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Abstract—This paper describes our vision on what should be the 
research around sensing and adaptive interventions to make 
affective computing and stress management technology pervasive 
and unobtrusive. With the use of common computer peripherals 
and mobile computing devices as affect sensors, personalized and 
adaptive intervention technologies can be developed. 
Furthermore, physiological sensing can be performed without the 
introduction of extraneous factors such as wearable devices or 
focused software. Different methods for sensing and 
complementary adaptable interventions and interactions are 
described and proposed. We show initial lab evidence of the use 
of a computer mouse in the detection of stress. 

unintrusive sensing, affective computing, pervasive mental health, 
physiological measurements, mental states, mobile devices, 
psychological stress, bio sensors, activity sensors 

I.  INTRODUCTION 
This paper presents the body of knowledge around the 

adoption, usability and design of non-invasive sensing 
techniques for affective computing and stress management, due 
to its big impact in mental health and productivity. We define 
sensor-less sensing as the umbrella term covering the 
opportunistic use of existing sensors embedded in daily use 
computing devices and peripherals (mouse, keyboards, 
cameras, etc.) and mobile devices to repurpose their signals to 
track different biometric states representative of mental or 
physiological states directly or indirectly. Sensor-less sensing 
offers a great opportunity to detect physiological metrics such 
as heart rate, heart rate variability (HRV), breathing rate, etc. 
Another exciting opportunity is to indirectly detect mental state 
changes. Preliminary research performed in our lab on this 
topic has been able to detect robust signals in voice [3], and by 
measuring the natural oscillation of the arm through a computer 
mouse [22].  In a first approach sensor-less sensing can be used 
to monitor affective states associated with the use of computer 
interfaces (such as frustration, anger, happiness, stress, etc.) 
There are a number of advantages in leveraging daily use 
computing devices as “sensors”: 

Accessibility - peripherals such as mice and keyboard are 
ubiquitous and are indispensable to interaction with desktops 
graphic user interfaces.  

Unobtrusiveness - There is no need for wiring sensors to 
the body or speak to a microphone (or cellphone) especially in 
semi-structured office spaces.  

Long-term, in-situ monitoring - Many people spend a 
substantial amount of time using computers, which affords the 
opportunity to monitor and provide feedback while people are 
engaged in stressful tasks. 

Application and content neutral monitoring - Mice motion 
and smartphone gestures is neutral to the application and the 
content with which the user is interacting. This implies better 
generalizability and alleviates privacy concerns compared with 
other more intrusive techniques, like monitoring keystrokes or 
camera usage. 

II. BACKGROUND 

A. Arousal and Stress 
Arousal and stress affect almost all the body functions, 

including cognitive function and memory. Stress/arousal is not 
a single system but several related systems working in harmony 
(allostatic body function) [1]. Stress has a concrete function to 
trigger a reaction to a specific threat (stressor) [2]. Arousal 
generally improves memory, speed of work, association and 
pattern recognition; it also increases errors on unfamiliar tasks 
and causes cognitive and perceptual narrowing. The effects of 
these changes on performance depend on the task. 

This general form has been observed in studies on the 
effects of emotional stress on recall [4]. However, a large body 
of research has given conflicting results under different 
stress/performance combinations, often with linear 
relationships between arousal and performance, or with 
performance that saturates at high levels of arousal. It is best to 
assume that this relationship needs to be learned for each class 
of tasks. Similarly, it has been shown that the optimal level of 
arousal varies from one individual to the next. This all suggests 
that in order to make use of stress/arousal feedback, a system 
needs to gather a large amount of data about each individual, 
and furthermore this data needs to be identified with the task 
the subject is doing. 

B. Physilogical Affect Sensing 
Recent advancement in sensors and wireless technologies 

and related computational techniques have accelerated the push 

 



towards wearable health-care devices capable of providing 
ambulatory monitoring of a variety of vital signs, such as 
electrocardiogram (ECG), electromymogram (EMG), pulse 
oximetry, bioimpedance, galvanic skin response (GSR) [17]. 

Many of these vital signs are strongly linked with 
physiological changes induced by emotional arousal [19]. 
Healey and Picard used a combination of these physiological 
sensors to determine stress-levels for drivers in real-life driving 
tasks [8]. However, many have also reported that a variety of 
other conditions such as physical activity, attention or fatigue 
can introduce physiological responses very similar to 
stress/arousal [9].  

Affect sensing using voice and facial features has also been 
explored. Specifically, voice analysis has demonstrated modest 
accuracy at estimating emotion and high accuracy of 
stress/arousal [3]. Computer vision has demonstrated good 
accuracy at emotion detection from facial images [13]. 
However, collecting sufficient data to train robust models for 
voice analysis is challenging, and in both cases deployment is 
further complicated because of privacy concerns [14]. 

In spite of their growing availability, friction continues to 
exist in public adoption due to the intrusive nature of body 
periphery sensing. By enabling daily use computing devices 
capable of converting some body signals into mental health 
metrics, new affective technology adoption could be improved.  

III. PLANNED RESEARCH 

A. Emotion and Arousal from Computer Peripherals 
Mouse - A promising exploration of the use of mouse 

movements to detect affect was Wolfgang Maehr’s diploma 
thesis [15]. Maehr used several metrics on mouse movement, 
and emotions induced in subjects by watching short videos. 
Specific “motion breaks” that were discontinuities in mouse 
movement were significantly related to both arousal and 
disgust and close to significant for anger. One common 
correlate of arousal/stress is muscle tension. Tension in arm 
and wrist muscles would change the dynamics of the 
movement, e.g. its resonant frequency and damping ratio.  

 
Figure 1. Mouse displacement damping ratio for 20 different motion 
tasks for mental Non-stress and Stress conditions [22] 

In our work in progress (Sun, et. al. [22]) we have seen that 
it is possible to train simple controller models, such as Linear 
Predictive Coding (LPC), to capture the basic dynamic 

parameters of the movement. From such a model, approximate 
muscle tension is easily computed. The exploration used “game 
grade” mice, which have update rates of 500 Hz and 
resolutions of several thousand dots per inch (DPI). We 
replicated the study analysis. Figure 1 shows the damping ratio 
aggregated over N=30 subjects performing 20 different motion 
tasks with 5 randomized repetitions each.   

As it can be observed, the difference is larger than standard 
deviation of any condition. Under a t-test, we observe statistical 
significance (p>0.05) for all the tasks. The accuracy averaged 
over all the 100 experiment tasks (20 tasks x 5 reps) was 90%. 
We plan to extend this work in a number of directions. We are 
examining the sensitivity of the model for normal mice with 
lower spatial resolution.  

Keyboard - Affective inference from keyboard activity was 
recently described by Epp, et. al. [7]. The developers used 
timings from individual key and short key-sequence (bi- and 
tri-gram) features. Data were collected naturalistically, i.e. the 
system monitored subjects’ everyday computer use, and ESM 
(Experience Sampling) was used to gather self-assessments of 
emotional state. The system showed promising accuracy (70%-
88%) for most emotion labels. While these results are 
encouraging, as the authors acknowledged, these raw 
classification rates for skewed categories masked a very modest 
gain over baseline classification (e.g. for excitement). Still the 
approach shows the power of this feature set.  

We will explore the use of other classifiers, Support Vector 
Machines (SVM) and logistic models, and dimension reduction 
on the feature set (without emotion labels) using Latent 
Dirichlet Allocation (LDA) and Gamma-Poisson (GaP). 
Finally, keyboard and mouse models will be combined with a 
view to more robust classification. 

Camera - The face is a rich source of affective information 
through facial expression. Systems such as AFA, based on the 
Facial-Action Coding System, have demonstrated greater than 
90% accuracy on standard test datasets [12]. Research on facial 
expression recognition is quite mature and is now finding its 
way into commercial systems, for instance Affectiva’s 
FaceSense. Facial expression recognition is a complex 
computer vision task, and we do not plan to explore it. Instead 
there have been some exciting developments recently in 
measurement of vital signs data from facial images, which we 
wish to build on and extend. The first of these is pulse 
detection from webcam images of the face [20]. Blood flow 
through the vessels in the face causes tiny changes in the color 
of the face. This approach has been realized in MIT’s 
CardioCam, and in Philips “Vital Signs Camera” app for the 
iPad. The Philips app also measures breathing through small 
movements of the chest. Pulse rate and breathing rate are both a 
strong correlates of arousal. So is movement generally. So head 
and body movement captured from the tracker provide a further 
cue to arousal. 

We will develop a camera-based arousal monitor as 
outlined above. We believe adaptive comb filters are a good 
compromise for isolating and enhancing the breathing signal. 
The core signals will be pulse from face color, and breathing 
from correlated body motion and face color. We will also 
explore the value of statistics on general body motion (velocity, 



acceleration, distance) as cues to arousal level, and correlate 
these with other measures. 

B. Emotion and Arousal from Smartphone Activity 
Gestures - Following the methodology used in mice, we 

plan to extend this work to a three dimensional space to model 
common gestures used in smartphones for the detection of 
arousal and emotions. As described in the mouse section, we 
want to make sure gestures are not application or user specific 
and are commonly used, so that emotional detection can 
happen in the wild with common smartphone usage. By 
dynamically measuring accelerometer and gyroscopic data in 
three dimensions we want to be able to model the oscillations 
of the arm during normal smartphone usage, i.e. during normal 
tasks such as dialing, searching, browsing, etc.  We expect that 
the already large level of hand holding of the device will help 
generate sufficient data without the need of additional tasks.  

Voice - We expect to further enhance accuracy and 
complexity of emotions via a multi-modal approach. We plan 
to integrate our mechanical system with a voice sensing model 
based on Chang, K., et. al. toolkit, AMMON [3], which has 
already produced high accuracy emotion detection through the 
detection of voice changes both at an intonation level (via 
glottal timings) and at a prosodic changes (pauses, speech 
speed, etc.) 

C. Adaptive Interactions and Interventions 
Feedback and Interface Adaptation – The first and most 

basic interaction/intervention will be to present direct feedback 
of different emotional states to users. Direct feedback should 
raise awareness and drive behavior change. Another option is 
the automatic alteration of the interface to better adapt to the 
emotional state of the user. The interface could be adapted 
either at the background or foreground level [11] to help the 
user either maintain attention in the task at hand during a 
stressful, but productive state, or change and relax during a 
frustrating or overwhelming episode. Interface adaptation to 
human affect has been used in airplanes, using previous 
knowledge, self-reports, diagnostic tasks and physiological 
sensing and changing the interface at the content and format 
levels [10].  Work has also been done to adapt computing 
interfaces to cognitive and affective changes (the latter 
captured through changes in facial expressions) [6]; however 
little work has been done to unobtrusively sense affect and 
actively adapt computer interfaces to affective changes.  

We plan to explore the use of sensor-less sensing to 
monitor different emotions commonly present during 
interactions with computing devices to help people use them 
more towards the accomplishment of their goals and to 
optimize the emotional engagement associated with it. In terms 
of mental health, the ability to maintain an “appropriate” level 
of stress, needed to fulfill the task will be beneficial especially 
in productive settings like the office or school. 

Emotional Regulation and Psycho-education Interventions– 
Emotional regulation interventions such as calming 
technologies present a good opportunity to help deliver users 
that present initial (moderate) symptoms of stress or other 
emotional changes with a brief and effective intervention that 
would help people avoid unnecessary emotional alteration. 

Paredes, et. al. [18] present an example of some mobile 
individual and social interventions that are brief and usable 
without the need of additional hardware and leveraging 
intrinsic and social aspects. Coyle, D. et. al. [5] has explored 
gaming interventions focused mental health based on Cognitive 
Behavioral Therapy (CBT) We expect to extend the work done 
with these interventions to further explore interventions based 
on social and gaming concepts. One specific technology 
already being developed in our lab is the use of machinima 
(machine + cinema) technology for the creation of short movies 
that can deliver some life skill or CBT concept teaching that 
could be beneficial to regulate emotional change or stress. 
Figure 2 shows snapshots of a simple movie created on the 
Sims 3 platform that teaches element of social interaction based 
on a CBT manual [16]. The manual content is converted into a 
movie script and later transformed into interactive version of it 
using an adaptable decision tree and simple game mechanics.  

 
Figure 2. Machinima movie snapshots filmed on the Sims 3 platform 
and decision tree for an intervention to teach social interaction skills  

Additionally we want to explore foreground and 
background interventions that could be delivered via the 
graphical unit interface (GUI) associated to the operating 
systems or the application being used. Some ideas in that could 
be developed are: a. the use of desktop themes, screen savers, 
menu bars, etc. could be used to deliver soothing messages or 
color combinations that can help reduce stress, b. the 
modification of fonts or illumination of the screen to help 
improve reading during moments of emotional arousal, c. help 
block or reduce the number of cues presented through 
automated messages, such as incoming email or chat, to help 
maintain focus during highly stressful situations.  

IV. METHODOLOGY 

A. Usability Studies 
Given the new uses derived from extracting personal, and 

in many cases intimate, information, our research approach 
contemplates a fundamental focus on usability.  In the case of 
sensing personal mental data, it is important to understand that 
many users may not have a clear conceptual model of this 
novel sensing technology. Additionally, their level of 
motivation and their level of engagement will be diverse and 
certainly should change over time.  

We plan to do experiments to examine the interaction 
between the user and a device that “reads” your mind and how 
this can generate further confusion, anxiety, or behavioral 
changes, as well as desire or rejection of the system. We want 
to observe the differences between a) treating the device as 



reader of one’s (mental) self or b) as a companion (“pet”) that 
is affected or altered by our mental states.  We will perform 
these studies in all the previously mentioned technologies 
(mouse, keyboard, smartphone, camera) and will also add 
emotion recognition technology using the AMMON [3] toolkit, 
which provides emotion and stress voice features on a mobile 
phone. We plan to run single mode and multi-modal lab and 
field studies to observe adoption and engagement patterns. 

B. Stress and Emotion from Sensor and Contextual Data 
We will begin with lab studies with subject under induced 

stress and emotions. We have run some of these studies in our 
lab to date, using a variety of calibration methods [18] [22]. In 
reality it is difficult to train a stress or emotion sensor because 
there is no objective ground truth. While Heart Rater 
Variability (HRV) responds strongly to Autonomous Nervous 
System (ANS) tone, there are several confounds. Even 
chemical tests (e.g. cortisol samples from saliva) are 
confounded by body chemistry (esp. medications), and exhibit 
significant lag (minutes or tens of minutes). We make use also 
of induced stress, but different subjects respond very 
differently to particular stressors, so the best we can hope for is 
an increase in stress on average. This is still enough to train a 
model, and once trained we can study the accuracy of this 
model with or without the inclusion of particular sensors to 
measure their individual predictive value. Data for stress 
modeling will include continuous variables (estimates from the 
biometric sensors including voice, keyboard, mouse, HRV), a 
periodic time variable, and discrete variables (location, id of a 
nearby person). We will start with simple models, namely 
linear regression of sensor data on a consensus of “control” 
signals (cortisol, self-report and Tricorder HRV). Discrete 
changes will be modeled with additive linear coefficients. 
Going beyond pure supervised regression; we will experiment 
with latent factor models, which may expose useful patterns of 
thought and/or behavior, which predict stress. We have 
previous experience with rich factor models for activity 
classification from desktop activity data [21].  

C. Integrated Model and Data Acquisition 
Given the models as trained above we will move to live, in 

the field modeling. Using the models above, we will compute 
real-time estimates of emotional states and stress for users 
working at a desktop or using a mobile device. When 
significant changes occur in modeled emotional and/or stress 
level occur, the system will prompt the user to give a self-
report. These self-reports will then be used for further training 
and model refinement. By issuing requests at times of change, 
we will be able to gather emotional and stress label data that 
should be as close as possible in time to triggers. Thus it should 
be of maximum value for building models of the complex 
dependencies on discrete emotional triggers and stressors.  

D. Expected Results 
Our expectation is to obtain representation of stress through 

PC peripherals and Smartphones correlated with traditional 
Psychometric and Biometrics, opening the door to present our 
system of tools to the research community to test them as 
potential new sensors of stress/arousal. 
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