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Abstract—In this paper, we present a pervasive and unobtru-
sive system for sensing human emotions, which are inferred based
on the recording, processing, and analysis of the Galvanic Skin
Response (GSR) signal from human bodies. Being different from
traditional multimodal emotion sensing systems, our proposed
system recognizes human emotions with the single modularity
of GSR signal, which is captured by wearable sensing devices.
A comprehensive set of features is extracted from GSR signal
and fed into supervised classifiers for emotion identification. Our
system has been evaluated by specific experiments to investigate
the characteristics of human emotions in practice. The high
accuracy of emotion classification highlights the great potential
of this system in improving humans’ mental health in the future.

I. INTRODUCTION

Modern healthcare systems have been recently facilitated by
emerging biomedical sensing technologies. A large variety of
biomedical sensors have been deployed to record the biological
signals of human beings. These signals are subsequently ag-
gregated, processed, and analyzed at user’s hand-held mobile
devices or the back-end server residing in the remote cloud, so
as to monitor the health status of human beings. There have
been significant efforts to monitor the humans’ physiological
health from their biological signals such as physical activities
[1], body temperature, blood pressure, or heart beating rate [2].
Such real-time sensing enables timely observation of disease
symptom and prompts disease diagnosis in a pervasive manner.

On the other hand, mental health of human beings has
been generally neglected by most of the current biomedical
sensing systems. The few existing schemes aim to monitor
the stress levels of human beings by analyzing their biological
signals [2], [3] and daily activity patterns [4], however, are
insufficient for precisely reflecting the mental health status of
human beings due to the extra burdened monitoring method
and coarse-gained information collection. The lack of detailed
information about humans’ emotions underlying such stress
makes it difficult to apply appropriate remedies for stress re-
lief, and hence reduces the practical merit of stress monitoring.

In this paper, we are aiming to explore the possibility of
accurately inferring various kinds of humans’ emotions from a
single type of biological signal, i.e., Galvanic Skin Response,
which can be monitored in a unobtrusive manner from hu-
man bodies via compact and wearable sensing devices. The
information provided by our system expressively indicates the
mental health status of human beings, and facilitates intelligent
decisions of telemedicine or smart well-being systems.

The major challenges of developing such an emotion sens-
ing system are two-fold. First, the emotions monitored are
often disturbed by mixture type of subjective or objective
factors. Second, the GSR signal recorded is easily polluted

by environmental influence such as humidity and the body
movement. Appropriate algorithm is hence needed to ensure
the accuracy of inferring human emotions.

To tackle the above challenges, our basic idea is to let
experiment participants, who wear the GSR sensing devices,
watch video clips with various pre-labeled emotional themes.
In this way, participants’ emotional arousals during the exper-
iments can be precisely represented by their recorded GSR
signal without being interfered by other physiological or
psychological activities. Our detailed contributions are listed
as follows:

• We conduct experiments investigating humans’ psycho-
logical behaviors and emotional changes when watching
video clips. A well-defined set of emotional themes
is applied to the selection of video clips in order to
ensure insightful investigation on the correlation between
humans’ personal characteristics and their emotional pat-
terns.

• We develop various methods for eliminating the ran-
domness and environmental noise when processing the
signal, and hence facilitate high accuracy of emotion
classification.

• We design efficient machine learning algorithms to infer a
variety of human emotions by classifying their GSR sig-
nals. An appropriate set of features is extracted from the
GSR signal to represent the fundamental characteristics
of GSR signal underpinning human emotions.

II. OVERVIEW
A. GSR Sensing

The GSR signal from human bodies indicates electrical
changes measured at the surface of human skin that arise when
the skin receives innervating signals from the brain, and is
generally considered one of the strongest features that can be
used for detecting emotional arousal [5].

Our proposed system for emotion sensing is built based
on the Shimmer GSR sensors1. Facilitated with the Shimmer
sensor, the GSR signal can be either recorded in the local
storage of the sensor device, or transmitted at real-time to the
back-end server via wireless radios. A Shimmer GSR sensor
is also equipped with a 3-D accelerometer, whose sensed data
will be used by our system to eliminate the impact of humans’
physical movements on their GSR signal.
B. Basic Idea

Our basic idea of emotion sensing is to explore the char-
acteristics of temporal variations of humans’ GSR signal that

1http://www.shimmer-research.com/p/products/development-kits/gsr-
development-kit.



indicating different types of human emotions. Figure 1 shows
some examples of the GSR signals from various emotions.
We observe that different types of emotions exhibit distinct
characteristics in the temporal variation of GSR signals, which
can be extracted to identify human emotions using supervised
classification techniques.
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(d) Sadness

Fig. 1. Raw GSR signals for 4 types of human emotions.

C. System Setup

1) Emotion Model: It is normally difficult to build a
generic model for categorizing human emotions. Some basic
emotions universally exist among human beings, while some
other emotions are described as complex and culturally specif-
ic. Researchers usually build the emotion category models in a
low dimension, e.g., Plutchik’s [6] cone model and the PANA
model [7]. We propose a quadrant model to represent the
four basic categories of emotions: amusement, fear, relax, and
sadness. These four emotions are widely accepted in modern
psychology research [8]. They are also consistent with the
concept that emotions can be triggered by either positive or
negative factors.

2) Video Clip Selection: We adopt event-elicited method-
ology so as to ensure recording of subject-elicited emotions.
More specifically, we choose video clips of different themes
from social media websites as stimulus to arouse human
emotions. As a result, the emotions of experiment participants
could be affected and recorded when the participants are
unaware of the purpose of the experiment. The GSR signals of
experiment participants are recorded when they are watching
video clips, and are then fed to supervised classifiers for
emotion identification using the known labels of video clips
as the ground truth.

In our system, we select 17 video clips for each category of
emotions which include prank videos, thrilling movie trailers,
soft music and movies with bad ending. The lengths of video
clips we choose are between 5 minutes to 8 minutes to ensure
that any instant or long-time fluctuations of human emotions
can be appropriately captured.

III. GSR SIGNAL PREPROCESSING

After the acquisition of raw GSR signals, a preprocessing
step is necessary to remove noises caused by the testing sub-
ject. This section elaborates on the GSR signal preprocessing
procedure which involves mainly three steps.

A. Removing the Impact of Physical Motion

The physical movements of human beings have non-
negligible impact on humans’ skin conductance, and hence
their GSR signals. We propose to eliminate such impact on
GSR signals and the subsequent emotion classification based
on the “abnormal” 3-D accelerometer data simultaneously
recorded with the GSR signals. Specifically, if a sample of
the accelerometer signal displays a value 5 times larger than
the average, we consider this sample to be abnormal. The cor-
responding GSR sample, along with the 10 samples centered
around it, is then considered outlier and removed from the
raw signal. Since the sampling rate of the GSR sensor is set
to 10 Hz, this filtering process will only remove 1-second data
without noticeable change of the general patterns of the GSR
signal. Note that the selection of 5 times as abnormal deviation
and 10 samples as the width of the abnormal neighborhood are
through extensive empirical study. Figure 2(a)(b) demonstrate
the typical outliers in the raw GSR data and the accelerometer
associated removal process.

(a) Raw GSR signal (b) Signal after physical motion re-
moval

(c) Signal after noise removal (d) Signal after preprocess

Fig. 2. GSR signal preprocessing.

B. Noise Removal Using the Median Filter
The raw GSR signal usually demonstrates a large amount of

small signal fluctuations, caused by the transient fluctuations
of the physiological status of human bodies that, are inevitably
recorded due to the high sampling rate of the GSR sensors.
Removal of such noise is important for ensuring high accuracy
of emotion classification.

We remove such undesirable noise from the raw GSR signal
by applying the median filter over a sliding window of size W ,
as suggested by [9]. We set the window size as W = 20 data



points in order to remove the fluctuations while not blurring
the signal too much. Figure 2(c) and (d) demonstrate the
process of noise removal using median filter and the processed
GSR signal.

C. Data Rescaling and Resampling
The last step of GSR signal preprocessing includes the

rescaling and resampling. The GSR signal is rescaled to [0, 1]
to reduce the subjective difference. The data series are then
resampled into the same length for comparison purpose. In the
experiment, the sample length is defined as 2000 data points.

IV. EMOTION CLASSIFICATION
To better characterize the patterns of GSR signals for vari-

ous emotions and also to reduce the computational overhead,
the feature extraction step is developed to extract a lower-
dimensional, well-defined set of features from the prepro-
cessed GSR signal. Such feature vector is used as the input to
the supervised classifiers.

A. Statistical Features
The primary feature set we use includes 6 statistical features

described in [10]. These features have been used in the
literature on the raw GSR signal, but our feature extraction is
based on the GSR signal after preprocessing. The six statistical
features, means and standard deviations of the raw signals,
means of the absolute values of the first and second differences
of the raw signals and the normalized signals, cover the typical
range, variation and gradient-like characteristics of the signal,
and the measurements of these features are cost-effective.
B. Running Means in the Time Domain

We add the mean values of the sliced GSR signal to the set
of features, so as to capture such temporal variations. More
specifically, we divide the GSR signal into several adjacent
but non-overlapping slices, each of which has a size L = 200
data points. The mean value of each slice is used as a feature.
Therefore, the running average will add 10 more features to
the final feature set.
C. Running Means in the Frequency Domain

Periodic excitation is another significant characteristic when
a human being experiences the amusement or fear emotion,
which can be represented by frequency-domain features. We
transform the preprocessed GSR signal into the frequency
domain using the Fast Fourier Transform (FFT), followed by
a median filter with the same specification as in Sec. III to
smooth out the frequency content. We then use the similar
method as in Sec. IV-B to extract the 10 mean values of
the transformed GSR signal. The difference is that we only
keep the first 4 mean values as they represent low-frequency
content in the original GSR signal that are most related to the
expression of human emotions.
D. Feature Optimization and Selection

The final feature vector generated from the preprocessed
GSR signal includes the 6-dimensional statistical feature,
the 10-dimensional time-domain running means, and the
4-dimensional frequency-domain running means. We demon-
strate the normalized features from each type of emotions in
Figure 3.

Although the feature vector is formulated from different
perspectives, they are not completely independent. We in-
corporate the Sequential Floating Forward Selection (SFFS)
technique [11] to find the optimal feature subspace for emotion
classification. The SFFS always constructs the “best” combina-
tion of features to maximize the inter-class distance in emotion
classification. Usually the k-nearest-neighbor (kNN) classifier
and its classification rate are used as the criterion for SFF-
S. Without any pre-knowledge about the feature dimension,
the SFFS helps construct the appropriate feature vector and
calculate the classification rate using a non-exhaustive way.
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Fig. 3. Illustration of feature vectors for different emotions. The first six
dimensions are statistic features. The 7th to 16th features are the time-domain
means of the sliced GSR signal. The rest part consists of the first 4 dimensions
of the frequency-domain means of the sliced GSR signal.

V. EXPERIMENTS AND EVALUATION
In this section, we present our experimental evaluation

results regarding the accuracy of our proposed emotion clas-
sification approach. The experiments are conducted over 4
subjects with their GSR signals collected when they are
watching the video clips.

A. Experiment Setup
Different human beings exhibit heterogeneous characteris-

tics in their emotion patterns. In this section, we try the su-
pervised classifier and perform emotion classification for each
experiment subject individually. A two-fold cross validation
strategy is adopted in all experiments. For each emotion, we
randomly divide the recorded GSR signal into two parts with
equal numbers as training and testing sets. We use the kNN
classifier to evaluate the benchmark test performance. The
average and maximal classification rates are calculated.

To implement the SFFS-based classification, we employ
the 10-fold cross validation strategy on the individual GSR
datasets. The kNN classifier is kept in the SFFS process. Once
the best subset of the features from the training set is selected,
it will be automatically applied to the test data to calculate
the classification accuracy. To reduce the variation caused by
the random training and test data selection, the SFFS-based
classification runs for 100 times.



B. Experimental Results
The comparison of the overall classification accuracy of

different schemes is listed in Table I. The overall classification
accuracy is the average value which is computed from all
experimental subjects. From Table I, we can see that the
classification accuracy of our proposed scheme is generally
10% higher than that in the existing work [10] which relied on
sensed data from multiple sources. For comparison, we also
design the experiment on emotion dependent scheme which
mix the emotion samples from different experiment subjects as
the baseline. It is clear to see the baseline experiment receives
the lowest classification accuracy. The benchmark experiment
which adopts the subject dependent strategy effectively in-
creases the classification accuracy by limiting the inter-subject
difference, as shown in Table II.

Result comparison
Emotions 4
kNN baseline 30.70%
Picard 1 [10] 68.70%
Picard 2 [10] 67.50%
Proposed 79.45%

TABLE I
RESULT COMPARISON OF DIFFERENT METHODS. KNN BASELINE IS THE

EMOTION DEPENDENT EXPERIMENT WHICH MIX THE SAME EMOTION
SAMPLES FROM DIFFERENT SUBJECTS. PICARD 1 AND 2 GIVE THE

4-EMOTION CLASSIFICATION RATES IN [10].

The utilization of SFFS does not only reduce the length of
the feature vectors, it also improves the overall classification
accuracy. When counting usage frequency of each dimension
of the feature vector, the time-domain means are the most
selected feature in SFFS and play a dominant role in emotion
classification.

Subj. kNN benchmark SFFS SFFS+Label F.S.Avg. Max. Avg. Max. Avg. Max.
1 38.89% 48.15% 58.00% 68.57% 70.86% 77.14% 10/20
2 35.26% 53.57% 57.22% 61.11% 68.23% 77.78% 8/20
3 42.22% 55.56% 65.14% 70.14% 71.43% 82.86% 5/20
4 47.78% 66.67% 56.67% 65.71% 70.29% 80.00% 9/20

TABLE II
RESULTS FOR EMOTION CLASSIFICATION. KNN BENCHMARK IS THE

INITIAL EXPERIMENT. THE COLUMNS SFFS GIVE THE CLASSIFICATION
RESULTS WHEN SFFS IS USED. THE COLUMNS SFFS+LABEL GIVE THE

CLASSIFICATION RESULTS WITH AUXILIARY QUESTIONNAIRE DATA. AVG.
IS THE AVERAGE CLASSIFICATION RATE OF 100 TRIALS WITH RANDOM

TRAINING AND TEST SETS. MAX. IS THE HIGHEST CLASSIFICATION RATE.
F.S. STANDS FOR FEATURE SELECTION

We further improve the accuracy of emotion classification
by using auxiliary data of subjective feedback from human
beings about their feelings. The mental state of human beings
after watching the video clips is an acquired emotion rather
than a proprioceptive sense. Therefore, we design the question-
naires which record the real feelings after the subject watches
the video. They can evaluate the feelings by assigning a point
from 0 to 5 to the videos. 0 indicates that the pre-defined video
label is not related to their feelings after watching at all. The
real emotion should be explicitly given in this case. 5 means
that the label of the video exactly matches humans’ feelings.
Accessing the external data like the questionnaire points, we
change the labels according to the real emotion acquired rather
than the pre-defined label. The interactive evaluation makes the
labeling closer to the ground truth.

Having access to the questionnaire data, we rebuild exper-
iments with the interactive labeling. The SFFS-based classifi-
cation accuracy for four emotion categories generally reaches
around 80% as shown in Table II, which is the best per-
formance reported in the single modality GSR data emotion
classification.

VI. CONCLUSION AND FUTURE WORKS
In this paper, we proposed a single-modality human emotion

sensing system based on GSR sensing. Our experimental
results based on GSR signals were encouraging, given its
simplicity, pervasiveness, and unobtrusiveness. The extracted
features from the affective GSR signal sequence were verified
to be effective in emotion classification within the subject-
dependent context. Without the external input from other
modalities, the proposed algorithm was boosted by SFFS
and the interactive labeling scheme. The final classification
accuracy for four classes of emotion reached the highest
rate compared to the state-of-the-art. Inspired from the ex-
perimental framework and results, our future work focuses
on developing the subject-dependent mobile applications to
monitor the personal emotion changes at real-time with an
online learning strategy. The goal of such a mobile application
is to tweet the stream to personal device once detected his/her
emotion with some intentional content. For instance, the user
with sadness emotion may have a negative impact on the work.
The soft music and delight color content should be tweeted
to alleviate the mood of the user. The emotion sensing and
classification trigger the application automatically after the
user configures and trains the model. The feasibility of the
proposed system makes it applicable in mobile sensing devices
and humans mental health monitoring.
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