CRNTC+: A smartphone-based sensor processing framework for prototyping
personal healthcare applications

G. SpinaT, F. RobertsT, J. Weppner”, P. Lukowiczﬁ, 0. Amft
TACTLab, Signal Processing Systems, TU Eindhoven, The Netherlands
T Embedded Intelligence, DFKI/University of Kaiserslautern, Germany
{g.spina, amft} @tue.nl, f.j.m.roberts @ student.tue.nl, jens.weppner@dfki.uni-kl.de, paul.lukowicz@dfki.de

Abstract—While smartphone apps for health monitoring and
patient support are of great interest to care providers and
patients alike, suitable development and evaluation frameworks
are currently lacking. We present and evaluate an Android
open-source smartphone framework CRNTC+ for sensors data
acquisition, signal processing, pattern analysis, interaction
and feedback, based on the Context Recognition Network
Toolbox (CRNT). CRNTC+ extends the original CRNT by
providing components to read smartphone and external sensor
data, supporting annotations, and various output components.
Here, we formally evaluate CRNTC+ regarding extensibility,
scalability, and energy consumption. We present study results
where CRNTC+ was deployed in an application to detect
epileptic seizures. Results showed that CRNTC+ is well-suited
for prototyping health applications in real-life, where online
sensor data recording and recognition is needed.

I. INTRODUCTION

When utilising the various internal sensors and intercon-
nection to external devices, modern smartphones can become
on-body hubs for sensor data acquisition, processing, and
feedback in personal health applications. The potential of
smartphones has been widely recognised for medical train-
ing, monitoring, and assistance [1].

Evaluating smartphone-based solutions with patients often
requires to develop applications and re-implement function-
ality. Smartphone-based software frameworks could reduce
this implementation burden and enable developers to quickly
prototype solutions. However, many existing smartphone
frameworks lack essential features, including algorithms
for sensor pattern recognition, signal processing, or soft-
ware interfaces with different external sensors (see related
work in the next section). Thus patients cannot choose
and interoperate sensors. Since frameworks such as the
Context Recognition Network Toolbox (CRNT) have been
widely used with PC-based computer architectures [2], an
integrating approach could leverage from existing algorithm
implementations on smartphones.

In this paper, we present an open-source Android-based
sensing and processing framework that integrates multiple
sensing modalities especially suitable for patient monitoring.
Our extended CRNTC+ framework integrates the complete
CRNT functionality and provides additional input/output

components to utilise smartphone-internal sensors and ser-
vices as well as external devices attachable via wireless
protocols, e.g. Bluetooth, ANT. The smartphone-specific
framework and the CRNT were partitioned through ded-
icated interfaces and thus can be extended independently.
Nevertheless, our partitioned design does not affect frame-
work users during configuration and use. In particular, the
paper makes the following contributions:

1) We introduce our CRNTC+ framework design and

present its application-independent implementation.

2) We formally evaluate our framework and consider

extensibility, scalability, and energy consumption.

3) In an exemplary prototype design, we evaluate

CRNTC+ for detecting epileptic seizure events.

We chose epilepsy to evaluate CRNTC+, since patients
suffering from epileptic seizures face various difficulties in
daily life. In particular, major seizures may render patients
unconscious and thus in potentially threatening situations.
Thus, seizure detection could support patients and caregivers
by alarming when a patient needs external help. Most sensor-
based seizure monitoring approaches used single modali-
ties focusing on limb acceleration or heart activity during
seizures [3], [4]. Our results show that CRNTC+ can be used
as a flexible solution for recording and detecting epileptic
seizures during daytime using smartphones.

II. RELATED WORK

Several frameworks have been proposed to facilitate
smartphone application prototyping. A number of smart-
phone data processing frameworks addressed specific appli-
cations, e.g. Pocket-Sphinx [5]. Pocket-Sphinx is a contin-
uous speech recognition tool ported to Android. Other ap-
proaches include the Dandelion framework that uses RPC for
message passing [6]. More recently, some general purpose
sensor processing frameworks have been proposed. While a
full review is beyond the scope of this paper, some examples
are highlighted. The FUNF framework [7] and the SENSE
Observation System platform', are able to acquire data over
third-party sensors, supporting Bluetooth and ANT protocol
transmissions. However, data analysis is primarily done

IThe SENSE Observation System, http://www.sense-os.nl/home

through cloud processing and native processing algorithms
have to be implemented with a proprietary API.

The Open Service Architecture for Sensors (OSAS)
framework?, is an event-based programming system for
sensor networks. It facilitates sensor nodes programming
in a sensor network. To implement solutions, functionality
needs to be implemented using regular coding. Another
software framework designed for rapid prototyping of ac-
tivity recognition applications is CRNT [2]. CRNT uses
a component-oriented architecture, where complete data
processing chains can be configured by instantiating, param-
eterising, and interlinking components. Users of CRNT can
thus develop an application without in-depth knowledge in
programming. CRNT has been ported to many different PC-
based platforms. The potential for utilising this framework
in a smartphone environment has not been investigated so
far.

III. PROCESSING FRAMEWORK APPROACH

Our CRNTC+ architecture design follows a component-
oriented approach, including Readers, Writers, Filters, Clas-
sifiers, and others. The parameterisable components are
incorporated through a run-time engine that can flexibly
handle communication links between components in order
to customise functionality.

The architecture is partitioned into smartphone-specific
and generic data processing layers to separate platform API-
dependent components and those for general data handling.
Besides smartphone-specific components, including many
Readers and Writers, CRNTC+ incorporates all generic data
processing components of CRNT [2] for signal handling
and pattern processing. Moreover, several CRNT Writers,
such as for file logging and WLAN communication are
directly usable. Figure 1 illustrates the layered design in
a functional example. The basic architectural principles of
component instantiation and data handling established for
CRNT have been retained in the CRNTC+ framework. Com-
ponent communication links can be routed within a layer and
between layers. The architecture can be expanded by adding
further components to both smartphone-specific and generic
data processing layers. All components and communication
links between them are configured and parameterised jointly
through a JSON-based description. Hence, to design an
application, components just need to be selected, parame-
terised, and interlinked only.

IV. IMPLEMENTATION

In our framework design and implementation we targeted
extensibility, and scalability through convenient interfaces to
add and customise components. Moreover, design efficiency
is key to minimise energy consumption. Here, we detail

20SAS, http://www.win.tue.nl/san/wsp/index.html

e
[ACTLog

@ (st
|;, Directinput

Smartphone-specific layer

Generic data processing layer (CRNT)

LogWriter ’“4"

ETHOS I ;
L ETHOS] Dirsctinput | Data processing [TCPWiter %4>_%,,_

components

- L
[vPateh | Directinput
\es | shimmer|
Figure 1. Functional overview of the CRNTC+ framework. Reader

components are used to capture sensor data and user input , while Writer
components serve to output information, e.g. through a Graph component or
via a WLAN link. Our approach considers smartphone-specific (platform-
dependent) and generic data processing layers.

the implementation of key component classes: Readers and
Writers. Moreover, general implementation considerations
for CRNTC+ on the Android platform are described.
Readers: To interface with sensors and devices via dif-
ferent communication standards Readers are used. Through
Readers, various smartphone-integrated sensors can be
recorded. Examples for external device interfaces include
BluetoothReader and ANTReader components. Readers con-
nect to devices specified in the component configuration.
Depending on the sensor device protocol, data streaming is
subsequently started and readings are decoded for further
processing in the framework. E.g., ANTReader uses the
ANT+ protocol to connect to sports or custom devices, such
as BodyANT, ETHOS, and Vpatch. The BluetoothReader
can be used, e.g., to interface to a heart rate belt or to
Bluetooth accelerometers. Due to the phone APIs, Readers
reside in the smartphone-specific layer of CRNTC+.
Writers: Writers encode data streams from CRNTC+
for further analysis and feedback. E.g., the Graph com-
ponent provides a timeseries view on the phone’s screen
for reviewing sensor or feature data. Writers reside in
smartphone-specific and generic data processing layers. E.g.,
data file logging to an SD card can be performed through the
LogWriter component using generic POSIX calls, whereas
the Graph component requires platform-dependent features.
Component instantiation: In CRNTC+ a JSON-based
configuration is used to describe component instances, their
parameters, and communication links. A JSON configuration
is instantiated at runtime by matching a class definition
of the component. The GSON library was used to convert
JSON representation into Java Objects using string mapping.
When a JSON configuration file is loaded, the type field
representing the module is checked and, if it matches to
a map key, this module is instantiated by using the class
definition that is coupled to the key.
Reader for user annotations: To enable smartphone
users annotating sensor data, CRNTC+ integrates an ACT-
Log component, which works as a reader for user input.

ACTLog provides a configurable Ul within CRNTC+ to
capture annotations in pre-configured categories. To annotate
data, the phone user needs to tap and hold a category label
and then select a sub-category label instance from a config-
ured list displayed. Annotations can be directly processed in
CRNTC+ or stored to a labels file for subsequent analysis.
ACTLog resides in the smartphone-specific layer.

Between-layer communication: Besides direct within-
layer communication, DirectInput and DirectOutput compo-
nents are used as internal gateways to transfer data between
framework layers. This design is needed to bridge between
the different implementations of both layers: while the
smartphone-specific layer uses native code of the Android
platform, the generic processing is integrated as a library
in the CRNTC+ application. A direct data communication
between the layers is essential to minimise overhead and
processing load compared to other communication forms
between layers, such as RPC or TCP/UDP.

V. FRAMEWORK CHARACTERIZATION

To evaluate the CRNTC+ framework performance, we
assessed extensibility, scalability, and energy consumption.
Extensibility: We evaluated the ease of adding a new
component and measured the steps necessary to create new
Readers and Writers. Table 1 summarizes the extensibility
evaluation results. Four steps were needed to add a new
sensor Reader component and Writer, with 18 code lines
and 22 code lines, respectively. Adding a new UI element
requires five steps and 34 code lines.

Table I
EXTENSIBILITY ASSESSING CRNTC+ FOR ADDING COMPONENTS.
ESTIMATIONS INDICATE THE SMALLEST EFFORT. FOR FUNCTIONAL
COMPONENTS, ACTUAL EFFORT CAN BE LARGER.

Add Readers components
Step Minimum lines of code

Other complexities

1. Extend Module class

2. Extend ReaderClass class

3. Add Module class definition

4. Add ReaderClass class definition

3
13
1

Further subclassing
Depending on sensor
None

None

Add

Writers components

Step

Minimum lines of code

Other complexities

1. Extend OutputModule class

2. Extend OutputClass class

3. Add Module class definition

4. Add OutputClass class definition

7
13
1

None
None
None
None

Add user

interface (UI) components

Step

Minimum lines of code

Other complexities

1. Extend GUIModule class

2. Extend MyTabActivity class
3. Create icons

4. Create layout xml file

5. Create drawable xml file

12
13
0
3
6

None

Retrieve GUIModule
None

Depends on GUI structure
None

While the actual complexity of adding components de-
pends on the required functionality, the evaluation indicates
the basic framework-specific requirements for an extension.
It can be observed that Ul elements requires the largest
effort, since an icon is needed and the Android framework
requires to handle life cycles of “Activities”. Overall, the

result indicates that the framework does not imply complex
steps for functionality extension.

Scalability: We evaluated scalability by incrementally
adding, recording, and visualizing calibrated accelerometer
data from Shimmer sensors. To assess performance we
measured CPU usage and measurement jitter. Up to three
sensors could be simultaneously recorded without loosing
samples at a sampling rate of 200 Hz. When using four
sensors, responsiveness of the Ul reduced and CPU time for
updating the UI decreased. This result suggests that three
sensors could be safely recorded without loosing samples.

Energy consumption: For the Epilepsy case study
described in Sec. VI, two applications have been created
for gathering sensors data and for seizure event detection.
During the execution of both applications, energy con-
sumption of the smartphone was monitored. With the full
sensor configuration, battery level discharged by 80% during
~6 hours of sensor recording. This result can be explained
by the continuous data writing onto the SD card, decoding
of data sent via Bluetooth, and continuous screen use for
annotating data. It can be expected that reducing sensors will
reduce energy needs. Similarly, online processing without
storing to the SD card could increase battery life.

V1. EXPERIMENTAL EVALUATION
A. Epilepsy evaluation study

We evaluated the CRNTC+ framework in a case study
to investigate data acquisition from multi-modal on-body
sensors and recognising seizures. Since epileptic seizures
often occur only sporadically in patients during daytime, two
expert actors were asked to simulate five different seizures
types (myoclonic, tonic, tonic-clonic, clonic, myoclonic
tonic-clonic) during ten everyday activities, including lying
in bed, getting dressed, scratching, drinking from a glass,
brushing teeth, sit-ups, shaking hands, using mouse, typing
on a keyboard, folding towels.

Heart rate data were acquired using a Shimmer ECG
module 3, placed at the left upper arm. The module featured
a 3D accelerometer too. Disposable electrodes were con-
nected to the ECG module and attached to the participant’s
chest. Respiratory data were acquired using a Braebon 4,
strap, placed around participants’ thorax and connected to
a second Shimmer ECG module. Another 3D accelerometer
was placed at the right upper arm. Two full inertial motion
units (one ETHOS and one Shimmer 9DOF) were placed
at participants’ left and right wrists. Data was acquired at
two different sampling rates: for the Shimmer units 100 Hz,
and for the ETHOS sensor 128 Hz. All the sensing modules
were hold in place using adjustable velcro straps. Data
from all sensors was recorded via Bluetooth (Shimmer)
and ANT (ETHOS) using a Sony Ericsson Xperia active

3Shimmer, http://www.shimmer-research.com
4Braebon Respiratory Effort Sensor, http://www.braebon.com/

smartphone. A study observer was carrying the phone and
used ACTLog to annotate the activities during recordings.
Since expert actors were recorded instead of epilepsy
patients, heart rate and breathing pattern reacted with a delay
and caused by the physical activity related to simulated
seizures, rather than an actual seizure. Thus, ECG and
respiratory data was considered to assess the CRNTC+
framework scalability, but excluded from further analysis.

B. Epilepsy study results

Approximately 40 min of continuous recording were ac-
quired per participant. Data was segmented using a window
size of 100 sa. Variance of the 3D accelerometers unit placed
on both the upper arms and on the dominant wrist were
analysed and used in a two-class classification (seizure
against non-seizure). All analyses were performed using the
CRNTC+ and a frame-based evaluation. First, to train an
offline kNN classifier (k=3), 500 samples per class were
randomly selected from data from both actors. Remaining
samples were used for testing. Subsequently, to test the
feasibility of real-time seizure detection, the configuration
was tested online. For practical application we considered
that the system should alarm within one second from the
start of a seizure. To satisfy the real-time constraint of the
online evaluation, the training set needed reduction to 100
samples and only one sensor was used. The performance
limiting factors for the real-time analysis were the Shimmer
sensor data transmission and the classifier processing.

The offline detection test using 3 accelerometers, showed
a class specific accuracy of 74% for seizure event and
64% for non-seizure. For the one-sensor configurations, 72%
and 59% was obtained for the upper left arm, 76% and
63% for the upper right arm, and 81% and 62% at the
wrist, for seizure events and non-seizure times respectively.
Subsequently, the right wrist sensor was chosen to test
online recognition performances. Figure 2 summarizes the
performance results. For the online recognition, the reduced
training set resulted in a deteriorated performance, with 78%
for seizure events and 55% for non-seizure times. After
revising the training set to the core seizure phase with high
motion intensity only, performance improved to 86% for
seizure events and 78% for non-seizure times.

VII. CONCLUSION AND FURTHER WORK

We proposed and evaluated a new framework for
smartphone-based sensor data recording and processing,
which emphasises extensibility and leverages the widely
used CRN toolbox for generic data processing algorithms.
The new CRNTC+ was implemented in a layered framework
design. Our formal evaluation and study results showed that
CRNTC+ is versatile to handle various multi-modal sensors
and recognition solutions, which are essential to prototype

I seizures
[C—Inon seizures

Class specific accuracy

(a)orff line 3 sensors (b)cn line 1 sensor (c) on line 1 sensor

revised annotations

p et -
(d) 1241 I 1281 1301 Time [s]

Figure 2. Epilepsy seizure detection performance using the CRNTC+
framework. (a): offline, using three 3D acc. units placed on the upper arms
and dominant wrist. (b): online, using one 3D acc. unit at wrist. (c): online,
using one 3D acc. unit at wrist with revised training data (see main text for
details). (d): Annotation example for a Tonic-clonic seizure. The red square
marking indicates the seizure part used as training data for the results in
panel (c).

Acceleration [m/s”2]

patient care solutions with phones. While the present in-
vestigation focused on assessing feasibility of CRNTC+ for
epilepsy detection in daily life, further work is needed to
optimize the detection by evaluating additional algorithms
and evaluation in larger studies.

ACKNOWLEDGEMENT

The authors are thankful to the expert actors participating
in the Epilepsy evaluation study. This work was supported
by the EU FP7 Marie Curie Network iCareNet under grant
number 264738 and the iCare4COPD project of Agentschap
NL under contract number PNE101005.

REFERENCES

[1] O. L. Franko and T. F. Tirrell, “Smartphone app use among
nbeldzical providers in acgme training programs.” J Med Syst,

[2] D. Bannach, P. Lukowicz, and O. Amft, “Rapid prototyping of
activity recognition applications,” Pervasive Computing, IEEE,
2008.

[3] J. Lockman, R. S. Fisher, and D. M. Olson, “Detection of
seizure-like movements using a wrist accelerometer,” Epilepsy
and Behavior, 2011.

[4] S. Nasehi and H. Pourghassem, “Real-time seizure detection
based on eeg and ecg fused features using gabor functions,” in
ICBMI, 2011.

[5] D. Huggins-Daines, M. Kumar, A. Chan, A. Black, M. Rav-
ishankar, and A. Rudnicky, “Pocketsphinx: A free, real-time
continuous speech recognition system for hand-held devices,”
in ICASSP, 2006.

[6] F. X.Lin, A. Rahmati, and L. Zhong, “Dandelion: a framework
for transparently prograrnming phone-centered wireless body
sensor applications for health,” in Wireless Health, 2010.

[7]1 N. Aharony, W. Pan, C. Ip, I. Khayal, and A. Pentland, “Social
fmri: Investigating and shaping social mechanisms in the real
world,” Pervasive Mob. Comput., 2011.

