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Abstract—Accurate Energy Expenditure (EE) estimation is
key in understanding how behavior and daily physical activity
(PA) patterns affect health, especially in today’s sedentary society.
Wearable accelerometers (ACC) and heart rate (HR) sensors have
been widely used to monitor physical activity and estimate EE.
However, current EE estimation algorithms have not taken into
account a person’s cardiorespiratory fitness (CRF), even though
CRF is the main cause of inter-individual variation in HR during
exercise. In this paper we propose a new algorithm, which is able
to significantly reduce EE estimate error and inter-individual
variability, by automatically modeling CRF, without requiring
users to perform specific fitness tests. Results show a decrease
in Root Mean Square Error (RMSE) between 28 and 33% for
walking, running and biking activities, compared to state of the
art activity-specific EE algorithms combining ACC and HR.

I. INTRODUCTION

Accurate monitoring of physical activity (PA) patterns
(type, intensity, frequency and duration) is key in unveiling
the relation between aspects of human behavior and health
status [1]. Especially in today’s western world, where computer
based work is predominant, it is important to understand the
relation between aspects of PA and diseases such as obesity
and diabetes, diseases that started affecting our society only
in the recent past. To determine the links between aspects of
behavior related to physical activity and health status, accurate
quantification and assessment of habitual physical activity in
ambulatory settings is essential. New technologies, seamlessly
integrated in everyone’s life, able to monitor objectively and
non-invasively our behavior, can provide unprecedented in-
sights on these links. Among the technologies used to objec-
tively monitor PA, accelerometers (ACC) and heart rate (HR)
monitors are the most widespread [2-9]. For ACC, the rationale
behind their adoption is the linear relation between motion
close to the body’s center of mass, and energy expenditure
(EE). On the other hand, HR shows a strong correlation with
EE, due to the relation between oxygen consumption, HR and
EE. Main limitations of these technologies are the inability of
single accelerometers close to the body’s center of mass to
detect low and upper body motion, and the low accuracy of
HR monitors during sedentary behavior, as well as the need for
individual calibration. Some of these issues have been tackled
by developing activity-specific EE algorithms [5-9].

Activity-specific EE algorithms subdivide the estimation
process into two steps. First, the activity performed by the
user is determined. Secondly, an activity-specific equation is

applied to estimate EE. By first recognizing the activity, the
lack of agreement between ACC and EE when no whole body
motion is involved (e.g. while biking) can be accounted for
by for example assigning static EE values to such activities.
Normally, activity-specific equations use ACC features and
anthropometric characteristics to predict EE. Some activity-
specific algorithms use equations where HR is included as
well [5-6], showing consistent improvement compared to ACC
alone [5]. By adopting an activity-specific approach, some HR
limitations can be easily overcome. Issues due to the weak
relation between HR and EE during sedentary time, where
HR can be affected by artifacts due to emotions and stress,
can be avoided by including HR only in some activity-specific
equations (e.g. when moderate to vigorous PA is performed).
The need for individual calibration of HR-based algorithms is
motivated by the substantial inter-individual differences in the
relation between HR and EE. During moderate to vigorous PA,
differences in HR between individuals performing the same
activity are mainly due to cardiorespiratory fitness (CRF). CRF,
is not only the main cause of inter-individual variability, but
also inversely related with several health outcomes, such as
cardiovascular disease and coronary artery disease, being one
of the most important health markers [10]. Combined with
activity-specific algorithms, information on CRF could provide
more accurate EE estimation. Nevertheless, algorithms in the
past tackled CRF-related variance only by means of individual
calibration [2], and no algorithm includes information on CRF
in the EE estimation equations. For many practical applications
individual calibration is not feasible since it would require
every user to perform a calibration test.

In this paper, we present a new activity-specific EE algo-
rithm that incorporates CRF-related variance by normalizing
HR. The HR normalization is performed by estimating walking
speed and activities, and integrating anthropometric informa-
tion. In particular, the following contributions are made:

1) We detail the HR normalization procedure that, based on
activities carried out during daily life (rest, walking at
different speeds), can automatically estimate CRF-related
variance. Thus, our approach does not require users to do
specific fitness tests to estimate CRF.

2) We compare EE estimation performance of a standard
current state of the art activity-specific algorithm with
our personalizing version considering individual CRF. For
this purpose, we used a dataset including 44 activities
recorded with 29 subjects.



This paper is structured as follows. Related work and the
relation between CRF, HR and EE are discussed in Sections II
and III. Section IV introduces our approach to CRF estimation
and HR normalization. The implementation of our approach is
described in Section V, while the measurement setup and data
collection process can be found in Section VI. Results and
conclusions are presented in Sections VII and VIII.

II. RELATED WORK

A. Epidemiological Research

Accelerometer and HR monitors are the most com-
monly used single sensor devices in epidemiological studies
[2,3,4,14]. ACC use activity counts, a unit-less measure rep-
resentative of whole body motion, as independent variable
in the linear regression model developed to predict EE [3].
Shortcomings of single regression models are; a) the accuracy
of the monitor is highly dependent on the activities used
to develop the linear model, b) a single linear model does
not fit all the activities, since the slope and intercept of the
regression model change based on the activity performed while
data is collected. As a result, even when activity counts are
representative of EE, the output can be misleading.

HR monitors suffer from different problems. First, HR
monitors are typically inaccurate during sedentary behavior,
given the fact that HR is also affected by non-activity related
factors, such as stress and emotions [4]. Artifacts at rest were
tackled by means of the so called HR-flex point, a point above
which EE is estimated using an activity-model, while below
which EE is estimated using a rest value or a sedentary-
model [4]. Basically, a first version of today’s activity-specific
algorithms [5-9]. Secondly, HR monitors need individual cali-
bration to perform accurately [2]. The high correlation between
HR and EE within one individual, which motivated researchers
in using HR monitors to estimate EE since the 80s, is indeed
peculiar of a specific individual, and changes substantially
between subjects. Even the HR-flex point, is often determined
specifically for one individual, by for example averaging the
HR at rest and the HR while walking at a certain speed.

B. Activity-specific EE estimation

The latest monitors extended approaches based on simple
linear regression models performing activity recognition over
a predefined set of activities, and then applying different
methods to predict EE [5-9], based on the activity. The
principle behind activity recognition as a first step in EE
estimation is that the slope and intercept of the regression
models change based on the activity performed. One approach
[9] is to apply a different regression equation for each activity
classified. The regression models typically use ACC features
and anthropometric characteristics as independent variables.
Another approach is to assign static values (e.g. Metabolic
Equivalents (METs) from the compendium on physical activ-
ities) to each one of the clusters of activities. Assigning static
values showed limitations during moderate to vigorous activ-
ities in a recent comparison between activity-specific models,
since static values cannot capture intra-individual differences
in EE [5]. Intra-individual differences in EE for an activity
are caused by the fact that moderate to vigorous activities can
be carried out at different intensities (e.g. walking at different

speeds), resulting in different levels of EE. Activity-specific
linear regression models require ACC and HR features to
capture these differences [5].

Some authors included HR features as well in the activity-
specific linear models. In [6], a multi-sensor system composed
of three accelerometers was developed. The authors extended
the static approach of [8], developing a custom MET table,
which takes into account anthropometric variables, as well
as the HR at rest, to predict EE. In [7] HR and ACC were
combined as well. The system consisted of three sensors, two
accelerometers and a HR belt, and could classify seven types
of activities. Inter-individual differences in HR were not taken
into account.

Activity-specific multiple linear regression models combin-
ing ACC and HR features showed consistent improvements in
EE estimation accuracy compared to algorithms using static or
ACC-only features [5]. However, inter-individual differences
in HR due to CRF are not tackled by any activity-specific
algorithm. One approach used to reduce inter-individual dif-
ferences in HR during daily life, was proposed in [3]. The
authors use the Heart Rate above Rest (HRaR), instead of the
HR, as a predictor for their linear models. Using the HRaR
does bring each subject to the same baseline, but it introduces
a simple offset, which is unable to capture how HR evolves
during physical exercise, as a result of differences in CRF.

C. CRF Estimation

Even though the effects of CRF on HR are widely recog-
nized, no algorithm up to date includes or models CRF to
estimate EE. On the other hand, different groups proposed
methods and algorithms to measure and estimate CRF alone
[13,16]. CRF is typically measured by means of a maximal
oxygen uptake test. Maximal oxygen uptake (V O2 max) is
widely accepted as the single best measure of cardiovascular
fitness and maximal aerobic power. Tests measuring V O2

max can be dangerous in individuals who are not considered
normal healthy subjects, as any problems with the respiratory
and cardiovascular systems will be greatly exacerbated. Thus,
many protocols for estimating V O2 max have been developed
for those for whom a traditional V O2 max test would be
too risky [13,16]. Sub-maximal V O2 max tests generally are
similar to a V O2 max test, but do not reach the maximum of
the respiratory and cardiovascular systems. On the other hand,
non-exercise V O2 max estimation uses information about the
person’s anthropometric characteristics, activity level (derived
with questionnaires), and HR at rest features to estimate
CRF. Often, the predicted maximal HR is used as well. The
shortcoming of this approach is that maximal HR is typically
predicted using age only, and HR at rest is weakly related
to CRF. Higher accuracy was shown by sub-maximal tests
involving actual exercise, for example biking or running at
sub-maximal rates.

Even though sub-maximal tests are less dangerous and
showed good accuracy in past research [13], they are still
affected by some limitations; a) a specific test is required to
determine CRF, b) the specific test should be re-performed
every time CRF needs to be assessed, c) in the context of EE
estimation, it is not clear how to include information about
CRF.
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Fig. 1. Relation between EE and HR in different subjects during a sequence
of different PAs. Individual correlations between EE and HR are 0.97 and 0.96
respectively. The absolute EE levels are similar due to similar body weight.
HR differs significantly between the subjects during moderate to vigorous
activities.

III. FITNESS AND HEART RESPONSES

This section covers more in detail the relation between
CRF, HR and EE, which motivates our approach to personal-
ized EE estimation. The main cause of differences in the HR-
EE relation during activity is CRF. An individual with higher
CRF (i.e. more fit), will have a lower HR during exercise,
compared to an individual with low CRF. Fig. 1 shows the
relation between HR and EE for two subjects during a series
of intense and sedentary activities. Individual correlations
between HR and EE are above 0.96 for both of them. The
figure shows clearly that for two subjects with similar body
weight (subject 17, body weight: 71.2 kg, and subject 20, 72
kg), EE is almost the same, while HR is very different, due
to higher fitness level of subject 20 (subject 17 is inactive
while subject 20 is a trained runner). Since EE is derived
from HR, typically by means of a linear model, estimating EE
from HR during exercise results into substantially high over
and under-estimations. By individually calibrating the system,
the relation between HR and EE becomes peculiar for an
individual, since it is derived specifically for him/her, and not
using data collected on a different sample of the population.
Unfortunately, individual calibration is not practically feasible
since it requires each new user to perform lab tests in su-
pervised settings, using expensive devices such as an indirect
calorimeter. Thus, alternative methods to tackle the problem
are needed to objectively and accurately estimate EE at the
individual level, and not only as group averages.

IV. APPROACH

This section covers our approach to CRF estimation and
its integration into EE multiple linear regression models,
necessary to reduce EE estimation error due to inter-individual
differences in the relation between HR and EE. To this aim,
we developed the concept of automatic Heart Rate Feature
Normalization. We propose the following steps to estimate EE
using HR normalized by level of CRF:

a) Build a model to derive a normalization factor automati-
cally during daily life, without requiring specific tests.

b) Use the normalization factor to normalize HR.
c) Use the normalized HR as predictor in activity-specific EE

estimation equations.

Fig. 2. Architecture of an activity-specific EE estimation system. ACC
features are used to recognize an activity, and to estimate EE for each model,
together with anthropometric characteristics and the normalized HR. The
Heart Rate Features Normalization block, shown in gray, is included in our
model to remove confounding effects in the relation between HR and EE, due
to CRF.

When normalizing HR, we are not only interested in the
maximal HR an individual can reach, but in the HR the
different individuals would reach when performing the same
activity, at the same workload. We hypothesize that this HR
at a constant workload is representative of CRF, and can be
used to normalize HR. We selected running at 10km/h as the
constant workload. Thus, our HR normalization factor is the
HR while running at 10km/h. Running at maximum 10 (for
females) to 12 (for males) km/h, together with anthropometric
characteristics, could explain 88% of the variance in V O2

max in past research on V O2 max estimation [13], showing
that it is a normalization factor that well represents CRF. We
implemented a system able to derive the CRF-related normal-
ization factor automatically during daily life, without requiring
specific tests (a). In this way the algorithm is able to self-
adapt and learn from its user, without requiring any individual
calibration to estimate CRF or EE. Once a normalization factor
for an individual has been automatically determined, it is used
to normalize HR (b). The resulting normalized HR is free of
confounding effects due to CRF. As a last step, the normalized
HR is used instead of the HR as a predictor for the activity-
specific EE estimation equations (c), as shown in Fig. 2. The
new predictor better represents the relation between HR and
EE, since HR is not affected by CRF.

TABLE I. DISTRIBUTION OF THE ACTIVITIES INTO THE SIX CLUSTERS
USED FOR ACTIVITY RECOGNITION.

Cluster name Original activities
Lying Lying down resting

Sedentary Sitting resting, sitting stretching, standing
stretching, desk work, reading, writing,
working on a PC, watching TV, sitting
fidgeting legs, standing still

Dynamic Stacking groceries, washing dishes, cook-
ing, folding clothes, cleaning and scrub-
bing, washing windows, sweeping, vacu-
uming

Walking Self-paced, self-paced carrying books,
stairs up and down, treadmill (flat:
3, 4, 5, 6 km/h, 4 km/h carrying weights,
incline: 3, 5km/h, 5, 10%))

Biking Cycle ergometer, low, medium and high
resistance level at 60 and 80 rpm

Running 7, 8, 9, 10 km/h on a treadmill



V. METHODS

We considered ACC and HR data to implement all compo-
nents of our approach, including activity recognition, HR nor-
malization factor estimation, and EE estimation. This section
details the components further. More details on participants,
sensor device and experimental protocol can be found in
Section VI.

A. Activity Recognition

We implemented an activity recognition algorithm to clas-
sify the following clusters of activities (see Table I): lying,
sedentary, dynamic, walking, running and biking. We selected
Support Vector Machines (SVMs) as classifier, and the follow-
ing features: mean absolute value of the band-passed signa,
variance, standard deviation, main frequency peak, amplitude
of the main frequency peak and high frequency band signal
power. See Sections V-E and V-F for details on the feature
extraction and selection processes. For the SVM, a polynomial
kernel with degree 5 was used (λ = 10, C = 1). Activity
recognition is used for EE estimation (all six clusters), and
as part of the automatic HR normalization system (lying and
walking only).

B. Automatic HR Normalization System

We extended the architecture of activity-specific EE esti-
mation algorithms (Fig. 2), by including the extra Heart Rate
Features Normalization block. The block is detailed in Fig.
3, where all the components necessary to derive the normal-
ization factor automatically, are listed. In order to provide
automated and non-invasive CRF estimation, we estimate the
normalization factor using activities of daily living only, and
their associated HR. More specifically, the Heart Rate Features
Normalization block uses the HR while resting and walking
at different speeds as predictors for the HR normalization
factor, together with anthropometric characteristics. Thus, in
addition to the activity recognition algorithm, the automatic
HR normalization system includes two more components;
1) a walking speed estimator, 2) and a normalization factor
estimator. The next sections covers the components in detail.

1) Walking Speed Estimator: The walking speed estimator
is a multiple linear regression model (see Table II) which
predicts walking speed using as features the individual’s height
and the following ACC features: main frequency peak on the
X axis (FFTpeakXf), mean absolute value of the band-passed
signal (or Motion Intensity, MI), sum of the variance on the
three axis (Var), inter-quartile range on the X and Y axis (IQRX
and IQRY) and high frequency band signal power on the X and
Z axis (HPowX and HPowZ).

TABLE II. WALKING SPEED MODEL (R20.94).

Variable Coefficient
Intercept −1.28
Height 0.015

MI 11.37
Var −2.41

IQRX 1.79
IQRY −2.96

HPowX −0.00079
HPowZ −0.00084

FFTpeakXf −0.088

TABLE III. HEART RATE NORMALIZATION FACTOR ESTIMATION
MODEL (R20.87).

Variable Coefficient
Intercept 66.91

HR at rest 0.29
HR 4km/h 1.58
HR 5 km/h −2.80
HR 6 km/h 2.18

Height −0.17
Age −0.23

2) Heart Rate Normalization Factor Estimator: A multiple
linear regression model (see Table III) is built to predict the
normalization factor (i.e. an individual’s HR while running at
10 km/h) using activities of daily living only. The best model
(see Section VII) relies on HR while lying down resting and
while walking at 4, 5 and 6 km/h, together with the individual
height and age, as independent variables.

C. HR Normalized

Actual HR measurements are finally used after applying
the HR normalization factor, derived with the normalization
factor estimator, using the simple ratio:

NormalizedHR = CurrentHR
Normalizationfactor

D. Personalized activity-specific EE estimation

Following the methodology applied in current state of the
art EE estimation algorithm, EE is estimated by first classifying
the activity performed, by means of ACC features, and then
applying an activity-specific EE linear regression model. The
activity-specific EE linear models use anthropometric charac-
teristics, ACC and HR features. Thus, we developed six multi-
ple linear regression models, one for each cluster of activities
(see Table IV). Activity-specific ACC features for each model
were selected using linear forward selection, in order to model
intra-individual differences in EE. Normalized HR was used
as a feature for the moderate to vigorous clusters (dynamic,
walking, running and biking). The final feature set includes
Resting Metabolic Rate (RMR, computed with anthropo-
metric variables only, according to the Harris-Benedict for-
mula), motion intensity (MI), standard deviation (STD),
median (MED), main frequency peak (FFTpeaxf )
and its amplitude (FFTpeaka), body weight (BW ) and
Normalized Heart Rate (HRNorm).

Fig. 3. Components of the automatic HR normalization system used in this
work to derive the normalization factor automatically.



TABLE IV. ACTIVITY-SPECIFIC EE LINEAR MODELS.

Cluster Model
Lying 0.49 + 0.00068 RMR − 29.66MIx +

9.78 STDx+ 0.11MEDx+ 0.68MEDy
Sedentary 0.31 + 0.00061 RMR + 8.42 MIx +

11.12 MIy − 2.37 MIz + 2.9 STDx +
2.48 STDy+ 0.47MEDy− 0.14MEDz +
0.05 FFTpeakY a

Dynamic −3.43 + 5.95 HRNorm + 0.035 BW +
7.65MIy + 8.59MItot+ 4.80 STDx

Walking −9.00 + 15.07 HRNorm + 0.056 BW +
3.91 STDx

Biking −10.58+0.0029RMR+16.75HRNorm−
37.66 MIx + 14.23 MIy − 54.37 V ARy +
26.22 STDx

Running −8.73 + 11.50 HRNorm + 0.12 BW +
13.99 MIy − 5.28 STDy + 4.16 MEDx −
3.70MEDz − 1.33 FFTpeakXf

E. Feature Extraction

ACC and HR features were used to derive activity recog-
nition, walking speed, CRF (normalization factor) estimation
and EE estimation linear models. ACC data from the three axes
were segmented in 4 second windows, band-pass (BP) filtered
between 0.1 and 10 Hz, to isolate the dynamic component
caused by body motion, and low-pass (LP) filtered at 1 Hz,
to isolate the static component, due to gravity. We selected
a time window of 4s, since it is short enough to detect
changes in postures even for short breaks in sedentary time,
and long enough to capture the repetitive patterns of activities,
such as walking or running. Time and frequency features
were extracted from each window over the three axes of the
LP and BP signal. Time features included mean, mean of
the absolute signal, magnitude, mean distance between axes,
skewness, kurtosis, variance, standard deviation, coefficient of
variation, range, min, max, correlation, inter-quartiles range,
median and zero crossing rate. Frequency features included:
spectral energy, entropy, low frequency band signal power
(0.1 - 0.75 Hz), high frequency band signal power (0.75 - 10
Hz), frequency and amplitude of the FFT coefficients. These
features were selected due to high accuracy showed in past
research [5-9]. The mean HR was extracted from R-R intervals,
computed over 15 seconds windows. R-R intervals features
were not included in the activity recognition and walking speed
linear models. Feature extraction was performed in MATLAB
(MathWorks, Natick, MA).

F. Feature Selection

1) Activity Type Recognition: Feature selection was based
on correlation, following the assumption that a good feature
set includes features highly correlated with the class, but
uncorrelated to each other. This step, as well as the subse-
quent classification, was implemented in Java using libraries
provided by the WEKA machine learning toolkit (University
of Waikato, Hamilton, New Zeland). The final feature set (see
Section V-A) was used to train the SVM.

2) Multiple Linear Regression Models: Feature selection
for multiple linear regression models (six activity-specific EE
models, one for each cluster, the walking speed estimator and
the HR normalization factor estimator) were based on how
much variation in the dependent variable each feature could

explain, using linear forward selection. Participant-independent
models were developed for each multiple linear regression
model. Additionally, anthropometrics characteristics and Rest-
ing Metabolic Rate were added to the EE models depending
on the cluster [5] (see Section V-D).

G. Statistics and Performance Measure

All analysis were performed independent of the participant.
Models were derived on all the participants but one, and
validated on the remaining one. This leave-one-out procedure
was carried out N times (N = number of participants),
and results were averaged. Even though performance was
evaluated independent of the subject, the reported models are
derived including data from al participants (Tables II, III and
IV). Performance of the activity recognition was evaluated
using the percentage of correctly classified instances for each
cluster. The performance measures used for EE is the Root
Mean Square Error (RMSE), averaged within an activity and
between participants. Results are reported only in terms of
RMSE because of the large inter-individual variability that is
typical for EE estimates. Normalization procedures do exist
(e.g. estimating in kcal/kg), but do not take into account that
EE during different activities is affected differently by body
weight. Performance of the walking speed linear model, as well
as the HR normalization factor estimates, were evaluated using
the RMSE and the percentage of the explained variance of the
multiple linear regression model (R2). As statistical analysis,
paired t-tests between non-normalized and normalized results
were used. Significance level α was set to 0.05 for all tests.

VI. MEASUREMENT SETUP AND DATA COLLECTION

A. Participants

Twenty-nine (22 male, 7 female) healthy participants took
part in the experiment. Mean age was 30.9± 5.5 years, mean
weight was 72.6 ± 12.5 kg, mean height was 177 ± 9.3 cm
and mean BMI was 23.0 ± 2.6 kg/m2. Our internal Ethics
Committee approved the study, and each participant signed an
informed consent form.

B. Instruments

1) ECG Necklace: The ECG Necklace [11] is a low power
wireless ECG platform (see Fig. 4). The system relies on an
ultra-low-power ASIC for ECG read-out, and it is integrated in
a necklace, providing ease-of-use and comfort while allowing
flexibility in lead positioning and system functionality. It
achieves up to 6 days autonomy on a 175mAh Li-ion battery.
For the current study, the ECG Necklace was configured
to acquire one lead ECG data at 256 Hz, and ACC data
from a three-axial accelerometer (ADXL330) at 32 Hz. The
sensor was placed on the chest with an elastic belt. The x,
y, and z axes of the accelerometer were oriented along the
vertical, medio-lateral, and antero-posterior directions of the
body, respectively. Two gel electrodes were placed on the
participant’s chest, in the lead II configuration. Data were
recorded on the on-board SD card to ensure integrity. Data
were also streamed in real-time to provide visual feedback of
the system functionality to the experimenter.



Fig. 4. Wearable sensor used for this study (ECG Necklace). The sensor
acquires 2-leads ECG and 3-axial acceleration.

2) Indirect Calorimeter: Breath-by-breath data were col-
lected using the Cosmed K4b2 indirect calorimeter. The
Cosmed K4b2 weights 1.5 kg, battery included, and showed
to be a reliable measure of EE [12]. The system was manually
calibrated before each experiment according to the manu-
facturer instructions. This process consists of allowing the
system to warm-up, following a double calibration, first with
ambient air and then with calibration gas values. A delay
calibration was performed weekly to adjust for the lag time
that occurs between the expiratory flow measurement and the
gas analyzers.

C. Experiment Design

Participants were invited for recordings on two separate
days. They reported at the lab at 8.00 a.m., after refraining
from drinking (except for water), eating and smoking in the
two hours before the experiment. The protocol included a wide
range of lifestyle and sport activities, including sedentary and
household activities. More specifically, day one consisted of
activities selected as representative of common daily living
of many people in industrialized countries [14]. The activ-
ities were: lying down, resting, sitting stretching, standing
stretching, desk work, reading, writing, working on a PC,
watching TV, fidgeting legs, standing still, standing preparing
a salad, washing dishes, stacking groceries, folding clothes,
cleaning the table, washing windows, sweeping, vacuuming,
walking self-paced, walking self-paced carrying books (4.5 kg),
climbing stairs up, climbing stairs down. Each sedentary and
household activity was carried out for a period ranging from
4 to 12 minutes, with a 1 or 2 minutes break between the
activities. Day two was carried out at the gym, where subjects
performed a series of more vigorous activities, including:
walking at 3,4,5 and 6 km/h on a treadmill, walking at 4
km/h carrying a weight (5% of the subject’s weight), walk-
ing at 3 km/h, 5 and 10% inclination, walking at 5 km/h,
5 and 10% inclination, cycle ergometer at 60 and 80 rpm,
low, medium and high resistance levels, running at 7,8,9 and
10 km/h. Activities carried out at the gym were 4 minutes
duration, except for free weights and running, which lasted for
1 to 2 minutes. Four participants did not perform all running
activities and were excluded from data analysis.

D. Pre-processing

The dataset considered for this work contains about 70
hours of annotated data collected from 29 subjects, consisting
of reference V O2, V CO2, three axial acceleration and ECG.

1) ECG Necklace Data: Raw ECG and ACC data were
downloaded from the SD card of the ECG Necklace. Raw data
were exported into csv files containing time-stamped ECG and
acceleration samples. A Continuous Wavelet Transform based
beat detection algorithm was used to extract R-R intervals from
ECG data, which output was manually examined to correct for
missed beats.

2) Indirect Calorimeter Data: Breath-by-breath data ac-
quired from the Comsed K4b2 was resampled at 0.5Hz. EE
was calculated from O2 consumption and CO2 production
using Weir’s equation [15]. The first 1 or 2 minutes of each
activity were discarded to remove non-steady-state data.

VII. RESULTS

A. Activity Recognition

Subject-independent classification accuracy of the SVM
used to select which cluster model to use in the EE estimate
was 94.3%. More specifically, the accuracy was 100% for
lying, 91% for sedentary, 87% for dynamic, 98% for
walking, 91% for biking and 99% for running.

B. Walking Speed Estimator

The walking speed multiple linear regression model could
explain 94% of the variance in walking speed (R2 = 0.94).
RMSE of the model is 0.28± 0.09 km/h.

C. Heart Rate Normalization Factor Estimator

The Heart Rate Normalization Factor multiple linear re-
gression model could explain 87% of the variance (R2 =
0.87). RMSE was 8.3 beats per minute (bpm) (see Fig. 5).
Higher error was obtained with a second model, built using
lower walking speeds only, since lower speeds will have higher
chance to be detected in daily life (3 and 4km/h, together with
height and age, RMSE 11.8 bpm). Fig. 6 shows an example
of the normalization. By considering our normalization factor
approach, the HR variance was clearly reduced. We concluded
that the normalized HR can be used as part of the activity-
specific EE models, reducing over or under-estimations.
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Fig. 5. Scatterplot and residuals plot of measured (running on a treadmill)
VS predicted (from age, height, HR at rest and while walking at 4,5 and 6
km/h) normalization factors (i.e. HR while running at 10 km/h).
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error. HR before normalization is shown for comparison (as in Fig. 1).

D. Energy Expenditure Estimation

RMSE for the EE estimate was 0.60 kcal/min.
More specifically, RMSE was 0.20 kcal/min for lying,
0.25 kcal/min for sedentary, 0.58 kcal/min for dynamic,
0.81 kcal/min for walking, 0.92 kcal/min for biking and
0.89 kcal/min for running).

Fig. 7 shows the reduction in error for activity-specific EE
models using HR (dynamic, walking, running and biking),
when CRF is taken into account. RMSE was reduced from 0.60
to 0.58kcal/min for dynamic (3% error reduction, not signif-
icant), from 1.13 to 0.81 kcal/min for walking (28% error
reduction, p = 0.00027 < α), from 1.38 to 0.92 kcal/min
for biking (33% error reduction, p = 0.00037 < α) and
from 1.25 to 0.89kcal/min for running (29% error reduction,
p = 0.01 < α).

VIII. DISCUSSION AND CONCLUSIONS

In this paper we proposed a novel algorithm for activity-
specific EE estimation based on a combination of ACC and HR
data. By introducing a HR normalization factor, we were able
to model the effect of CRF on HR during exercise. By normal-
izing HR responses from subjects with different levels of CRF,
we could significantly reduce EE estimation error (p < 0.05 for
walking, biking and running). More specifically, the proposed
approach is able to reduce EE estimation error of activity-
specific linear models (i.e. models developed specifically for
an activity, and already including the best ACC features, as
well as anthropometric characteristics) by an additional 28 to
33% compared to the best state-of-the-art models published up
to date. The error reduction applies to non-sedentary clusters
of activities, such as walking, biking or running at moderate
intensities.

We believe this is a significant step towards personalized
health and wellbeing monitoring. The proposed system uses
a single monitoring device and is able to learn automatically
from the user over time, collecting HR data while performing
different activities (walking at different speeds, resting, etc.).
The collected data is then used to determine the HR normal-
ization factor, a coefficient representative of the CRF level of
an individual.
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Fig. 7. RMSE for the four moderate to vigorous clusters. Statistically
significant differences are marked with * (paired t-test, p < α, α = 0.05) EE
estimation error was significantly reduced for walking, running and biking.
Error variance is reduced as well.

Personalizing a system goes beyond the inclusion of the in-
dividual’s anthropometric characteristics in the activity-specific
EE linear models. In the future, the estimated normalization
factor could be used as predictor to estimate V O2max, using
equations published in literature [13]. By doing so, a user
would be aware of one of the most important health markers
[10], without the burden and risks of regularly performing
maximal or sub maximal tests.

We expect that our HR normalization approach will be most
useful for sports training devices, where users and trainers
are interested in accurate EE estimation under moderate to
vigorous workloads. However, less active users willing to take
up a more active lifestyle, or undergoing a physical activity
intervention targeted in modifying behavior to increase level
of activity, would also benefit. As a matter of fact, in the
latter case CRF takes even a bigger role, since it typically
changes faster in the transition from inactive to active lifestyle,
while lower changes can be expected for a continuously active
lifestyle. Being able to monitor changes in CRF and HR over
time would affect positively EE estimates, since EE estimates
are highly dependent on HR and on the relation between CRF,
HR and EE, as shown by our analysis. New opportunities for
applications targeted at inducing behavioral change analyzing
not only levels of PA, but also change in CRF and associated
reduced risk of disease, could be developed building up on the
proposed approach.

We recognize limitations in our study. Even though we
developed an algorithm able to derive the HR normalization
factor automatically, during regular activities, by combining
rest and walking data with the subjects anthropometric char-
acteristics, we tested it using laboratory recordings only. We
consider that the evaluation with lab data is a necessary
first step, which can be sufficiently covered with reference



measurements of EE. In particular, the approach allowed us
to confirm performances of the individual estimators (activity
recognition accuracy was 94.3%, walking speed RMSE was
0.28 ± 0.09 km/h). Overall, we conclude that an accurate
personalized EE estimation using a single monitoring device
and combining ACC and HR is feasible.
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