improve the AUROC
(Area under Receiver Operating Characteristic) [1] by up to 40%,
comparing to a baseline approach. We demonstrate the benefits
of our system through several query examples.

Keywords—query system, drug prescription, personalization

I. INTRODUCTION

For medical practitioners, prescribing drugs requires care-
ful considerations of several factors, such as interactions
among the prescribed drugs, interactions with the patient’s
current medication, and contraindications. In some cases,
according to patients’ conditions and lifestyles, there are
particular side effects that should be avoided as they could
cause serious health conditions or injuries. The process is
further complicated by the fact that the presence of some drug
properties, such as side effects, depends on characteristics of
the patients, such as age, gender, and genetic profiles. Having
to consider all these complicated factors can be a huge burden
to medical practitioners.

In this work, our goal is to provide a tool to assist
practitioners in the process of drug prescription. To achieve this
goal, we develop an approach that allows a user to query for
drugs that satisfy a set of conditions based on drug properties,
such as drug indications, side effects, and drug interactions. For
example, for a patient whose occupation is a driver, a doctor
may want to issue a query: Find a drug for fever and allergy
that does not cause drowsiness. Suppose a patient is currently
taking some medicines, Enoxaparin and Aspirin, a query can
be: Find a drug for diabetes and a drug for epilepsy that do
not interact with Enoxaparin and Aspirin and do not interact
with each other. Furthermore, the approach allows users to

specify patient profiles and tailors the answers for the given
profile. For example, to find a schizophrenia drug for an elder
female patient who has a heart disease, a query can be: Find
a drug for schizophrenia without the side effect heart failure
for a female patient, age 60.

In order to answer these queries, it is important that we
have comprehensive drug information. There are currently
several drug information sources that are open to public, such
as DrugBank [2], SIDER2 [3], and KEGG Drug [4]. As these
data sources offer different facets of drug information and have
different coverage of drugs, we combine the data from these
data sources into a unified knowledge base. However, it is non-
trivial to use these data to answer drug queries effectively.
Many of the databases are manually curated and therefore
have limited coverage. Some databases contain information
automatically extracted from text resources, such as drug labels
and published articles, which are prone to errors. Our challenge
is to be able to provide answers to the queries based on data
aggregated from these noisy and incomplete data sources.

Considering the incompleteness and the noisiness of data,
traditional query systems that provide only the answers that
exactly match the queries have several disadvantages. First,
these systems can miss some answers that in fact can satisfy
a query but do not exactly match the query due to the im-
perfection of the data. Second, by disregarding the possibility
of missing data, the answers returned can be misleading. For
example, if a query asks for a drug that does not interact with
a particular drug, some of the drugs that interact with the given
drug may also be given as answers because their interaction
data is incomplete.

To cope with incomplete and noisy data, our approach
considers not only the answers that exactly match the query but
also the answers that closely match the query. We model the
problem of answering query as a subgraph matching problem,
in which drug information is represented as a heterogeneous
graph and a query is represented as a query graph. To rank
answers, we propose a score function for evaluating the quality
of answers based on how well they match with the query graph.
Our score function considers the likelihood that there would
be an edge between two nodes in the drug graph; thus, both
exact and inexact matches are included in our answer space.
We utilize the structure of the drug graph to quantify the edge
likelihood. As it has been shown that the structure of networks
that represent relationships among drugs and drug properties
can effectively help to discover novel drug properties [5]–[11],
we quantify edge likelihood based on the number of paths
between two nodes. However, in contrast to previous works in
which the networks contain limited types of nodes, our drug
graph contains various node types, and our approach takes into

PervasiveHealth 2015, May 20-23, Istanbul, Turkey
Copyright © 2015 ICST
DOI 10.4108/icst.pervasivehealth.2015.259130

account the types of nodes along the paths in order to leverage
the semantics in the heterogeneous drug graph.

The key contributions of this paper are as follows.

• We propose an approach for answering drug-centric
queries, which finds a drug or a set of drugs that satisfy
a set of conditions based on several types of drug
properties. The approach personalizes the answers
based on a given patient profile.

• To cope with incomplete data, our approach provides
both exact and close-match answers. We propose a
score function for ranking the answers. The score
function leverages the network structure and the het-
erogeneity of the drug information graph to estimate
the likelihood of missing edges and integrates the
likelihood into the score of an answer.

• We evaluate our network-based approach of quanti-
fying the missing edge likelihood. The result shows
that our approach outperforms an existing approach
that does not utilize network structure, achieving up
to 40% increase of AUROC (Area under Receiver
Operating Characteristic) [1].

• We develop a prototype of our approach, integrating
data from DrugBank [2], SIDER [3], KEGG Drug [4],
and FDA (U.S. Food and Drug Administration) drug
adverse event reports. We demonstrate the benefits
provided by our system through several example
queries.

The rest of this paper is organized as follows. We discuss
related work in Section II. Section III provides our problem
definition. Our methodology is presented in Section IV. In
Section V, we describe how our approach personalizes answers
for specific patient profiles. Section VI provides information
about our data sources for the prototype system. Section VII
presents the evaluation of our approach. We summarize our
work in Section VIII.

II. RELATED WORK

There are currently multiple drug information databases
available for public access, such as DrugBank [2], KEGG
DRUG [4], and PharmGKB [12]. Our work leverages these
existing databases in order to provide a decision support tool
for medical practitioners and drug consumers. There are a few
studies that aim to answer medical questions, which include
drug-related questions, and provide decision support on drug
prescription [13]–[15]. These works model drug information
as an RDF (Resource Description Framework) knowledge
base and focus on the problem of how to convert raw data
into RDF triplets and how to translate questions in natural
languages to SPARQL, a query language for RDF. In contrast,
our focus is to provide high quality answers to users despite
the incompleteness and noisiness of available data.

There are recent works on predicting novel drug proper-
ties (including drug targets, indications, and adverse effects),
which are related to our problem of quantifying the likelihood
of missing associations between drugs and drug properties.
Methods that predict drug properties based on chemical struc-
tures [16]–[19] have been proposed. Some approaches analyze

the correlation between drug targets, their corresponding bio-
logical pathways, adverse effects, and indications to perform
prediction [20], [21]. These existing works suggest that var-
ious types of data are potentially useful in predicting drug
properties. Network-based approaches have been proposed
to discover novel drug-target interactions [5]–[7], drug-drug
interactions [8], [9], [11], and drug adverse reactions [10].
In these approaches, networks containing drugs and drug
property entities are created, and the network features, such as
common neighbors or the number of paths, are used to predict
drug properties. These existing studies have demonstrated that
network structures can be used to effectively predict drug
properties. However, in these approaches, the networks usually
contain limited types of drug property entities. Inspired by
these early works, in our work, the likelihood of missing drug
properties is quantified based on the structure of a hetero-
geneous network, containing various types of drug property
entities, including targets, pathways, side effects, indications,
and drug interactions.

III. PROBLEM DESCRIPTION

We represent drug information aggregated from multiple
data sources as a heterogeneous graph, i.e., a graph that has
nodes of multiple types. Using the drug graph as a basis,
we model the problem of answering queries as a subgraph
matching problem. In this section, we describe the schema of
the drug graph, the query graph, and our problem.

A. Drug Graph Schema

Drug information is represented by a graph
G(VG, EG, typeG, keyG), where VG is a set of nodes
and EG is a set of edges. typeG is a function that maps a
node to a node type, which is either a drug (D) or a type
of drug properties, such as a MeSH pharmacological actions
category of drug (C), a pathway associated with a drug (P),
a protein that is a target of a drug (T), an indication of a
drug (I), and a side effect of a drug (SE). keyG is a function
that maps a node to a set of keywords that are identifiers
or descriptions of the node. For example, a node v that
represents a drug has typeG(v) = ”Drug”, and keyG(v)
includes the drug’s generic names and brand names.

The schema of the drug graph is shown in Figure 1a. An
edge from a drug to a drug property node (type C, P, T, I, SE)
represents the fact that the drug has a particular property. An
edge between two drug nodes represents the fact that the two
drugs can interact. Notice that the drug graph includes not only
the drug properties expected to be in the queries but also drug
chemical/biological information, such as targets and pathways.
These nodes allow us to establish relationships among drugs,
which are useful for inferring potential associations between
drugs and drug properties.

B. Query Expression

Now we describe queries on the drug graph. A query is
represented as a graph Q(VQ, EQ, typeQ, keyQ). We refer to
nodes in the query graph as query nodes. The query graph
follows the same schema as the drug graph, but in contrast to
the drug graph, some nodes may not be assigned a keyword
as they represent the information the user is looking for.

Drug

Side effect

Drug

category

Pathway

Drug

target

Drug

indication

(drug interaction)

(a) Schema of drug graph

��

Fever (I)

Allergy (I)

Drowsiness (SE)

Nausea (SE)Enoxaparin (D)

(b) Example query graph 1

d� d�

Diabetes (I) Epilepsy (I)

High blood

pressure (SE)
Cartrol (D) Aceon (D)

(c) Example query graph 2

Fig. 1. Schema of the drug graph and example query graphs. (solid edges: positive, dashed edges: negative)

Accordingly, we can divide the query nodes into two groups.
(1) Variable node: A variable node represents the information
the user wants to find. The keywords of the variable nodes are
not given in the query. (2) Reference node: A reference node
serves as a reference for identifying the variable nodes. Each
reference node has a keyword specified by a user.

Each edge in the query graph has a sign, which can either
be positive or negative. A positive edge means that the user
wants the connection to exist between the two nodes, while a
negative edge means there should be no connection between
the two nodes.

We show two example query graphs in Figure 1. In Figure
1b, the query graph corresponds to the query: Find a drug for
fever and allergy that does not interact with Enoxaparin and
does not cause drowsiness and nausea. In this query graph,
there is one variable node, d1, representing the drug to find.
The drug d1 is connected to the two indications with positive
edges. To avoid side effects and interactions, negative edges
are used to connect d1 to the side effect nodes and another drug
node. The query graph in Figure 1c is for the query: Find a
drug for diabetes and a drug for epilepsy that do not interact
with Cartrol and Aceon, do not interact with each other, and
do not cause high blood pressure. Notice that there are now
two variable drug nodes, d1 and d2, and there is a negative edge
between them as we want to avoid drug interaction between
d1 and d2.

In this work, to allow flexibility in query expression, we
assume the signs are given in the query graph. However, for
specific applications, the signs may be inferred based on the
types of the nodes adjacent to the edges. For example, for drug
prescription, an edge between a drug node and an indication
node should always be positive.

C. Answering Drug Queries

Given a drug graph and a query graph, answering query is
to find a subgraph in the drug graph that matches the query
graph. We formally define an answer to a query as follows.
An answer of a query Q(VQ, EQ, typeQ, keyQ) is in the form
of a mapping function f that maps each query node to a node
in the drug graph such that: (1) For each variable node qv ,
typeG(f(qv)) = typeQ(qv). (2) For each reference node qr,
typeG(f(qr)) = typeQ(qr) and keyG(f(qr))∩keyQ(qr) 6= ∅.

Traditional query systems find exact answers for a given
query, which are defined as follows. An exact answer is an
answer f that satisfies the following properties: (1) For each
positive edge e(qi, qj) in EQ, there is an edge e(f(qi), f(qj))

in the drug graph. (2) For each negative edge e(qi, qj) in EQ,
there is no edge between f(qi) and f(qj) in the drug graph. In
this work, to cope with data incompleteness, we consider both
the answers that exactly match the query graph and those that
closely match the query graph. Therefore, the main problems
we address are as follows: (1) How to assign a score to an
answer to quantify how well it matches the query? (2) How
to find the top-k answers with the highest scores to present to
the users? We present our solutions to these problems in the
next section.

IV. METHODOLOGY

In this section, we describe how we design a score function
to evaluate the quality of the answers and present our algorithm
for finding the top-k answers according to the score function.
To simplify the explanation, the solution presented in this
section does not take into account patient profiles (i.e., no
personalization). We discuss how to extend the approach to
provide personalization in Section V.

A. Design of the Score Function

Because the drug information graph is incomplete, having
no edge between a drug node and a drug property node does
not necessarily mean that there is no association between
the node pair. Taking this fact into consideration, our score
function quantifies for each node pair the likelihood that there
is an edge between the node pair and integrates the likelihood
into the score of an answer. We first describe how to quantify
the likelihood of a single edge and then present the score
function.

1) Quantifying Edge Likelihood: For each pair of nodes,
our approach quantifies the likelihood of having an edge
between the two nodes based on the existing connections
between the two nodes. Intuitively, two nodes that have many
paths in-between should be closely related, and thus it is more
likely that there is an edge between them. However, simply
using the number of paths may not be effective. Because the
drug graph contains several types of nodes, the paths in the
graph are representing different types of complex relationships.
These complex relationships can have different importance as
an indicator on whether there is an edge between a given node
pair. Therefore, we differentiate the paths by path types and
assign different importance levels to different path types.

The type of a path is defined from the types of nodes along
the path. For example, the path d1(D)-t1(T)-d2(D)-se1(SE)
has the path type D-T-D-SE, which represents the relationship

where a drug shares a target with another drug that has a
particular side effect. The likelihood of an edge is quantified as
a function of the number of paths of different types. Formally,
let M = {m1, ...,mk} be the set of path types. Let cml

(vi, vj)
be the number of paths between vi and vj that have type
ml. The likelihood of an edge between vi and vj , denoted by
p(vi, vj), is based on a logistic regression model as follows.

p(vi, vj) = 1/(1 + e−(β0+β1cm1
(vi,vj)+...+βlcml

(vi,vj))), (1)

where β0, ..., βl are the model parameters reflecting the impor-
tance of each path type.

Learning the model parameters. We apply the maximum
likelihood estimation (MLE) techniques [22] to learn the
parameters. The learning process uses the known associations
between drugs and drug properties to fit the parameters. Since
MLE is a well-studied technique, we omit the details of
the approach due to space limitation. For different types of
edges (e.g., drug-side effect edge or drug-drug edge), the
importance of each path type can be different. Furthermore, for
the same edge type, the importance of path types could also be
different for each node. Therefore, we consider two schemes
for parameter learning. (1) Global parameter learning: Learn
only one set of parameters for each edge type. (2) Local
parameter learning: For each edge type, for each node, learn
one set of parameters. For example, with global learning, a
single set of parameters is learned for the edge type drug-side
effect; with local learning, one set of parameters is learned
for each side effect. While local learning may provide the
parameters that better fit each node, it can suffer from the
fact that there are only a few positive samples for each node.
On the other hand, if the importance of the paths varies
greatly among the nodes, global learning may not yield good
performance. We compare the performance of the two schemes
in our experiments.

Selecting path types. As a general rule, the path types con-
sidered should correspond to the relationships that can signify
edge existence. Although the weight of the path types would be
adjusted through the parameter learning, it is computationally
inefficient to include irrelevant path types. In the following, we
discuss our selection of path types for drug-side effect edges
as an example.

The path types used for the drug-side effect edges are
shown in the second column of Table I. The path type D-D-SE
is based on the hypothesis that drugs that interact tend to have
similar side effects. The other path types are selected based on
the hypothesis that if two drugs share a property, such as an
indication or a target, they tend to have similar side effects;
therefore, these paths are in the form of D-propType-D-SE,
where propType is a drug property node type, including I, P,
T, and SE. The path types used for drug-indication edges and
drug-drug edges are selected with similar ideas, as shown in
Table I.

TABLE I. PATH TYPES USED FOR COMPUTING EDGE LIKELIHOOD.

Path ID D-SE edge D-I edge D-D edge
P1 D-I-D-SE D-I-D-I D-I-D-D
P2 D-P-D-SE D-P-D-I D-P-D-D
P3 D-T-D-SE D-T-D-I D-T-D-D
P4 D-D-SE D-D-I D-D-D
P5 D-SE-D-SE D-SE-D-I D-SE-D-D

2) Score Function for Query Answers: Based on our ap-
proach for quantifying the edge likelihood, we now define the
score of an answer for a given query. Intuitively, in a good
answer, the edges among the matches of the query nodes
should correspond to the edges in the query graph. More
specifically, if there is a positive edge between qi and qj ,
then there should be an edge between f(qi) and f(qj), the
matches of qi and qj in an answer f . If there is a negative
edge between qi and qj , then there should be no edges between
f(qi) and f(qj). Our scoring function is defined based on this
concept, as follows. For a given query graph Q, let E+

Q and
E−Q denote the set of positive edges and the set of negative
edges in the query graph, respectively. Let wG(vi, vj) be the
function indicating whether there is an edge between vi and
vj in the drug graph. That is, wG(vi, vj) = 1 if there is an
edge in the graph. Otherwise, wG(vi, vj) = 0. The score of an
answer f , denoted by S(f), is defined as

S(f) =
∏

e(qi,qj)∈E+
Q

p′(f(qi), f(qj))
∏

e(qi,qj)∈E−
Q

(1−p′(f(qi), f(qj))),

(2)
where p′(vi, vj) = 1 if wG(vi, vj) = 1; otherwise, p′(vi, vj) =
p(vi, vj) (defined in Eq. 1). The function p′ is used to modify
the likelihood score so that the likelihood is equal to 1 if
an edge already exists in the graph. The first product in
S(f) considers the edge likelihood between the node pairs
connected by positive edges. The second product considers
the complement of the edge likelihood, i.e., 1− p(vi, vj), for
the node pairs connected by negative edges. The value of S(f)
ranges from 0 to 1. An answer f having S(f) equal to 1 is
an exact answer.

B. Finding the Top-k Answers

Having defined the score function, now we describe the
algorithm for finding the top-k answers that have the highest
scores. The algorithm consists of three main steps as follows.

Step 1: Find candidates matches of each query node. Based
on the definition of an answer in Section III-C, the candidates
of a reference node, qr, are the nodes that have the same
type as qr and have at least one keyword that matches with
keyQ(qr). The candidates of a variable node, qv , are the nodes
that have the same type as qv . We denote the set containing
all the candidate matches of a query node qi as can(qi).

Step 2: Compute edge likelihood among candidate matches.
The edge likelihood scores are used for computing the scores
of the answers. For each edge in the query graph, e(qi, qj),
we compute the edge likelihood between the nodes in can(qi)
and can(qj), which requires counting paths of different types
among the candidate nodes. To count the paths of a specific
type T , we use a modified breadth-first search (BFS) algorithm,
where in each level of the search, only the nodes having the
correct type according to T are visited. With a BFS starting
from a source node v, we can obtain the number of T -paths
from v to every node in the graph. Therefore, for an edge
e(qi, qj), for each node in can(qi), we perform m BFSes,
where m is the number of path types being used. In total,
for an edge e(qi, qj), we perform at most m · |can(qi)| BFSes.

Step 3: Search for top-k answers. In this step, we search for
k answers that have the highest scores among all the answers,

which are all the combinations of the query nodes’ candidate
matches. We apply the branch-and-bound technique to obtain
the top answers quickly. As the technique is a classic solution
for combinatorial optimization, we refer readers to [23] for
more details.

V. PERSONALIZING ANSWERS BASED ON PATIENT
PROFILES

It is not uncommon that some drug properties are more
common or present only in a patient with a specific profile.
For example, the side effect vomiting for the drug Tamiflu is
more common in children than adults [24]. In this section, we
describe how to extend our approach to personalize the answers
according to a patient profile. We discuss the extension in terms
of side effect personalization, but the approach can be applied
to other types of drug properties.

To provide personalization, we first define a collection of
patient states that users can use to describe a patient in a query.
The patient states include the characteristics of patients that can
affect the side effects of drugs such as age, gender, genetic
markers, and lifestyles. A patient profile is defined as a set
of patient states, e.g., {female, elder}. Then, we modify the
graph model and the score function as follows.

The drug graph model is extended so that the existence of
each edge is conditioned based on patient profiles. We define
a weight function wG(vi, vj , A) to represent the association
strength between node vi and node vj for a patient with profile
A. The value of wG(vi, vj , A) ranges from 0 and 1. In a basic
scheme, for a drug di and side effect sej , if there is a chance
that the side effect will occur for a patient profile A, we let
wG(di, sej , A) be equal to 1; otherwise, let wG(di, sej , A) be
equal to 0. However, if the data sources allow quantifying the
likelihood of side effects for each profile, the weight can also
be set to reflect such likelihood.

Based on the extended drug graph, we modify the score
function (Eq. 2) by changing the definition of the function
p′. The function p′ is originally used so that when there is
no edge between nodes u and v in the drug graph, the edge
likelihood is used to compute the score S. With patient profiles,
we modify p′(vi, vj) so that it selects the correct weight of an
edge based on a given user profile as follows. Let QA be the
patient profile provided by the user. Let A be the set of patient
profiles X such that X ⊆ QA and w(vi, vj , X) > 0. Here we
consider any profile X that is a subset of QA because any
patient who fits the profile QA also fits the profile X . For
example, if the user specifies the profile {female, teenage},
the profile {female} is also applicable to such patients. (1) If
A is not empty, which means for the given patient profile, vi
is associated with vj , we let p′(vi, vj) = w(vi, vj , X

∗), where
X∗ = argmaxX∈A|X ∩QA|. Here the value p′(vi, vj) is set
to be the weight between vi and vj based on the profile X∗,
which best fits with the given profile QA. (2) If A is empty,
which means there is no association between vi and vj in the
drug graph according to the given user profile, we fall back to
using the edge likelihood. That is, we let p′(vi, vj) = p(vi, vj)
(as computed in Section IV-A1).

Now we provide an example of a strategy for assigning
w(di, sej , A) for a drug di and a side effect sej . The as-
signment is based on FDA adverse drug event (ADE) reports.

Each ADE report contains the information about a patient (age,
weight, gender), the list of drugs taken by the patient, and the
side effects of the drugs. Although we cannot conclude that
the drugs in each report are the causes of the side effects, the
reports provide signals of the potential association between the
side effects and drugs for different patient profiles.

With the information available from the reports, our patient
states include characteristics based on age and gender. The age
is divided into four ranges: child (age 0-12), teenage (age 13-
19), adult (age 20-64), elder (age 65 and up). The full set of pa-
tient states is {male, female, child, teenage, adult, elder}.
To assign the value of w(di, sej , A), we consider two sup-
porting factors: (1) whether sej is on the label of drug di
(2) whether there is a report that contains di and sej with
patient profile A. Let R(di, sej , A) be the number of reports
containing drug di and side effect sej with the patient profiles
that fit A. We assign w(di, sej , A) based on the four cases
shown in the following table.

TABLE II. WEIGHT ASSIGNMENT FOR DRUG-SIDE EFFECT EDGES.

sej in label of dj R(di, sej , A) > 0 w(di, sej , A)

true true 1
true false 0.75
false true 0.25
false false 0

In this assignment, we assign different confidence levels
to the two supporting factors, giving more confidence to the
drug labels. The association between a drug and a side effect
for a patient profile A is strongest if both supporting factors
are available. There are other possible assignment schemes.
For example, the number of reports and the bias of the reports
can be taken into consideration. As the focus of this work
is to provide a framework for supporting personalization, we
leave the problem of determining the best weight assignment
schemes as our future work.

VI. DATA SOURCES AND DRUG GRAPH
CHARACTERISTICS

We consolidate drug information from multiple data
sources to create the drug graph for our prototype query
system. The details of each data source are given as follows.
DrugBank. DrugBank [2] is a database that contains chemical,
pharmacological, and pharmaceutical data of drugs along with
drug target information. For each drug, we obtain its category,
targets, and drug interactions. The number of drugs in Drug-
Bank is 7,682. 86% of the drugs have target information. 15%
of the drugs have the drug interaction information.
SIDER2. SIDER2 [3] contains the information about drug
indications and side effects extracted from drug labels. The
side effects and indications are mapped to MedDRA1 preferred
terms. There are 2,021 drugs in SIDER2. 49% of the drugs
have side effect information, and 90% of the drugs have
indication information.
KEGG Drug. KEGG Drug [4] is a database containing
information for approved drugs in Japan, USA, and Europe.
For each drug, we obtain the information of its associated
pathways. There are 9,354 drugs in the database. 27% of the
drug have pathway information.

1http://www.meddra.org

FDA Adverse Drug Event (ADE) Reports. As described
earlier, we use the ADE reports to personalize our answers
according to patient profiles. We use the reports from the year
2012 and 2013. There are a total of 1.46 million reports.

From the mentioned data sources, we link the information
of each drug by matching drug brand names and generic
names. After linking the information and creating the drug
graph, we remove the drug nodes that do not have any links
to the other nodes in the graph. The resulting graph contains
17,842 nodes and 162,673 edges. The numbers of nodes and
edges in each type are shown in Table III.

TABLE III. DRUG GRAPH CHARACTERISTICS.

Node type #Nodes
Drug 7,395
Indication 3,032
Side effect 3,180
Pathway 132
Target 4,103
Total 17,842

Edge type #Edges
Drug-Drug 24,224
Drug-Side effect 102,990
Drug-Indication 17,809
Drug-Target 15,105
Drug-Pathway 2,545
Total 162,673

VII. EVALUATION

Our evaluation consists of two parts. First, we evaluate the
quality of edge likelihood scores. Then, we evaluate our query
system by showing examples of query results and discuss the
benefits provided by our system.

A. Evaluation of Edge Likelihood Quantification

Edge likelihood scores are the basis for computing the
scores of the answers; therefore, it is important that the
likelihood scores are good predictors of the existence of edges
in reality.

1) Evaluation Method: We evaluate the edge likelihood
score for three types of edges: drug-side effect (D-SE), drug-
indication (D-I), and drug-drug (D-D). For each type of edge,
we first learn the model parameters with training data. Then,
for all the node pairs that are not connected by an edge in
the training data, we compute their likelihood scores. Finally,
we measure how much the likelihood scores correlate with
the existence of the edges in testing data. We describe our
training and testing data, the evaluation metric, and the baseline
algorithm we compare with in the following.

Training and Testing Data. Drug-Side effect. The training
data are based on the edges obtained from SIDER2. The
testing data are based on the edges learned from the ADE
reports. For each drug-side effect pair, if there are at least
two reports that associate the drug with the side effect, we
consider the drug-side effect pair to be positive in the testing
data. Here we require at least two reports because the reports
are submitted by consumers and practitioners, which means
the associations between drugs and side effects obtained from
the reports have not been scientifically confirmed. The number
of new drug-side effect pairs obtained from the ADE reports
is 33,146. Drug-Indication. The training data are based on the
associations obtained from SIDER2. For the testing data, we
extract associations between drugs and indications from the
ADE reports, which contain for each drug an indication that
the drug is prescribed for. We consider a drug-indication pair
to be positive if we find at least one report associating the

drug with the indication. The number of new drug-indication
pairs obtained from the ADE reports is 11,903. Drug-Drug.
Drug interactions extracted from DrugBank are used as the
training data. We obtain additional drug interaction data from
KEGG Drug to create the testing data. The number of new
drug interaction pairs obtained from KEGG is 52,743.

Evaluation Metric. Our evaluation metric is the AUROC [1].
The AUROC is computed as the area under the plot of the
true positive rate against the false positive rate for different
threshold values of the likelihood score. The true positive rate
and the false positive rate are computed based on the testing
data. The AUROC has the value between 0 and 1, and the
higher the value the better.

Baseline Algorithm. We compare our approach with an ap-
proach adapted from [25], which we refer to as SVM+FG
(SVM learning algorithm with fine-grained drug features).
The approach was originally proposed for predicting drug-
side effect associations. To predict the associations, SVM+FG
represents each drug with a binary feature vector describing
various types of drug properties, such as indications, side
effects, targets, and chemical structures. For a drug d, the
value in a dimension i is equal to 1 if drug d has the property
associated with that dimension. Otherwise, the value is 0. Our
goal here is to compare our approach, which uses network
features, with the approach that uses fine-grained features of
the drugs; therefore, we provide equivalent input data to both
approaches. That is, the drug properties used to create the
binary feature vectors include side effects, indications, targets,
pathways, and drug interactions, corresponding to the path
types used in our network-based approach. The SVM learning
algorithm is used to train a classifier from the drug feature
vectors. To improve performance, we apply a basic feature
selection technique by retaining only the features that are
present in at least one positive sample.

2) Evaluation Results: Global vs. Local Parameter
Learning. First, we compare the performance of global and
local parameter learning, as discussed in Section IV-A1. Figure
2a shows the performance of the two schemes for drug-side
effect, drug-indication, and drug-drug edges. It can be seen
that for all three types of edges, the global scheme performs
better than the local scheme. Especially for drug-indication
and drug-drug, the global parameter learning has the AUROC
higher than the local learning by more than 35%. The fact that
global parameter learning performs well even though the same
set of parameters are used for all the nodes suggests that the
importance of path types are quite consistent across the nodes.
For all the remaining experiments, we use the parameters
learned through the global parameter learning scheme.

Comparison with Baseline Algorithm. The performance
comparison between our algorithm and SVM+FG is shown
in Figure 2b. Our approach is denoted by L2R LR+MP (L2-
regularized logistic regression with multiple path types) in the
figure. As can be seen from the figure, our network-based
approach ourperforms SVM+FG for all three types of edges.
The AUROC is improved by up to 40% compared to the
baseline algorithm.

Benefits from Using Multiple Path Types. Next, we evaluate
how much using multiple path types helps to improve the

0

0.2

0.4

0.6

0.8

1

D-SE D-I D-D

AU
R

O
C

Local Global

(a) Global vs. local learning

0

0.2

0.4

0.6

0.8

1

D-SE D-I D-D

AU
R

O
C

SVM + FG L2R_LR + MP

(b) Our approach vs. baseline

Fig. 2. Performance comparison.

0

0.2

0.4

0.6

0.8

1

D-SE D-I D-D

AU
R

O
C

P1 P2 P3 P4 P5 All paths

Fig. 3. Performance comparison when a single path type is used and when
all the path types are used.

accuracy, in comparison to using only a single path type.
Figure 3 shows the performance when each of the path type
is used individually and when all the five path types (listed in
Table I) are used. The results show that using multiple types
of paths can significantly improve the performance. When a
single path type is used, the maximum AUROC that can be
achieved are 0.70, 0.77, and 0.62, for drug-side effect, drug-
indication, and drug-drug, respectively. When all the five path
types are used, we can obtain the AUROC of 0.89, 0.91, and
0.93. Additionally, it should be noted that the difference in the
AUROC obtained from each path type supports our hypothesis
that different path types have unequal importance in signifying
the likelihood of edge existence.

B. Evaluation of Query Answering

In this section, we demonstrate the usefulness of our query
system by showing examples of the query results returned from
our system.

First, we show the top results for the query [Query 1] Find
a drug for peptic ulcer in Table IV. Our system finds both exact
matches and close matches for this query. The first 11 answers,
which include Methscopolamine and Omeprazole, receive the
highest possible score of 1. This means according to our data
sources, these 11 drugs are indicated for peptic ulcer and thus
they exactly match the query. The next three answers, Lan-
soprazole, Paroxetine, and Pantoprazole, are inexact matches.
According to our data sources, these three matches are not
indicated for peptic ulcer. However, according to RxList 2 and
MedicineNet.com 3, Lansoprazole and Pantoprazole, which are
ranked at the 12th and 14th places, can actually be used
for treating peptic ulcer. These answers would be missed
if we do not consider approximate matches. This example
illustrates that our approach can provide answers that exactly
match the query as well as potentially good answers that are
inexact matches, which provides users with more alternatives.

2http://www.rxlist.com
3http://www.medicinenet.com

TABLE IV. RESULTS FOR QUERY 1.

Rank Drug Score Answer Quality
1 Methscopolamine 1 Exact match
..
11 Omeprazole 1 Exact match
12 Lansoprazole 0.01 Relevant according to external sources
13 Paroxetine 0.01 False positive
14 Pantoprazole 0.004 Relevant according to external sources

TABLE V. RESULTS FOR QUERY 2.
(a) TRADITIONAL

Rank Drug Score
1 Clozapine 1
2 Ziprasidone 1
3 Quetiapine 1
...
16 Reserpine 1

(b) OUR APPROACH

Rank Drug Score
1 Fluphenazine 0.98
2 Lurasidone 0.98
3 Molindone 0.97
4 Reserpine 0.97
5 Haloperidol 0.96

However, it should be noted that our query system is not
intended to replace experts. The system provide lists of drugs
that can potentially fit users’ requirements; answers obtained
need to be further reviewed by users.

Next, we consider the following query: [Query 2] Find a
drug for schizophrenia for the patient who is taking Paroxetine.
In Table V, we compare the results from our approach and from
the traditional approach that finds only exact matches. Using
the traditional approach, we obtain 16 drugs. All the drugs
have the same score of 1 because they do not interact with
Paroxetine according to the data sources. Using our approach,
the same 16 drugs are returned as answers, but their scores are
now less than 1 and different from one another. The scores of
less than 1 indicate that there is some possibility that the drugs
will interact with Paroxetine, and the lower the score, the more
likely the interaction. We manually checked drug interactions
on Drugs.com4 and found that 15 out of the 16 drugs can
actually interact with Paroxetine. Additionally, Reserpine, the
only drug that does not interact with Paroxetine according
to Drugs.com, is ranked at the fourth place in our result
list. This example demonstrates that by taking into account
the likelihood of missing associations, our system is more
informative and can better help users to discover drugs that
best fit their needs.

In this following example, we illustrate how the answers
are personalized according to a given patient profile. We use
the query: [Query 3] Find the drug for schizophrenia without
the side effect cardiac arrest. We compare the top 15 results
obtained when a user profile is not given and when the user
profile is specified as {female, elder} in Table VI. When the
user profile is given, three of the drugs which are Haloperidol,
Quetiapine, and Clozapine, receive lower scores and thus lower
ranks. These three drugs were reported (via the FDA drug
adverse event reporting system) as potential causes of cardiac
arrest in elder female patients. Our approach takes into account
this fact and adjusts the scores of the drugs accordingly.

Finally, we show an example of a query that asks for
multiple drugs as follows: [Query 4] Find a set of drugs
for Parkinson’s disease (I1), epilepsy (I2), and depression
(I3), that do not interact with one another. We obtain 15
drug sets having the full score of 1, for example, {Carbidopa
(for I1), Carbamazepine (for I2, I3)} and {Carbidopa (for

4http://www.drugs.com

TABLE VI. RESULTS FOR QUERY 3.
(a) WITHOUT PROFILE

Rank Drug Score
1 fluphenazine 0.99
2 lurasidone 0.99
3 iloperidone 0.99
4 molindone 0.99
5 pimozide 0.99
6 reserpine 0.99
7 haloperidol 0.98
8 loxapine 0.97
9 asenapine 0.96

10 buspirone 0.87
11 paliperidone 0.87
12 quetiapine 0.86
13 ziprasidone 0.86
14 clozapine 0.25
15 thiothixene 0.25

(b) WITH PROFILE

Rank Drug Score
1 fluphenazine 0.99
2 lurasidone 0.99
3 iloperidone 0.99
4 molindone 0.99
5 pimozide 0.99
6 reserpine 0.99
7 loxapine 0.97
8 asenapine 0.96
9 buspirone 0.87

10 paliperidone 0.87
11 ziprasidone 0.86
12 quetiapine 0.75
13 haloperidol 0.75
14 thiothixene 0.25
15 aripiprazole 0.25

I1), Gabapentin (for I2), Bupropion (for I3)}. If we use a
traditional exact match approach, more than thousands of drug
sets would be returned for this query; all of which have the
same score of 1, which can make it difficult for users to select
the best answer. Using our approach, some of these drug sets
receive lower scores because of their potential interactions.
For example, {Amantadine (for I1), Fosphenytoin (for I2),
Aripiprazole (for I3)} receives the score of 0.36. These drugs
do not interact according to our data sources, but our approach
considers the likelihood of their interactions and gives the drug
set a lower score. According to Drugs.com, we found that
Aripiprazole can indeed interact with the other two drugs.

VIII. CONCLUSION

In this paper, we propose an approach for answering drug
queries to support drug prescription. To cope with incomplete
and noisy data, we allow both exact and close matches
when answering queries. The answers are ranked by utilizing
the structure of a drug information network to quantify the
likelihood of associations between drug and drug properties
in the case that the associations are missing. We demonstrate
how our approach could assist practitioners to make informed
decision when prescribing drugs through several examples.

While this work addresses one of the major problems
in supporting prescription, which is how to obtain and rank
the answers, further work is needed to achieve a complete
prescription support system. First, our current system assumes
a query graph is given by users. For better usability, a module
that assists users in constructing the query graphs, such as a
form-based user interface or a module that translates natural
language queries to query graphs, should be developed. Sec-
ond, as mentioned in our evaluation, our system is intended
for assisting experts, not replacing them. The answers obtained
need to be reviewed by experts. Thus, a module that provides
users with supporting evidence for answers could be helpful.
Additionally, there are many other factors apart from side
effects and drug interactions that are important in prescribing
drugs. For our future work, we would like to obtain evaluation
and feedbacks from practitioners and improve our system to
better support their needs according to real-world usage.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their comments and suggestions. This work is supported by
the NSF under Grant No. CNS-1217284 and CCF-1018114.

REFERENCES

[1] T. Fawcett, “An introduction to roc analysis,” Pattern recognition letters,
vol. 27, no. 8, pp. 861–874, 2006.

[2] C. Knox et al., “Drugbank 3.0: a comprehensive resource for omics
research on drugs,” Nucleic acids research, vol. 39, no. suppl 1, pp.
D1035–D1041, 2011.

[3] M. Kuhn et al., “A side effect resource to capture phenotypic effects of
drugs,” Molecular systems biology, vol. 6, no. 1, p. 343, 2010.

[4] M. Kanehisa and S. Goto, “Kegg: kyoto encyclopedia of genes and
genomes,” Nucleic acids research, vol. 28, no. 1, pp. 27–30, 2000.

[5] J. Sun, H. Xu, and Z. Zhao, “Network-assisted investigation of antipsy-
chotic drugs and their targets,” Chemistry & biodiversity, vol. 9, no. 5,
pp. 900–910, 2012.

[6] F. Cheng et al., “Prediction of polypharmacological profiles of drugs by
the integration of chemical, side effect, and therapeutic space,” Journal
of chemical information and modeling, vol. 53, no. 4, pp. 753–762,
2013.

[7] J. Sun et al., “Network-assisted prediction of potential drugs for
addiction,” BioMed research international, vol. 2014, 2014.

[8] J. Huang et al., “Systematic prediction of pharmacodynamic drug-
drug interactions through protein-protein-interaction network,” PLoS
computational biology, vol. 9, no. 3, p. e1002998, 2013.

[9] F. Cheng and Z. Zhao, “Machine learning-based prediction of drug–
drug interactions by integrating drug phenotypic, therapeutic, chemical,
and genomic properties,” J. Am. Med. Inform. Assoc., vol. 21, no. e2,
pp. e278–e286, 2014.

[10] H. Zheng et al., “Linking biochemical pathways and networks to ad-
verse drug reactions,” NanoBioscience, IEEE Transactions on, vol. 13,
no. 2, pp. 131–137, 2014.

[11] J. Sun et al., “Characterization of schizophrenia adverse drug inter-
actions through a network approach and drug classification,” BioMed
research international, vol. 2013, 2013.

[12] K. Sangkuhl et al., “Pharmgkb: understanding the effects of individual
genetic variants,” Drug metabolism reviews, vol. 40, no. 4, pp. 539–551,
2008.

[13] C. Doulaverakis et al., “Panacea, a semantic-enabled drug recommen-
dations discovery framework,” J. Biomed. Semant., vol. 5, p. 13, 2014.

[14] M. Dumontier and N. Villanueva-Rosales, “Towards pharmacogenomics
knowledge discovery with the semantic web,” Briefings in bioinformat-
ics, vol. 10, no. 2, pp. 153–163, 2009.

[15] A. Ben Abacha and P. Zweigenbaum, “Medical question answering:
translating medical questions into sparql queries,” in Proceedings of
the 2nd ACM SIGHIT. ACM, 2012, pp. 41–50.

[16] J. Scheiber et al., “Mapping adverse drug reactions in chemical space,”
Journal of medicinal chemistry, vol. 52, no. 9, pp. 3103–3107, 2009.

[17] A. Bender et al., “Analysis of pharmacology data and the prediction of
adverse drug reactions and off-target effects from chemical structure,”
ChemMedChem, vol. 2, no. 6, pp. 861–873, 2007.

[18] F. Hammann et al., “Prediction of adverse drug reactions using decision
tree modeling,” Clinical Pharmacology & Therapeutics, vol. 88, no. 1,
pp. 52–59, 2010.

[19] E. Pauwels, V. Stoven, and Y. Yamanishi, “Predicting drug side-effect
profiles: a chemical fragment-based approach,” BMC bioinformatics,
vol. 12, no. 1, p. 169, 2011.

[20] M. Fukuzaki et al., “Side effect prediction using cooperative pathways,”
in BIBM’0. IEEE, 2009, pp. 142–147.

[21] L.-C. Huang, X. Wu, and J. Y. Chen, “Predicting adverse side effects
of drugs,” BMC genomics, vol. 12, no. Suppl 5, p. S11, 2011.

[22] D. G. Kleinbaum and M. Klein, Logistic regression: a self-learning text.
Springer, 2010.

[23] J. Clausen, “Branch and bound algorithms-principles and examples,”
Dept of Comp. Sci., University of Copenhagen, pp. 1–30, 1999.

[24] Genentech USA, “Tamiflu (oseltamivir phosphate) Prescribing Informa-
tion.” http://www.tamiflu.com/hcp/prescribing/hcp prescribe.jsp.

[25] M. Liu et al., “Large-scale prediction of adverse drug reactions using
chemical, biological, and phenotypic properties of drugs,” J. Am. Med.
Inform. Assoc., vol. 19, no. e1, pp. e28–e35, 2012.

