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Abstract— This article describes an approach in which the 

rehabilitative exercise prepared by healthcare professional 
(human) is encoded as formal knowledge and used by humanoid 
robot to assist patients in residential settings without involving 
other care actors. The authors are researching on the new 
cognitive capability enabling robots to judge about the 
correctness of the rehabilitative exercise performed by patients 
following the robot’s indications. The proposed method uses the 
Dynamic Time Warping functionality comparing the correct 
sequence (encoded in the Knowledge Base) with the human 
actions being observed by the robot’s eyes. The proposed 
approach is an enabler of better sustainable rehabilitative care 
services in remote residential settings because of lowering the 
need of human care. 
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I. INTRODUCTION 
The demand of remote care services for elderly population 

is steadily growing because of the demographic developments 
reducing the availability of caregivers. For this reason the care 
stakeholders are actively looking at the new enablers of remote 
Assistive Living services (Fig. 1). 
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Fig. 1. Care model based on the use of robots. 

To offer valuable and sustainable care services using the 
telemedicine approach in general, the key aspects are (a) the 
monitoring of Activities of Daily Living (ADL), (b) the activity 
recognition and classification, and (c) rule-based Decision 
Support System capable to trigger the relevant 
situations/events. 

In the known art, the rehabilitative exercises are prepared 
by physiotherapists and offered to patients (individually or in 
small groups) in specialized care centers. Whenever it is 
impossible to the patient to reach any care center because of the 
physical impairments, the healthcare professionals offer the 
necessary care in their residential settings. Because of the 
steadily reducing support ratio due to demographic 
developments, the sustainability of rehabilitative care at home 

could be achieved by using non human healthcare actors, for 
example by anthropomorphic robots. 

The use of humanoid robot as tutor to offer the 
rehabilitation at home relies on a number of cognitive 
capabilities, such as the capability (a) to reach the position 
nearby patient at right moment/time, (b) to persuade the 
patient to start doing exercises, (c) to show the correct motions 
to follow, (d) to observe how the patient is doing the exercise, 
and (e) to make a judgment about the compliance of the 
exercise being made by patient to the one prepared by 
physiotherapist(s). Upon them, the robot can decide the most 
appropriate automated reaction to stimulate patient(s) 
continuing the exercises or to report to human healthcare 
actors the non-compliant or abnormal situations. 

The advent of robotics and the recent developments of 
advanced cognitive capabilities make possible using 
anthropomorphic robots in remote residential settings for care 
purposes. In the current state-of-the-art, the robot can navigate 
till the position in front of the patient, can gain the patient’s 
attention, can speak inviting to follow the physical exercise, 
and can show the correct sequence of movements [1]. The 
mobile robots can observe the activities performed by humans 
(Fig.2) using the eyes [2] and produce the sequences of 
numeric data describing the skeleton/node’s movements. For 
example, the sequence Nj(t)={xj(tk), yj(tk)} describing the 
motion of the leftmost vector (node) could be used to assess 
the motion of the right hand while doing the rehabilitative 
exercise. 

X1(t), Y1(t)

 
Fig. 2. Artificial vision offered by the robots (commercial APIs used). 

Unfortunately the capability to judge about the quality of 
the exercises performed by patients - following the robot’s 
indications - is not available yet. The authors investigates on 
the pattern matching techniques aiming to implement said 
capability to observe the happenings (actions performed by 



human), to compare them with the intended and formalized 
behavior, and to take a decision about the match and/or 
mismatch. The ultimate goal is to set up the pervasive remote 
care rehabilitative service in which the robot will filter 
automatically the situations non-needing specific human 
interventions in order to concentrate the available limited 
workforce of healthcare professionals to the only planned 
interventions and the situations classified by the robot as 
“abnormal”. 

Many research studies in care domain speak about the use 
of more or less intrusive wearable and environmental sensors 
for automated monitoring of people living independently. A 
review of the literature available in [3] highlights the focus on 
monitoring techniques, the use and placement of wearable 
sensors, the methods of data collection and elaboration 
techniques. An example of the selective activity monitoring is 
reported in [4].  

II. PROJECT BASELINE 
One of the possible approaches to the use of robots in the 

rehabilitative care is shown in [5]. However, their use at home 
seems not yet widely discussed. KSERA project uses the 
humanoid robot to assist sufferers of Chronic Obstructive 
Pulmonary Disease (COPD) living independently at their 
homes. COPD is the occurrence of commonly co-existing 
diseases of the lungs in which the airways narrow over time 
causing shortness of breath (dyspnea). This limitation is 
poorly reversible and usually gets progressively worse over 
time. For these reasons the COPD care does include a 
pulmonary rehabilitation program which can be done nearly 
anywhere. The physical and breathing exercises build the 
muscle strength and endurance to reduce shortness of breath. 

Accordingly the care guidelines, the difficulty levels of 
pulmonary rehabilitation programs can vary depending on the 
SpO2 levels. In KSERA, each pulmonary rehabilitation 
exercise is developed by healthcare professionals and encoded 
by engineers in software program executable by the robot. The 
correct sequences are stored in the Knowledge Base. The 
system keeps awareness about the duration of each element 
included in the sequence. 

The Ubiquitous Monitoring sub-system (UMS) of KSERA 
detects the conditions triggering the rehabilitative exercises. 
The measurement of the blood’s SpO2 level using the 
wearable oxi-pulsimeter governs the choice of an appropriate 
exercise. The humanoid robot starts the rehabilitation 
program. It detects where the patient is, it moves nearby the 
patient, it stops in front of him/her. The robot invites the 
patient to follow the exercise and starts showing the pre-
programmed sequence of actions. During the exercise, the 
robot remains in the position permitting to meter the human 
activities by direct observation. 

III. PROPOSITION 
In order to express a judgment about the quality of 

pulmonary rehabilitation exercise, the authors use the robot 
eyes to acquire the sequence of video frames at a standard 
rate. The video sequence is submitted to the video-analysis 
software in order to transform it in the motion vectors. This 
step is made using the commercially available libraries 
containing the Skeleton class of Kinect software. A similar 

approach is documented in [6]. The motion vector is processed 
in order to extract the time constrains corresponding to each 
activity element. To simplify the task, in this study we 
measure the moving arm/leg duration and the time intervals 
between the mobility periods (Fig.3). 

tj tj+1 tj+2 tj+3

tk
tk+1

tk+2

tk+3

tl tl+1 tl+2 tl+3

Δt1 Δt2 Δt3

No action Action No action

 
Fig. 3. Modeling the human activity. 

Let us trace the positions of the same skeleton’s node Ni in 
time dimension. It gives the sequence of Ni(t). Let us denote 
the spatial distances between two time points as d(Ni, tk, 
tl)=|xi(tk)- xi(tl)|2+|yi(tk)- yi(tl)|2. for each node Ni having the 
coordinates xi(t), yi(t), and zi(t). Let us denote the time interval 
[tk, tl] as Δtkl. Until the spatial distance between the positions 
of the same node varying/neighboring in time dimension 
remains small, the whole time segment is classified as “no 
action” or Pause. The time intervals between two adjacent 
Pauses are classified as DoingActivity. 

At this point the annotated patient’s mobility becomes a 
sequence S1={Action(tj, tj+1), Pause(tj+1, tj+2), Action(tj+2, tj+3), 
…}. 

Another similar sequence corresponding to the storyboard 
of the exercise encoded for the humanoid robot is available 
and it could be retrieved from the Knowledge Base. Let us call 
it as S2. It could be used as the known pattern for the 
comparisons between S1 and S2. The original problem about 
judging about the quality of exercises is simplified and 
replaced by the question AreSimilar(S1, S2)? Two sequences 
have the same structure, so the comparison in terms of 
similarity and timing is possible. Based on the results of 
comparison, one can trigger the cases requiring human care 
interventions. The authors implement the filtering and the 
corresponding control action as IF AreSimilar(S1,S2)=TRUE 
THEN Tell(“Ok”) ELSE AdvertDoctor(). 

As pointed by [6], some delay between all the tj terms in S2 
and the corresponding – if any – tk terms in S1 exist because 
the robot starts first. The normal delay between two actions is 
dt = |tk- tj|. The patient can decide to follow the robot or to do 
something else. By following the pulmonary rehabilitative 
program shown by robot, each human action could have 
different duration compared with the robot’s one. For each 
term in S1, being compared with the corresponding term in S2, 
we calculate the time warping coefficients kj = (tj+1-tj)/(t’

j+1-t’
j). 

These coefficients compare the speed of doing the same 
movement by the therapist (represented by the humanoid 
robot) and by the patient. Our ambition is the new cognitive 
capability to let robots judging the compliance between the 
pairs (Sj, S2). To operate with variable durations we have 
encoded the concept of the correct timing (Fig. 4). Until the 
duration of the segments stays in the allowed range, e.g. 
0.8<kj<1.2, the timing is judged as correct. 
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Fig. 4. Fuzzy definition of the correct length of the segments. 

IV. EXPERIMENT 
The experiment was set up in the ISMB (Italy). One 

intended pulmonary rehabilitation program proposed by 
doctors was encoded in software for NAO robot (Fig. 5). 
Because of this, the exact durations of program components 
are known since the beginning (S2). 

 
Fig. 5. The rehabilitation program being encoded in software. 

At the beginning of human-robot interaction, the humanoid 
starts performing the exercise. The correctness of S2 and its 
timing are cross-checked at this stage (Fig. 6). 

 
Fig. 6. Artificial physiotherapist shows the exercise. 

At the next stage the patient starts the exercise following 
the robot. The robot observes the sequence of human actions 
(Fig. 7). 
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Fig. 7. Patient follows the activity shown by robot. The robot observes 
human activities. 

Using the proposed approach, the video registered by the 
robot’s eyes is transformed by the commercial API in a 
numeric sequence measuring the exercise through the quantity 
of motion (a sum of tokens/vectors). The software compares S1 
with S2 using these scalar values then (Fig. 8). 
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Fig. 8. The durations of rehabilitation exercise made by robot/human. 

The pattern matching is operated using the Dynamic Time 
Warping method known also as DTW [7, 8]. In our 
algorithms, the DTW is used to identify a-posteriori the 
optimal alignment between two time series S1(t) and S2(t). 
Although the DTW is designed for full sequence matching 
(the exercise is a sequence composed by several 
segments/actions), it can be also used for sub-sequence 
matching (for example moving the left arm up). Our algorithm 
checks the full match first (Fig. 9). It stops when no matches 
were found. Elsewhere, it looks for more sub-sequent 
occurrences by using a sliding time window. The starting 
timestamp of the first cycle is always used to characterize the 
exercise being executed. To collate adjacent windows as a 
single process, the timestamps are compared: If the 
comparison (tk-tl) gives more than 10 seconds, the authors 
decide to abort the sequence. 

 
Fig. 9. Using DTW to compare human-made and robot-made sequences. 

Once the enumeration of classifications Event1 = (moving, 
tk); Event2 = (moving, tl); Event3 = (moving, tm), … becomes 
available, the initial E(t) sequence could be unloaded from the 
memory. The main classification loop produces the sequence 
of {(xxx, tk), (xxx, tl), (xxx, tm), …} going to be stored in the 
knowledge base. The role of DTW in this process is 
fundamental because the duration of patient’s mobility 
segments is never known a-priori.  

Now let us forget any numeric data: the patterns observed 
by the robot are the patterns of human behavior. It is 
important to note that robot is not expected to comment on the 
correctness of each segment to avoid the noisy dialogs. 
Despite the precision of this technology is lower than 100%, 
the above functionality could operate with real time data in a 
satisfactory manner because it is sufficient to react few times 
during/after the exercise. This example illustrates the 
implementation of DTW when two sequences are strings in 
discrete time-space. The distance d(x, y) = |x - y| was 
used to determine the timestamp and the duration of the doing 
exercise processes. 

The experiment was performed in batch mode with 
completed sequences only. Once the full S1(t) is acquired by 
humanoid, it is supplied as input to the new algorithm. 

The authors have collected some sequences from few 
patients following the robot in doing exercises. To verify the 
applicability of the approach to the wider targets, the 
simulated datasets were produced using these real data as the 



correct (Identity) and incorrect (Null) situations. The real 
time-varying sequences (doing correctly/ incorrectly/ nothing) 
were elaborated applying stretching of amplitude/time, and 
linear translations to obtain additional simulated datasets. The 
larger data collection (Table 1) is used to compare two 
sequences using the DTW algorithm. 

Table 1.  Rehabilitation exercise using a robot. 

Set Patient activity Correct 
duration 

Duration 
by DTW 

Similarity 
coeff.  Correct 

1 2.0*Amplitude 10 10 1,00 Y
2 3.0*Amplitude 10 10 1,00 Y
3 10.0*Amplitude 10 10 1,00 Y
4 0.5*Amplitude 10 10 1,00 Y
5 0.3*Amplitude 10 10 1,00 Y
6 0.1*Amplitude 10 10 1,00 Y
7 2*time 10 20 0,50 N
8 3*time 10 30 0,33 N
9 1.2*time 10 12 0,83 Y

10 1.1*time 10 11 0,91 Y
11 0.9*time 10 9 1,11 Y
12 0.8*time 10 8 1,25 Y
13 0.7*time 10 7 1,43 N
14 0.6*time 10 6 1,67 N
15 0.5*time 10 5 2,00 N
16 0.4*time+6 10 4 2,50 N
17 0.2*time+1 10 2 5,00 N
18 0.6t+5 and  6A 10 10 1,00 N
19 Null 10 20 0,50 N
20 Identity 10 10 1,00 Y
21 0.5t+7 and 0.5A 10 5 2,00 N
22 1.7t+3 and 0.1A 10 17 0,59 N
23 0.7t+3 and 0.1A 10 7 1,43 N
24 1.5t+8 and 0.1A 10 15 0,67 N
25 0.9t+7 and 0.1A 10 9 1,11 Y
26 0.7t+3 and 0.5A 10 7 1,43 N
27 0.5t+4 and 0.1A 10 5 2,00 N
28 0.8t+8 and 0.1A 10 8 1,25 Y
 
Based on the collected and simulated data, one can observe 

that the DTW detects correctly both positive and negative 
deviations from the intended timing of the exercise. Assuming 
+/-20% as a limit of the allowed imprecision while repeating 
the activities, the DTW triggers said condition using a 
similarity coefficient 1,04 ca. Therefore the condition 
(SRobot≈SPatient) could be evaluated through 
DTW(SRobot,SPatient)∈[0.83, 1.25]. 

V. CONCLUSIONS AND FUTURE WORK 
This paper has described an engineering proof of concept to 

set up remote rehabilitative care of patients living 
independently at their homes. In the current demographic 
scenario, it exemplifies a possible approach to reduce the 
percentage of the human rehabilitative care. 

The experimental results support the feasibility of the 
approach/method, but the numbers have limited validity 
because the sample is not statistically representative. Instead, 
the simulation covered almost all possible situations in which 
patients repeat the rehabilitation program fully correctly, 
partially correctly, not correctly, or not at all.  

The monitoring of the activities performed by patients 
following the robot could be set up without additional and/or 

specialized sensors [9, 10] because the activities are not 
critical. Therefore, the robot eyes could be sufficient. 

Compared with other signal processing techniques (the 
correlation is an example), the use of Dynamic Time Warping 
is beneficial because let to detect the instances of doing 
exercises having variable durations.  

We observed that in typical conditions in which the patient 
followed the robot in doing the exercise, it keeps the same or 
similar behavior during more days. Repeating the same 
exercise during different days, taking annotated datasets stored 
in the data warehouse with the coefficients characterizing the 
normality or deviations, one can analyze the time series and 
judge about deviations, anomaly, or disease progression.  

It appears possible to conclude that the abnormal durations 
detected by the robot could be useful as an indicator of the 
normal/abnormal ADLs.  

The proposed approach is cheap in terms of computational 
power. By contrary, the hardware installation is very 
expensive because of the humanoid robot. 

The future work is to refine the method and to experiment it 
at wider scale.  
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