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Abstract—The emergence of genomically targeted cancer 
treatments has spurred the development of methods that 
correlate genomic information with treatments and outcomes. 
Because this information is usually pulled from published 
literature, such methods are limited to summarizing only the data 
generated through the slow and narrow publication pipeline. 
However, many thousands of patients are treated each year 
whose data does not make it into publications. Each of these is, in 
effect, a case study whose capture would add to our overall 
knowledge of cancer treatment, and could speed up the search 
for treatments and cures. Our work extends one such literature-
based system, the Melanoma Targeted Therapy Advisor (TTA), 
by adding direct patient profiling. This extension of the TTA, or 
PTTA (Personalized or Patient TTA), both enriches the TTA 
knowledge base by collecting case reports directly from patients, 
and gives patients and/or physicians immediate feedback by 
ranking the best-performing treatments for genomic profiles of 
interest to them. The PTTA will permit patients to register their 
test and treatment results and then to obtain rankings for 
additional potentially useful tests and treatments. It will also 
provide a report with statistical and literature evidence that 
justifies the rankings. These functionalities can aid physicians in 
treating patients in the most effective manner. 
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I. INTRODUCTION 
The diagnosis and treatment of cancer are evolving rapidly, 

and patients are acquiring an ever-increasing amount of 
information about treatments from the Internet [3]. One value 
of web-based medical information is the efficiency with which 
it can be updated, so that it is effectively “always-up-to-date”. 
One such example is the Targeted Therapy Analyzer (TTA), 
developed by the Melanoma Molecular Map Project (MMMP 
[10]) and CollabRx, Inc. Cancer is generally driven by genetic 
mutations in tumor cells. So the tumor’s genomic profile can 
be used to personalize treatments to individual mutations. The 
TTA algorithm matches a patient’s molecular profile, obtained 
through tests, with a manually-curated literature database, the 
Targeted Therapy Database (TTD) [11]. Unfortunately, 

because the current TTA operates only from published data 
(i.e., from the expert-curated TTD knowledge base), it operates 
only in one direction: from the literature to patients. No 
permanent record is made of the inputs that patients provide to 
the system; rather these are treated as one-time parameters to 
the algorithm, which reports a one-time result. Although 
patients’ treatment experiences could represent an extremely 
important source of information, the flow of this kind of 
information must go through the long and narrow pipeline of 
formal publications of clinical trials or case reports, after which 
it could be captured and added to the TTD database. Only then 
would this data become available to patients through the TTA. 
Moreover, most patients’ experiences will never make it into a 
publication as most of them are not involved in clinical trials or 
case reports. The loss of this vast amount of real 
treatment/response data constitutes a lost opportunity for 
improving the effectiveness of cancer treatments [17]. 

We describe an extension to the TTA to collect such 
individual, case-based information from patients and/or their 
physicians, and which augments the TTD with this data. The 
extended platform, or PTTA (where P stands for Patient or 
Personalized), can improve the treatment rankings produced by 
the TTA by combining information from literature with this 
case-based information.  

The proposed PTTA platform includes:  

• A mechanism that allows patients to record their molecular 
profile, test results, and treatment history.   

• A method to update the TTD (and so the results provided 
by the TTA) based upon all available patient profiles. 

• A report that ranks potential treatments and tests and 
provides the supporting literature and a summary of the 
data. This can help physicians select appropriate 
treatments and/or further tests for their patient. 

We next set the background and review related work. Then 
we describe the PTTA usage scenario, the platform architecture 



including the data and algorithms, and the tentative UI. We 
conclude with some considerations for future work. 

II. BACKGROUND AND RELATED WORK 
Evidence-Based Medicine (EBM), introduced in the early 

1990s [5], grounds medicine strongly in data. Clinical decision 
support systems are active point-of-care knowledge systems 
that bring this grounding directly into physician decisions 
regarding a particular patient’s care. One version of this 
marriage, so-called “personalized genomic medicine”, utilizes 
the patient’s molecular profile to guide treatment decisions, and 
is expected to play an increasingly significant role in patient 
care [7, 15, 16]. Precise diagnosis and effective treatment will 
increasingly involve access both to existing knowledge, and to 
rapid analysis of new data in order to recognize disease 
patterns and treatment response relations. A good example of 
this is the DEBM clinical decision support system [8], which 
collects patient data from Electronic Health Records (EHRs) 
and uses data mining to identify various disease patterns, even 
very rare ones. These patterns are extracted automatically and 
help physicians in making informed treatment decisions.  

It is widely accepted that personal health management or 
self-management is an effective way of managing chronic 
disease and avoiding illness in healthy people [2]. Online 
communities and social-networks are known to be effective in 
helping individuals achieve health outcomes; patients and 
caregivers have created many personal health information 
settings (services, forums, etc.) to help manage chronic 
illnesses such as “Follow Me” (www.followme.com) and 
“PatientsLikeMe” (www.patientslikeme.com) [4]. In addition, 
mobile devices are playing a rapidly increasing role in 
facilitating data collection and therapy guidance, as well as 
early disease detection [9]. For example, the MelApp 
application [9] can detect early melanoma by analyzing 
pictures taken by personal cameras. Many similar personal 
health apps are rapidly appearing. These tools are gathering 
enormous amounts of data on treatments and outcomes, which 
via data mining methods can be used to improve personalized 
treatment guidance.  

Our work focuses on personalized data collection and 
molecularly-based therapy guidance in late stage melanoma. 
Other applications, such as [14], have informative purpose 
providing news about cancers and therapies. Through [13] 
users can query for specific information in Q&A style, while 
[12] provides news on the research on cancer and patient care 
stories. However these applications do not provide patients 
with personalized therapy guidance by exploiting a patient-
populated database such as the platform presented in this paper.  

III. USE CASE 
Figure 1 depicts a typical use case for the PTTA: 

1. A patient registers and is guided to create a molecular 
profile – a collection of test results. This can be updated as 
new test results become available. The patient can also 
record the qualitative state of her/his disease, and updates 
on her/his general health status.  

2. The treatment definition process records the patient’s 
current and historical treatment information. 

3. The profile and treatment content is used to create a report 
ranking potential treatments and tests through the TTA 
algorithm [11]. The report includes relevant literature and 
other statistical information that may be useful to a 
physician in choosing further tests and possible treatments.  

4. As treatment takes place, the patient updates her or his 
profile. This directly updates the PTTD database, and so in 
turn, updates the rankings for this patient. Importantly, this 
data gathering also updates the results for other patients 
with similar profiles. Patients might opt to receive push 
updates that suggest changes to their treatment. 

5. The patient, and his or her physicians, can also use the 
database to track the patient’s progress, or to explore 
alternative treatments in a “sandbox” mode. 

IV. THE PTTA PLATFROM 
The PTTA platform extends the web-based TTA to include 

this per-case, individualized data, and a new user interface. The 
three layers of the PTTA architecture, Data (PTTD), 
Algorithm, and Presentation, are described next. 

A. Data Layer (Patient Profile, PTTD) 
The Data Layer (PTTA database, or PTTD) extends the 

TTD [11] to include patient profiling and treatment outcomes 
(Table 1, Figure 1 (points 1 and  5), see [11] for more details).  

TABLE I.  PTTD STRUCTURE 

Molecule State  Relationship Drug Model Cases 

BRAF mut V600E sensitivity to Sorafenib in vitro 14 

BRAF mut V600E no rel. with Sorafenib human in 
vitro 10 

BRAF mut V600E resistance to Sorafenib human/ 
clinical 1 

In Table 1, Molecule represents the gene or gene product 
under investigation. State refers to the molecular state of that 
molecule (e.g., mutated, overexpressed, phosphorylated) by 
virtue of which it exerts the biological activity related to the 
disease process and targeted therapy hypothesis. Relationship 
reports the hypothesized relationship between the molecule and 
the corresponding treatment/drug (the Drug column): possible 
values are sensitivity to (positive effect), no relationship with 
(neither positive nor negative effect), or resistance to 

 
Fig. 1. The use case scenario of the proposed platform 



(negative) the effect with the drug. Model types can be animal 
in vitro, human in vitro, human/clinical. Finally, Cases refers to 
the number of cases reported in literature or by patients.  

Surprisingly, implementing the PTTA requires no change 
to the TTA itself. A large clinical trail is indicated as Model = 
“human/clinical” and Cases >> 1. All that we need do is store 
for each patient the current treatment and its effect as a new 
single row in the table, with Model = “human/clinical” and 
Cases = 1. The TTA algorithm already accounts for the weight 
of this sort of observation simply by virtue of already being 
able to interpret clinical trials; in a sense, cases are interpreted 
as “n-of-1” clinical trials. This small change – adding case 
studies – simultaneously (a) constitutes a contribution to 
research by providing data for mining, (b) aides the patient 
providing the data by enabling them to obtain the latest reports 
regarding their tumor, and (c) contributes statistically to the 
report that other patients obtain through the TTA algorithm.  

The individual patient case data added to the PTTD may 
come from patients, physicians, or clinical researchers; each 
has different information to offer. Information such as disease 
state, tumor load, and treatments could be imported from an 
EMR system (e.g., see [8]), but patients are in a unique position 
to report on their own well-being. Physicians could provide 
treatment suggestions and semi-qualitative descriptions of 
melanoma progress and therefore treatment efficiency for their 
patients. Importantly, only physicians (or patients’ families or 
caregivers) can report on severe negative results of a treatment. 
This bias towards positive outcomes is common in biomedical 
statistics data (i.e., “incidence-prevalence”, “survivorship”, or 
“Neyman” bias [6]), and can be dealt statistically. Finally, 
clinical researchers can contribute data based on the results of 
clinical trials and meta-analyses, as well as results for potential 
drugs from in vitro or in vivo studies. 

Although the data provided to the PTTA directly and 
immediately affects treatment rankings, data quality should, at 
a large scale, be buffered against normal noise. However, 
large-scale fake data could seriously skew the results, so spam 
protection is critical. To ensure data quality and security it may 

be necessary to assign a private and unique ID to each patient 
that can be given by physician in order to confirm the identity.  

B. Algorithmic Layer 
The PTTA algorithm is nearly exactly the same as the one 

reported in [11]. Each row of the TTD (and PTTD) represents 
one paper (or case, for the PTTD). The algorithm takes into 
account the type of model (e.g., in vitro, in vivo, in human, 
clinical) as well as the number of cases (e.g., 1 for a case 
report, or the number of total cases for a clinical trial or meta-
analysis). Each PTTD report represents a new row in the TTD 
with Model = human/clinical, but with only one case (Cases = 
1) – that is, as mentioned, effectively a clinical trial with one 
patient. Although by virtue of the small n (=1), each such case 
report contributes very little to the overall statistics, many such 
reports will have a cumulative effect. A statistical 
independence problem arises if we include multiple reports 
from the same person, so for PTTA purposes we only consider 
the latest entry for a given patient, although all are retained for 
other analysis and reporting purposes.  

Based on informal interviews with professional oncologists, 
we learned that they themselves very rarely deal with specific 
quantitative information on the state of a patient’s tumor, but 
rather communicate among themselves in semi-quantitative 
terms, for example by describing the patient’s disease as 
“progressing”, “rapidly progressing”, “stable”, “in remission”, 
etc. Therefore, rather than trying to gather overly accurate 
numerical measures, the PTTA transacts entirely in “semi-
quantitative” terms. In the future, as physicians come to desire 
more precise and reliable metrics, tumor load or ECOG scores 
expressed as numerical values could be considered. 

C. Presentation and Reporting Layer 
Figure 2 depicts the PTTA dashboard through which 

patients and physicians interact with the system. It extends the 
user interface of TTA in several ways:  

1. In TTA the user began by selecting a set of therapies of 
interest from among hundreds of possible therapies, many 
of which never went beyond laboratory experiments. In 

 
Fig. 2. A screenshot of the dashboard (user interface) of the proposed PTTA platform  



PTTA this step was removed. Instead, the much smaller 
set of therapies that are actually available through 
prescription or clinical trial are considered by default. 

2. Whereas in TTA the user needed to provide a value for 
hypothesis strength cutoff, PTTA sets this value to the 
recommended value of 0.5 (explorable in sandbox mode). 

3. Whereas in TTA the set of hypotheses was explicitly 
reported, in PTTA these interim hypotheses are hidden 
(except in a special research mode). 

4. Whereas in TTA the user had to manually enter the results 
for each test that TTA had proposed in the previous step, 
PTTA automatically fills in this information using the 
patient profile, as specified initially, or when it is updated. 

Currently, PTTA is under development and the proposed 
user interface is a proof-of-concept prototype intended to test 
the PTTD and underlying algorithms. Before going public, it 
will be revised based on a usability study with real users. 

V. PRIVACY AND SECURITY 
A key set of functions for healthcare applications are those 

enabling secure and privacy-aware data management 
(collection, storage, and sharing). Privacy and security policies 
are usually dictated by regulations defined by governments. As 
for other applications in this area, PTTA access control is 
ensured by usernames and passwords, with the possible 
addition of unique IDs assigned by physicians, as mentioned 
above. Also, as suggested in [1], we will evaluate the extent to 
which exact values of Personal Identifiable Information (PII) 
are needed to provide useful targeted information. When the 
results do not depend upon exact values we will employ input 
generalization [1]. We encrypt the PII with the Advanced 
Encryption Standard (AES) algorithm and store it separately 
from non-PII (literature-based data). These are decrypted just at 
the point of each computation, thereby reducing the possibility 
of PII leakage. 

We do not intend to share patient data with any external 
entity. If the collected data will be used for research and 
statistical purposes, as is already done by some patient-centered 
online communities [4], appropriate privacy-preserving 
strategies such as data anonymization will be undertaken to 
avoid PII disclosure. The expected uses of the data will be 
clearly described in the Terms of Service and the users will be 
explicitly asked to authorize any new proposed uses. 

VI. CONCLUSIONS AND FUTURE WORK 
The Personal Targeted Therapy Analyzer adds 

individualized case data into the Targeted Therapy Database 
and Analyzer (TTD/TTA) [11], thus significantly extending 
their utility by enabling them to be kept up-to-date much more 
rapidly than is possible if one waited for cases to appear in the 
literature (many of which will never make it there).  

This approach can be applied to diseases other than 
melanoma. In considering the breadth of applicably, one can 
distinguish "diagnostic" tests from "treatment selective" tests. 
The present approach is applicable to any disease for which 
there is a body of evidence linking particular tests to the 
differential efficacy of particular treatments. Many diseases 
and tests are in this category, particularly cancers and related 
genomic tests, but this is not true for some classes of 

cancers/tests and for some others classes of diseases. For 
example, whereas HER2-positive breast cancer directly 
suggests treatment with trastuzumab, elevated PSA levels 
(even combined with histological results) may be considered 
"diagnostic" for prostate cancer, but are not "treatment 
selective" as these observations do not differentially suggest 
particular treatments. The case is similar for many non-cancers. 
Indeed, many diseases have both diagnostic (non-treatment 
selective) and treatment-selective tests. The present method 
applies only to those diseases that have treatment-selective 
tests, and only to those tests. Given the recent vast 
improvements in genomic test technology, we expect that the 
range of applicability of our method should rapidly expand. 

In our future work we will evaluate the PTTA by making it 
available to volunteers from an existing patient community. 
We will also extend the platform to include social features. For 
example, one planned feature will match patients who have 
similar test and/or treatment profiles, allowing them to engage 
in mutual support. Our design goal is to extend current web-
based tools for self-support communities (e.g., 
www.PatientsLikeMe.com [4]) so that the selective sharing and 
discussion can motivate entering test and outcomes data.  

REFERENCES 
[1] Baquero, A., Schiffman, A.M., and Shrager, J., Blend me in: Privacy-

Preserving Input Generalization for Personalized Online Information 
Services. PST, (2013). 

[2] Bodenheimer, T., et al., Patient self-management fo chronic disease in 
primary care, JAM, 288(19), 2469-2475. (2002).  

[3] Cawsey, A., et al., Adaptive information for consumers of 
healthcare”. The Adaptive Web: Methods and Strategies of Web 
Personalization, LCNS, Vol. 4321, p. 465-484 . (2007). 

[4] Frost, J.H., et al., Social uses of personal health information within 
PatientsLikeMe, an online patient community: what can happen when 
patients have access to one another’s data”, JMIR, 10 (3) (2008). 

[5] Guyat, G., et al., Evidence-based medicine: A new approach to 
teaching the practice of medicine. JAMA, 268(17):2420–2425, (1992) 

[6] Hill, G., et al. Neyman’s bias re-visited. J. of Clinincal Epidemiology, 
56(4):293-6. (2003). 

[7] Holmes, M.V., et al., Fulling the promise of personalized medicine? 
Systematic review and field synopsis of pharmacogenetic studies. 
PLoS One, 4, (2009). 

[8] Masuda, G., et al., A framework for dynamic evidence based 
medicine using data mining. CBMS, (2002). 

[9] MelApp. Available at www.melapp.net 
[10] MMMP - Melanoma Molecular Map Project, An Open Access 

Interactive Multidatabase for Research on Melanoma Biology & 
Treatment. Available at http://www.mmmp.org/MMMP/. 

[11] Mocellin, S., et al., Targeted Therapy Database (TTD): A Model to 
Match Patient's Molecular Profile with Current Knowledge on Cancer 
Biology. PLoS One, 5(8), (2010). 

[12] Paths on Progress. Available at itunes.apple.com/it/app/paths-
progress-dana-farbers/id520564805 

[13] Pocket Cancer Care Guide. Available at  
itunes.apple.com/us/app/pocket-cancer-care-guide/id453059212  

[14] TouchOut Cancer Available at itunes.apple.com/app/touchout-cancer-
health-news/id305917840 

[15] Van't Veer, L. J., et al. Enabling personalized cancer medicine 
through analysis of gene-expression patterns. Nature, 452, (2008). 

[16] Wyaat, J., et al., Field trials of medical decision-aids: potential 
problems and solutions, SCAMC, pp.3-7, (1991). 

[17] Tenenbaum, M., and Shrager, J., Cancer: A computational disease 
that AI can cure. AI Magazine, ( 2011).  


