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Stress is an increasingly recognized phenomenon that has 

negative effects on growing numbers of people. Stress assessment 

is a complex issue, but different studies have shown that 

monitoring user psychophysiological parameter during daily life 

can be greatly helpful in stress evaluation. In this study a 

wearable biosensor platform able to collect physiological and 

behavioral parameters is reported. The developed wearable 

platform, in terms of hardware and processing algorithms, is 

described.  Moreover the use of this wearable biosensor platform 

in combination with advanced simulation technologies, such as 

virtual reality offer interesting opportunities for innovative 

personal health-care solutions to stress. A recently founded 

European project, “INTERSTRESS – Interreality in the 

management and treatment of stress-related disorders," will take 

into account these relevant aspects. 

Keywords: Stress, Psychophysiology, Mobile biosensor, 

Electrocardiogram, Respiration signal, Bio-behavioral Methods. 

I. INTRODUCTION 

Research interest in psychological stress and its cognitive 

and bodily responses has been growing over the last decades. 

Stress is an increasingly recognized phenomenon that has 

negative effects on growing numbers of people [1, 2]. Chronic 

stress is responsible for premature mortality in Western 

countries, and work-related stress accounts for premature 

cardiovascular mortality rates. 

Within this panorama, it is easily understandable that stress 

assessment is a complex issue independently to instruments, 

biosensors or psychological method used for the assessment 

[3].  

Several studies showed interesting results that support the 

feasibility of detecting affective states through 

psychophysiological data acquisition and analysis [4-5]. The 

affective computing group at MIT, led by Rosalind Picard, 

published several research studies that highlighted the use of 

psychophysiological measures to deduce and classify 

emotional states while study participants were performing 

different kinds of PC activities [6-7]. 

On the other hand, there are few studies that has tested the 

feasibility of such platform to actually elicit affective states. 

This consideration needs to be reviewed further to understand 

its implications fully for behavioral health care. For example, 

in a therapy for a stress-related disorder in a clinical setting is 

essential to elicit an affective state. In fact, standard cognitive 

behavioral therapies, such as biofeedback and relaxation, work 

to modify affective states through direct elicitation of positive 

emotions or a stressful situation that the subject progressively 

then learns (or has already learned) to manage. 

Researchers highlighted in particular the usefulness of 

wearable biosensors used in mobile platforms [8, 9] and 

Virtual Reality environments [10-13] or both [14] to detect 

changes in the physiological and affective states. This can be 

essential, for example in mobile clinical setting, to share that 

information with the subject and eventually also interested 

caregivers, such as professional medical staff, relatives, or 

even friends. 

This study reports the development of a novel wireless 

biomonitoring system for the continuous tracking of 

physiological and behavioural user parameters that used in 

combination with technological-based solutions, such as 

virtual reality and mobile phone, could offer interesting 

opportunities for innovative personal health-care solutions to 

stress .  

II. METHODS 

The Personal Biomonitoring System (PBS) is a platform that 

is conceived to be available to the patient during daily 

activities to collect, fuse and analyze patient behavior and his 

general and physiological status. This wireless biomonitoring 

system unobtrusively performs a real-time monitoring of heart 

rate (HR), heart rate variability (HRV) and breathing rate 

(BR), as meaningful physiological parameters to study the 

stress correlation. Moreover the PBS carries out a continuous 

tracking of activity level and posture of the user, as behavioral 

parameter for patient contextual identification. 

 

  
 

Fig. 1 The chest band realized and its electronic device 

 

 

Data elaborated are sent to a personal data assistant (PDA) 

which will perform a provisional stress analysis useful to 



 

trigger a more accurate analysis connecting to a central 

database or to perform a local biofeedback strategy. 

A. Hardware description 

Different modules are embedded in the PBS. Each component 

design was oriented  to usability and user comfort, without 

leaving out the importance to achieve reliable stress-related 

parameters. The electrodes, positioned in the chest, are 

embedded in the elastic band of Fig. 1a, providing a portable 

device in a all-in-one solution for physiological (cardiac and 

breathing monitoring) and behavioral data acquisition. 

 

Fig. 2 shows the three different subsystems embedded in the 

PBS platform: i) the HUB collects all extracted parameters 

and send them to the PDA via Bluetooth. The HUB is the 

master node of the internal network, coordinating the 

exchange of data with the ECG module and BR module, 

respectively. Moreover, the HUB provides the power supply 

of the whole system and includes also the circuitry for battery 

charge management. 

 

 
Fig. 2 Block diagram of PBS system 

 

 

ii) ECG + ACT: this is the subsystem devoted to the extraction 

of the cardiac parameter, the heart rate (HR) and heart rate 

variability (HRV), and relevant information of user activity 

(ACT). iii) The last subsystem is the one for the extraction of 

the breathing rate parameter (BR).  

All these subsystems will be analyzed in detail in the next 

sections. 

 

 

ECG system 

The PBS ECG block is a 3 leads ECG sensor that samples 

signals at the frequency of 256Hz. The front-end is based on 

the INA321 instrumentation amplifier that simply cancels out 

the common-mode and amplifies the input differential ECG 

signal to about 5x (no external RG is added).   

The signal at the output of  INA321 is further amplified by  

one of the three integrated operational amplifiers available in 

the microcontroller (MSP family made by Texas Instruments,  

MSP430FG439), to reach the total 500x amplification.  

The second integrated operational amplifier is used to 

manage the variation of the dc content of the differential 

output signal, popularly called baseline wandering. This 

amplifier is designed as an analog integrator scheme that feeds 

back the integration of the dc content of the 5x amplified ECG 

to the INA321.  

The third integrated operational amplifier is used for the 

active drive of the reference electrode.  

The amplified ECG signal is internally digitized using the 

on-chip analog-to-digital converter available in the 

microcontroller. The core of the system, is the low power 

microcontroller that elaborates and analyzes raw sensor data 

and extracts HR and HRV parameters directly on board. 

 

BR system 

There is substantial evidence that alterations in respiratory 

rate can be used to predict potentially serious clinical events 

such as cardiac arrest or admission to the intensive care unit 

[15, 16].  

Indirect techniques that can be implemented in wearable 

systems are respiratory inductive plethysmography [17], 

impedance plethysmography [18], piezoresistive 

pneumography [19], and/or piezoelectric pneumography. 

These systems are minimally invasive and do not interfere 

with physical activity, but most of them suffer from motion 

artifact especially if movements are at the thorax level. 

Considering this, a new sensor configuration was adopted. 

This new configuration consists of using a piezoelectric cable, 

made of Polyvinylidene (PVDF), integrated in the chest band 

in order to increase the Signal to Noise Ratio (SNR) making 

the breathing signal detector reliable and robust. The working 

principle is to measure mechanical forces due to the chest 

movements and correlate them to the fundamental frequency 

of respiration activity. 

 

  

 

 

 
 

 

 

Fig. 3 Representation of piezo cable application. The cable size is 20 

AWG, and the typical piezoelectric capacitance and sensitivity of the 

cable are 650 pFm-1 and 20 pCN-1, respectively. 

 

 

When the cable is compressed or stretched, a charge is 

generated between the centre core and the outer braid shield. 

The charge of the sensor is converted into a proportional 

voltage by a current-voltage converter, and then the output 

signal is fed to an A/D converter unit, embedded internally in 

the microcontroller. The charge-voltage converter is 

constructed using an OPA124 by Texas Instrument. 

 

Activity system 

In this study, behavioral information are not considered as 

stress indicators but they will be used as context for 

physiological measures.  

According to this point the well known signal magnitude 

area (SMA) index is extracted from a tri-axial accelerometer 

integrated in the cardiac module, in order to discriminate the 

level of activity the user performed [20][21].  

The ADXL330 produced by Analog Device was selected 

for its main characteristic such as small size, thin, low power, 

complete 3-axis accelerometer all on a single monolithic IC. 

 



 

B. Algorithm and features extraction 

 

QRS detection, HR and HRV extraction 

An ECG analysis algorithm was developed to elaborate and 

process signals generated from the wearable PBS. QRS 

complex needs to be detected to generate heart rate and RR 

intervals. Thus, an accurate QRS detector is important in order 

to extract reliable HR or RR intervals to make meaningful 

HRV analysis and mental stress correlation. However, an 

accurate QRS complex detection may be difficult due to the 

physiological variability of the QRS complex and various 

types of noise that can be present in the ECG signal. 

Typical noise artifacts in ECG signals are power line 

interference, electrode contact noise, motion artifacts, and 

baseline drift [22]. Motion artifact is the most relevant in case 

of wearable monitoring systems used out of clinics during 

activity of daily living, where it is important to measure 

physiological signals accurately anytime and anywhere. Thus, 

a novel algorithm for robust and real-time HR and HRV 

extraction from ECG signal was developed in order to extract 

further correlates to mental stress [23] . 

There are numerous detection methods for QRS complexes 

including Pan-Tompkins method [24], wavelet [25] and 

Hilbert [26] transforms. Moreover, morphological approaches 

were developed for baseline correction and noise suppression 

in clinical ECG signals [27]. The algorithm developed, 

starting from the original Pan-Tompkins idea, uses a Kalman 

filter to extract reliable QRS complex, reducing the noise in 

the ECG signal, without applying any threshold and with very 

low computational cost. 

The novelty of the algorithm is the combination of the 

Kalman filter with the predictor stage. With respect to the 

different algorithms present in literature that use high order 

low pass filter on the raw ECG signal, low time delay or 

amplitude attenuation are added applying the Kalman filter. 

Moreover, the design of the predictor stage based on 

assessment of the future QRS parameters allows to have  R 

peaks and RR time distance evaluations independent from the 

inter-subject variability and from the measurements system 

used [23]. 

  

BR monitoring 

The breathing rate detection algorithm is executed in real 

time on the module low power micro-controller (MSP430F149 

by Texas Instruments). The routine computes a real time peak 

recognition function of the breathing signal, not using any 

threshold value or empiric rules.  

A previous study has demonstrated how this fundamental 

frequency is a good approximation of the subject BR [28]. The 

choice of the PVDF satisfies the requirements of reliability, 

reproducibility, and high sensitivity in the human temperature 

range. The sensor configuration (see Fig. 3Fig. 3) permitted to 

obtain low contribution of the movement artifact and a 

maximum contribution of the signal, which is generated by the 

chest pressure applied to the sensor [29]. This configuration 

makes the breathing signal detector reliable and robust also 

during user movements [28] . 

Activity elaboration 

The accelerometer measures the acceleration and local 

gravity that it experiences. Considering a calibrated tri-axial 

accelerometer (i.e. offset and sensitivity are compensated and 

the output is expressed in unit of g), the accelerometer signal 

(y) contains two factors: one is due to the gravity vector (g) 

and the other is due to the system inertial acceleration (a), both 

of them expressed in the accelerometer reference frame [30]: 
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In static conditions only the factor due to gravity is present 

and the inclination of the accelerometer with respect to the 

vertical is known. In dynamic conditions, an estimation of the 

inclination is unreliable simply by using the raw accelerometer 

signal since the inertial acceleration is added to the gravity 

factor. This estimation error gets more important as the subject 

performs faster movements (e.g, running, jumping). 

In order to estimate the activity intensity, the Signal 

Magnitude Area (SMA) is extracted from the inertial 

acceleration components detected by the worn sensor. The 

SMA is equal to the sum of the axis acceleration magnitude 

summations over a time window and normalized by the 

window length [31]. The SMA discrete form is given by: 

 

 

 

where N is the window length and (a1, a2, a3) are the three 

components of the inertial acceleration estimated by the 

accelerometer signal. At each time, the last available SMA 

value can be used to understand if the subject is resting, 

performing mild activities (among which walking) or intense 

activities (among which running). Considering the gravity 

component g as a slowly varying one, the inertial component a 

can be approximated by means of a third order IIR high-pass 

digital filter with a cut-off frequency of 0.3 Hz and applied to 

the y components. This technique has been proved to be 

effective in order to classify the activity level [32].  

Moreover the algorithm showed very good capabilities in 

distinguishing activity level performed by 9 subject during 

more than 5 hours of acquisition. 

III. TEST AND RESULTS 

 

Different experiments were performed in laboratory setting 

in order to test and validate the capability of each subsystem to 

perform robust and reliable extraction of the selected 

parameters. 

Considering the behavioral user information, the algorithm 

showed very good capabilities in distinguishing activity level 

performed by 9 subject during more than 5 hours of 
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acquisition. The good performance of the algorithm is reported 

in the Fig. 4, where the algorithm accurately classifies user 

activity between three different class of activity level (”none”, 

”mild”, ”intense”). 

 

 
Fig. 4 Behavioral user classification. The blu signal represents the module 

of the acceleration signal, while the pink one is the SMA value that allows 

user activity discrimination. 

 

 

Regarding ECG modules, the algorithm developed allows to 

have a R peaks and RR time distance evaluations independent 

from the inter-subject variability and baseline wandering. In 

fact, in respect to the different algorithms present in literature 

that use high order low pass filter on the raw ECG signal, no 

time delay or amplitude attenuation are added applying the 

Kalman filter. Moreover, the filtering technique and the QRS 

complex detection are adaptive both to ECG signal, related to 

inter-subject variability, and to the measurement system, 

related to artifact noise. The method has been tested on all the 

MIT-BIH available records and showed very good results in 

terms of Sensitivity (Se =99.95). Furthermore, several tests 

were carried out in order to analyse the capability of the 

realized hardware to acquire and elaborate real ECG signal. 

 

 
Fig. 5 ECG acquired using the PBS ECG block. In a) the user was asked 

to wear the system in a resting condition, while in b) the user was 

performing mild activities, such as walking or doing office activities. 

 

It is possible to underline that Fig. 5 shows the PBS good 

capabilities to carefully reconstruct the typical ECG 

waveforms. Moreover, Fig. 5 b) points out the ability of the 

system to follow baseline variation due to motion artifact and 

to accurately reproduce cardiac peculiarity waves (QRS 

complex). The proved signal quality, reached also during 

motion activity, allows to extract reliable and robust 

meaningful cardiac parameters. 

Regarding BR analysis, the choice of the PVDF satisfies the 

requirements of reliability, reproducibility, and high 

sensitivity in human temperature range. The sensor 

configuration permitted to obtain low contribution of 

movement artifact and a maximum contribution of the signal, 

which is generated by the chest pressure applied to the sensor . 

In Fig. 6 the signal acquired by the PBS BR block is reported. 

In particular  it is represented the tracking of the user 

breathing signal and the real-time evaluation of its respiratory 

rate in resting condition, Fig. 6 a), and during fast respiration 

activity, Fig. 6 b). 

 
Fig. 6 Breathing Rate evaluation. The blu line represents the acquired 

breathing signal and the red one the recognition of the peak level useful 

for the evaluation of the breathing rate.  

 

IV. DISCUSSION AND CONCLUSIONS 

 

The implementation of INTERSTRESS will be based on a 

database to collect physiological signals (in particular HRV 

measures) and psychological questionnaire during several 

participants' sessions. These sessions will also provide 

biofeedback sections with an advanced integration between 

the biosensors here presented and the Virtual Reality 

environments used during the participants' training. 

Cognitive Behavioral (CBT) approach can be considered 

one of the best validated approach for stress management and 

stress treatment. Even if CBT is the treatment of choice for 

psychological stress, there is still room for improvement. 

In particular new paradigm based on cutting-edge e-health 

can better fit to the needs of specific situations that stressed 

people need to consider. 

Riva and coll. [33-34] recently introduced a new paradigm 

for e-health – “Interreality” - that integrates assessment and 

treatment within a hybrid environment, bridging physical and 



 

virtual world.  By creating a bridge between virtual and real 

worlds, Interreality allows a full-time closed-loop approach 

actually missing in current approaches to the assessment and 

treatment of psychological stress: first, the assessment  is 

conducted continuously throughout the virtual and real 

experiences: it enables tracking of the individual’s psycho-

physiological status over time in the context of a realistic task 

challenge; second, the information is constantly used to 

improve both the appraisal and the coping skills of the patient: 

it creates a conditioned association between effective  

performance state and task execution behaviors. The potential 

advantages offered to stress treatments by this approach are: 

(a) an extended sense of presence: Interreality uses advanced 

simulations (virtual experiences) to transform health 

guidelines and provisions in experience; (b) an extended sense 

of community: Interreality provides social support in both real 

and virtual worlds; (c) a real-time feedback between physical 

and virtual worlds: Interreality uses bio and activity sensors 

and devices (PDAs, smartphones) both to track in real time the 

behavior and the health status of the user and to provide 

suggestions and guidelines. 

Within this framework the biosensors here presented can 

meaningfully be considered as one of the few that totally 

integrates with all the virtual environment (VE) developed 

with NeuroVR (www.neurovr.org), a free software that allows 

everyone to create and to use VE for clinical application, 

including stress protocol [35]. 

These virtual environments are used in clinical setting and 

are fully controlled by the clinicians. These virtual worlds uses 

the sense of presence provided by the engaging virtual 

experience to practice several stress management exercises: 

relaxation techniques; VR biofeedback,  assertiveness training, 

time management training, and problem-solving training. 

The devices are integrated around two subsystems: the 

Clinical Platform (in patient treatment, fully controlled by the 

therapist) and the Personal Mobile Platform (real world 

support, available to the patient and connected to the therapist) 

that allow a) monitoring of the patient behavior and of his 

general and psychological status, early detection of symptoms 

of critical evolutions and timely activation of feedbacks in a 

closed loop approach; b) Monitoring of the response of the 

patient to the treatment, management of the treatment and 

support to the therapists in their therapeutic decisions. 

The clinical use of these technologies in the Interreality 

paradigm is based on a closed-loop concept that involves the 

use of technology for assessing, adjusting and/or modulating 

the emotional regulation of the patient, his/her coping skills 

and appraisal of the environment (both virtual, under the 

control of a clinician, and real, facing actual stimuli) based 

upon a comparison of that patient’s behavioural and 

physiological responses with a baseline or performance 

criterion. 

In this study we considered Psychophysiological aspects for 

the management and treatment of stress-related disorders. One 

of the widely used instrument to analyze these aspects is the 

electrocardiogram (ECG) and, widely, the cardiorespiratory 

activity. In particular the Heart Rate Variability (HRV) 

measures have been generally used, giving evidences that 

lower variability seems to be higher related to negative moods, 

such us stress. A recently founded European project, 

“INTERSTRESS – Interreality in the management and 

treatment of stress-related disorders", will take in account 

these aspects, verifying ECG and HRV, in the interreality 

paradigm, i.e. creating a bridge between the physical and 

virtual worlds. In particular "stress detection" through ECG 

deserve an important consideration: there aren't empirical 

evidences to exactly discern strass-state components; in these 

aspects INTERSTRESS project will play an interesting role: 

the elicitations through hybrid environment could be a good 

chance to better discriminate a part of these components. 
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