
Patient-Friendly Detection of Early Peripheral
Arterial Diseases (PAD) by Budgeted

Sensor Selection
Qiaojun Wang

Department of Electrical and
Computer Engineering

Rutgers University
Piscataway, NJ

Email: qjwang@eden.rutgers.edu

Kai Zhang
Siemens Corporation

Corporate Research and Technology
755 College Road East
Princeton, NJ, 08540

Email: kai-zhang@siemens.com

Ivan Marsic
Department of Electrical and

Computer Engineering
Rutgers University

Piscataway, NJ
Email: marsic@ece.rutgers.edu

John K.J. Li
Department of Biomedical Engineering

Rutgers University
Piscataway, NJ

Email: johnkjli@rci.rutgers.edu

Fabian Moerchen
Siemens Corporation

Corporate Research and Technology
755 College Road East
Princeton, NJ, 08540

Email: fabian.moerchen@siemens.com

Abstract—Sensor networks provide a concise picture of com-
plex systems and have been widely applied in health care
domain. One typical scenario is to deploy sensors at different
locations of human body and analyze the sensor measurements
collectively to perform diagnosis of diseases. In this work, we
are interested in differentiating peripheral arterial disease (PAD)
patients from healthy people by monitoring peripheral blood
pressure waveforms using electric sensors. PAD is an important
cause of heart disease, which causes no significant symptoms
until in a late stage. Therefore its early detection is of significant
clinical values. Currently, PAD diagnosis either require large
equipment or complicated, invasive sensor deployment, which
is highly undesired in terms of medical expenses and safety
considerations.

To solve this problem, we present a novel approach to address
the issue of high deployment cost in PAD detection via sensor
networks. Assuming we are given many possibilities for sensor
placement, each with different deployment cost, our goal is to
select a small number of sensors with minimal costs while deliv-
ering accurate diagnosis. We solve this problem by treating each
sensor as a feature, and designing a budget-constrained feature
selection scheme to choose a compact, optimal subset of sensors,
inducing very low deployment cost in terms of invasive treatment,
while giving competitive classification accuracy compared with
state-of-the-art feature selection method.

I. INTRODUCTION

Sensor networks have experienced significant developments
in modern scientific and engineering domains in recent years.
It can provide a concise picture of large, complex systems
via aggregating a collection of nodes/sensors that capture
parameters of interest, which renders great convenience and
flexibility in a variety of applications involving system state
classification. We are interested in applications of sensor
networks approach in the health care domain. In health care,
an intelligent sensor network can be used to automatically

evaluate the health status of the subject and to react when some
certain state of the system has been identified (such as danger,
emergency health condition, or certain disease is diagnosed)
[1], [2], [3] [4] [5]. In these applications, typically, a set of
sensors are deployed on human body, and the sensor mea-
surements are analyzed collectively through machine learning
algorithms to perform classification. Advances of sensor tech-
nology and various data analysis and information processing
algorithms make this a highly promising area. However, an
important, practical concern in this scenario is that sensor
deployment might involve highly invasive treatment on the
human body, which is undesirable in terms of both medical
expenses and safety considerations.

Consider the example of peripheral arterial disease (PAD)
classification. The PAD affects millions of people in the
United Stated, in which plaque builds up in the arteries and
limits the flow of oxygen-rich blood to organs, see Figure 1.
Usually patients have no obvious symptoms until in a late
stage, therefore early diagnosis of PAD is very important
in controlling the disease and reduce its damage. Currently,
there are several approaches for PAD diagnosis but they
have certain limitations. For example, Doppler Ultrasound or
Magnetic Resonance Angiogram require expensive medical
devices which might not be widely available in small clinics;
Blood test requires taking the blood sample and performing
chemical analysis; the Ankle-Brachial Index method needs to
test the speed of blood flows which is usually complex and
quite time consuming.

On the other hand, peripheral pressure waveforms have
been recognized as an important factor in the evaluation of
human arterial system integrity [6]. Therefore, we propose to
deploy sensors on the human body to monitor the peripheral
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pressure waveforms, which can then be analyzed through
machine learning algorithms to identify the state of the arterial
system. The sensor networks have much lower cost than large
medical equipments and are more flexible to deploy, however a
practical concern is that only less than 20% of the arteries are
non-invasively measurable from body surface. The remaining
arteries require different levels of invasiveness for conducting
measurements. For example, if an artery is close to heart, the
invasiveness would be very high at this artery, in terms of
both medical costs and safety considerations. Therefore, how
to faithfully detect the PAD by measuring as few arteries as
possible, and as non-invasively as possible, is an important
research topic of significant clinical values.

In this paper, we will focus on addressing the issue of high
sensor deployment cost in PAD detection via sensor networks.
The problem statement is formalized as follows. Assume
we are given many possibilities for sensor placement or
installation, each with different conditions (different locations
of human body) and hence induces different cost in their
deployment, and our goal is to select a small set of sensor
positions which will induce low deployment cost while at the
same time faithfully reflect the system condition and allow
highly accurate classification based on the sensor readouts.

Fig. 1. Normal Artery versus narrowed artery in PAD.
Picture by virtue of National Hear Lung and Blood Institute
(http://www.nhlbi.nih.gov/health/health-topics/topics/pad/).

Our problem falls into the general problem of sensor selec-
tion, aimed at selecting an optimal set of sensors from a sensor
network to optimize performance. Selection criteria varies a
lot depending on domains. For example, in environmental
applications spatial sampling design is used to make mea-
surements of dynamic spatial processes [7][8]; some works
minimize the error in estimating the parameters via convex
programming [9], information theoretic framework [10], or
geometric approaches [11]. These work do not consider factors
related to the deployment cost of the sensors. Another class
of methods considers reducing energy consumption of network
by routing or topology control [12] or by utility-based sensor
selection [13]. Again, their problem setting is quite different
from ours. In [14], the authors considered the problem of
sensor selection when redundancy relationships between sen-
sors can be formulated through information network modeling.
However, the resultant integer programming is very expensive

and a greedy approximation algorithm is designed in practice.
Considering either the computational inefficiency and the

distinct problem setting of existing methods, in this paper we
propose a new approach to solve our problem. To achieve
this, we introduce the concept of (supervised) feature selection
in the domain of networks: the measurements collected by
each node in the sensor network is deemed as a feature,
and our objective is to select a small subset of informa-
tive features/nodes on which to build an accurate classifier.
Feature selection is an effective tool to pick highly compact
and informative subset of features for accurate classification.
More importantly, a novel contribution of our work is to
extend feature selection to a budget orientated framework:
the features are selected not only to boost the classification
performance, but also to enforce an effective control on the
expected cost in deploying the related sensors. Our formulation
builds upon and generalizes the maximum relevance minimum
redundancy criterion (MRMR) [15]. Besides, we employ a
soft, probabilistic decision scheme which allows the problem
to be formulated neatly as a quadratic programming (QP) with
a unique, globally optimal solution.

To test the efficiency of our proposed method, we ap-
plied it in differentiating PAD patients from healthy people
by monitoring peripheral blood pressure waveforms using
both invasive and non-invasive sensors at multiple locations.
Compared with existing feature selection approaches, our
method can select a small number of locations for sensor
placement which induces very low deployment cost in terms
of invasive treatment, while at the same time giving rise to
more accurate classification results. Our approach provides a
valuable guidance on early diagnosis of PAD.

The rest of this paper is organized as follows. In Section 2
we provide a global picture of our approach for PAD detection,
including Data acquisition (Section 2.1), SVM classification
(Section 2.2), and Feature Selection (Section 2.3). In Section 3,
we review existing feature selection methods. In Section 4, we
propose our soft, budgeted feature selection method based on
the MRMR criteria. In Section 5 we compare our approach
with state-of-the-art feature selection algorithm in the task of
PAD detection. The last section concludes the paper.

II. PAD DETECTION USING SENSOR NETWORKS

In this section, we provide a global picture of our PAD de-
tection scheme, including data acquisition (Section2.1), SVM
classification (Section 2.2), and feature selection (Section 2.3).
The basic idea is to deploy a sensor network at a number of
arteries in human body, each keeping record of the peripheral
pressure waveforms for that artery. Our objective is then to
detect whether the subject suffers from PAD by analyzing the
measurements from the sensor network. We deem this as a
classification problem, and solve it by support vector machine
(SVM). In order to improve the classification performance,
reduce the number of sensors needed and the associated cost
of measurement invasiveness, we will apply a budgeted feature
selection algorithm, which will be the main technical contri-
bution of the paper and whose discussion will be deferred in
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Fig. 2. The human arterial system illustration (left) and the predicted pressure waveforms using the model in [31] (right).

Section 4.

A. Data Acquisition

Acquisition of peripheral pressure waveforms is difficult,
because the price of both invasive sensors and the tonometer-
based noninvasive monitors is high. There is almost no pub-
licly available data of peripheral pressure waveforms at all
arteries in human body. On the other hand, at current technical
levels, the accuracy of such sensors still remains unstable.
Currently, we are working closely with electric sensor engi-
neers and clinical doctors to improve the sensor measurement
accuracy. As a first step in conducting our research, we
therefore resort to model based simulation. Recent advances
in vascular biology and vascular engineering have led to
the understanding and integration of the two fields [16]. In
this paper, we use a distributed multi-branching arterial tree
for modeling the phenomenon of blood pressure waveform
propagation and reflection developed in [17].

The construction of the arterial tree model consists of
three steps: single segment modeling, interaction between
segments, and multi-segment network connections. The basic
computational entity is a segment of artery which is a thin-
walled cylindrical tube having internal viscous, elastic and
inertial properties with external coupling to the surrounding
tissue which produces a longitudinal constraint. Let p1 and p2
be pressures of the source and sink points of the blood flow
for a single segment. Then the following relations hold:

p1 = A1e
jwt, p2 = p1e

−τl = A1e
jwte−τl,

where w is the frequency, l is the length of the segment, and
τ is the propagation constant. The model also simulates the
wave reflections which occur from any discontinuity along
the arterial tree (e.g. branching points, areas of alteration in
arterial distensibility, and high resistance terminal beds), and
the amplitude and phase changes at reflection sites are modeled
as pr = pfΓ, where Γ is reflecting coefficient. Finally, the
whole arterial system of a human body is translated into a
55-segment arterial model shown schematically in Fig.1(a).

The predicted pressure waveform using the model [17]
contains important information about the properties of arte-
rial wall that is embedded in the propagation and reflection
characteristics. The model was evaluated in terms of branch
reflection coefficient, terminal vascular bed behavior, and
wall viscoelasticity [17]. Figure 2(right) provides example
waveforms simulated by this model at certain locations in
the human body. Researchers have found that the model-
predicted pressure waveforms compared favorably with real
blood pressure waveforms, therefore, it serves as a faithful
source of data generation and as we shall see, our analysis
based on these data will provide important guidance on human
arterial behavior. In Section 5, we will discuss in more detail
how waveforms of healthy and PAD patients are generated by
tuning a set of physiological parameters in the model.

B. Classification Using SVM

With data obtained from our model, we perform PAD
detection as a classification problem. In the training phase, we
collect measurements from a number of subjects, labeled either
as positive (PAD) or negative (healthy), and train a classifier.
In the testing phase, given a new subject we then apply the
trained classifier to predict his/her status.

We used support vector machine in our experiment. The
SVM [18] is state-of-the-art classification algorithm, and has
been applied in many domains such as bioinformatics [19]
and sensor networks [20]. Given a training samples xi’s and
their labels yi’s (either 1 or -1), SVM computes the following
decision function,

f(x) =
∑
i

αiyiK(x,xi) + b,

by maximizing the margin between the positive and nega-
tive classes, where αi’s are the coefficients returned by the
optimization process. Here K(·, ·) is the kernel function that
maps the input data x to a reproducing kernel Hilbert space,
which allows us to solve linearly non-separable problems
conveniently. Given any new testing sample x, if f(x) ≥ 0,
then x will be categorized as positive class (PAD patient);



otherwise x will be categorized as negative class (healthy
people).

C. Feature Selection

The electric sensors used to measure the peripheral pulse
pressures have to be placed on important positions of human
body. In clinical settings, more than 80% of these mea-
surements have to be conducted invasively, which is very
undesirable considering both medical expenses and safety
issues. Therefore, an important objective of our work is to
faithfully perform PAD detection , using as few sensors as
possible, and with minimal invasiveness. To achieve this goal,
we will use the technique of supervised feature selection. More
specifically, each node in the sensor network is considered
as a feature, and each subject (or sample) is represented by
multiple features/sensors. Given a set of training samples and
their labels (either a healthy person or a PAD patient) the
goal of feature selection is to select the most representative
set of features based on which a classifier can be built and
new testing samples can be classified accurately.

The importance of feature selection is three-fold. First, it
can improve the prediction performance by removing noisy or
irrelevant features, as verified in bioinformatics applications
where the number of features typically exceeds thousands.
In our problem, it is quite likely that not all the waveforms
are useful for diagnosis and some sensors could record data
that are either redundant or less informative which should be
removed for classification purpose. Second, feature selection
leads to faster testing, by reducing data dimensionality. In our
problem this means less sensors are needed when measuring
a new subject, which is desirable from practical views. Third,
feature selection can sometimes give a better understanding
of the underlying complex system process that generated the
data [21].

Traditional feature selection focuses on the classification
performance but does not take into account the cost of acquir-
ing the features. In our application of PAD detection, however,
acquisition of different features (via sensors at different loca-
tions of human body) will involve different cost depending on
the level of invasiveness. Obviously, using invasive sensors for
measuring arterial waveforms is highly undesirable. Therefore,
standard feature selection methods are not directly suited in
this problem. Our objective therefore is to select a subset of
sensors (features) that are non-invasive or minimally invasive,
while being able to deliver required classification accuracy.
To achieve this goal, we extend current feature selection
method to a budget oriented version, which while performing
supervised feature selection simultaneously controls the cost
associated with obtaining the selected features. We will discuss
it in Section 4.

The usefulness of feature selection will be most pronounced
during the testing phase: when a new subject arrives, we can
choose to measure the waveforms using only a few, highly
non-invasive sensors based on our budgeted feature selection
results. In the training phase, however, note that we still need
most (if not all) features to be able to perform feature selection.

Once the training stage is done, the knowledge and model
obtained can be used for highly user-friendly testing/diagnosis.

III. FEATURE SELECTION REVIEW

In this section we briefly review existing feature selection
methods. The filter methods for feature selection use simple
statistics of individual features as a ranking score, such as
correlation coefficient [22], and fisher score [23]. This is
efficient but ignores correlation between features. In contrast,
wrapper methods use the output of a classifier to assess the
relative usefulness of subsets of features [24], such as the SVM
method on recursive feature elimination [19]. The wrapper
method repeats the training/testing many times, which can be
computationally very expensive.

MRMR Criterion: Recently, the maximum relevance and
minimum dependency (MRMR) feature selection method was
proposed [15], which presents state-of-the-art result in gene
expression data analysis. The idea is to choose a subset
of features that: (i) have the minimum redundancy among
themselves; and (ii) have maximum relevance with the target
variables (class labels). The dependencies between features
and class labels are measured by mutual information I(·, ·).
Given a set of features Fi’s for i = 1, 2, ..., d, the label y, and
let S be the subset of features to be selected, the objective is

max
1

|S|
∑
Fi∈S

I(Fi, y)−
1

|S|2
∑

Fi,Fj∈S

I(Fi, Fj).

The first term is the relevance between selected features and
the label/target (maximized); the second term is the total
similarity among selected features (minimized). Though the
MRMR criterion has demonstrated a lot of success, it has some
limitations. First, it does not consider the cost of obtaining
the features, which is an important concern in PAD detection.
Second, it is solved by a greedy scheme which leads to
sub-optimal solution that is dependent on initialization. At
last, computing the mutual information for continuous random
variables (which is needed in our problem) is still open
problem, which requires either thresholding that leads to loss
of information, or probability function estimation which itself
is a challenging task. In the next section, we will propose a
soft, budgeted feature selection method based on the MRMR
criterion to address these concerns.

IV. BUDGETED NODE/FEATURE SELECTION IN SENSOR
NETWORKS

In this section, we propose a soft, budgeted feature selection
method using a global optimization framework based on the
MRMR criterion and budget constraint. There are two main
contributions. First, our method directly incorporates the cost
of feature acquisitions and enforces effective cost control,
which is very suited for our application. Second, instead of
using a greedy procedure for optimization as in [15], we
employ a soft selection scheme, i.e., optimized for our problem
is the probability that each feature should be selected. The
relaxation to a soft probabilistic decision scheme allows us to
formulate our problem as a quadratic programming (QP) for
which globally optimal solution can be obtained.



A. Formulations

Suppose we have input data xi ∈ Rd×1, for i = 1, 2, ..., n,
where d is the number of features, and y ∈ {±1}n×1 is the
label. Let Fj ∈ Rn×1 denote the jth feature for all training
samples. Define Q ∈ Rd×d where Qij is the (non-negative)
similarity between the ith and the jth feature, i.e., Qij =
sim(Fi, Fj). Let the cost associated with each feature be ci ≥
0, i = 1, 2, ..., d, and let b be the overall budget for obtaining
the features. Let ri ≥ 0 be the relevance between the ith
feature and the target y. We use pi to represent the probability
to select the ith feature, i = 1, 2, ..., d, and compute pi’s using
the following optimization

min
p∈Rd×1

p′Qp− λr′p (1)

s.t. pi ≥ 0∑d
i=1 pi = 1.∑d
i=1 cipi ≤ b

The constraint pi ≥ 0 and
∑d

i=1 pi = 1 are used to guarantee
that {pi, i = 1, 2, ..., d} is a valid probability distribution. With
this constraint, the first term p′Qp =

∑d
i=1

∑d
j=1 pipjQij

can then be deemed as the expectation of the similarity
between selected features. This term is minimized to reduce
the redundancy between selected features. The second term
r′p =

∑
i ripi is the expectation of the relevance between

selected features and the label. This term should be maximized
to guarantee that selected features are useful for classification.
Here λ is a positive regularization parameter to balance the
strength of the two competing terms.

The constraint
∑d

i=1 cipi ≤ b is used to control the cost
of obtaining the features. Note that

∑d
i=1 cipi is the expected

value of the cost of obtaining the features, therefore we require
that it is below a pre-determined threshold budget b. Here, the
budget b (as well as the cost ci’s) is expected to be domain
specific and needs to be determined by the domain experts.

B. Feature Similarities

In this section we discuss more details on how to compute
the similarity between features/targets. We have used the
squared correlation coefficients

Qij = (F⊤
i Fj)

2. (2)

One can also normalize the vectors Fi’s to have zero mean
and unit variance, i.e.,

FN
i =

Fi − F̄i√
var(Fi)

,

where F̄i and
√
var(Fi) is the mean and standard deviation

of the entries in the vector Fi. One can also compute the
relevance between a feature Fi and the target y as

ri = (F⊤
i y)2,

or use the normalized version.
The similarity measure (2) is exact and easy to compute

compared with mutual information. On the other hand, the

resultant Hessian matrix Q in (1) will be positive semi-
definite (PSD). To see this, note that Hessian matrix there can
be deemed as computing a polynomial kernel matrix using
Fj’s as “points” with degree 2. It is well known that any
polynomial kernel is positive semi-definite [25]. Note that
any Quadratic Programming (QP) problem with PSD Hessian
matrix is guaranteed to have a globally optimal solution [26].
Therefore our problem (1) will have a global solution.

C. Postprocessing

Once the probabilities pi’s are computed, the corresponding
features can then be selected based on the magnitudes of the
probabilities. One sort pi’s and sequentially select features
with large pi’s until a pre-specified real budget has been met.
Here the real budget is different from the expected budget (8).
The expected budget is the weighted sum of the costs of all
the features, and it is bounded by the minimum and maximum
cost of individual features. In comparison, the real budget is
the actual sum of the costs of selected features. In practice,
the actual budget can be chosen based on domain knowledge.

D. Quadratic Programming Feature Selection

Our probabilistic way of feature selection is similar to
the quadratic programming feature selection framework pro-
posed in [27]. However, a significant difference is that we
have a budge constraint on the cost of selected features. In
particular, considering that pi ≥ 0, the budget constraint∑

cipi ≤=
∑

ci|pi| ≤ b is equivalent to an adaptive L1-
norm regularization that enforces cost-dependent sparsity on
the feature selection result.

In case there is a large number of features, the QP prob-
lem becomes prohibitively expensive, and [27] used Nyström
method to approximate the Hessian matrix. Instead of per-
forming random sampling as in the standard Nyström method,
one can use some more advanced sampling scheme, such as
the K-means based sampling proposed in [28] [29], which
usually produces more accurate approximation given the same
sampling rate.

V. EXPERIMENTS

A. Experimental Setting

In this section, we report empirical results on early PAD
detection, using the simulated waveform data generated by the
arterial system model (section 2). Note that there are altogether
55 segments in the model, each involving 7 physiological
parameters (Table 1), and hence there are altogether 55× 7
= 385 parameters needed to generate the data. The control
values of the parameters (corresponding to a healthy person)
can be found in ([6]) and in Table 1 we list as an example the
parameter values for “radial artery” (segment-8). In Table 2,
we list the 55 segments which are categorized into 3 groups
with different costs, corresponding to non-invasive, low inva-
sive, and highly invasive. The order of the segments is the
same as marked in Figure 2(left).

We simulate a population of healthy people as follows.
Using the control values of physiological parameters, we



add a random noise with magnitude around ±10% of the
control value to simulate variations among individuals. These
parameters are then fed to the simulator to generate the
blood-pressure (BP) waveform for healthy people. For PAD
patient, we consider altogether 55 sub-groups corresponding
to the occlusion of each of the 55 segments. Each PAD
segment occlusion is simulated by decreasing the radius from
the control value. We used the following occlusion degrees:
≈ 10%,≈ 20% and ≈ 30%, which are considered low levels
of PAD. In the simulation, this variability corresponds to a
random noise subtracted from the control value of the artery
radius. Again, the parameter can be used to simulate the BP
waveform of a PAD patient with problems on any of the 55
segments. Note that based on the time series data generated
by the simulator, we can compute the pulse pressure (the
difference between the maximum and minimum pressures) at
each of the 55 segments in the arterial tree (Figure 2), which
will be used as our input features. Considering the periodic
nature of the waveform, one can also extract more sophisticate
features regarding the dynamics of the time series [30]. The
task of feature selection is then to select the optimal subset of
features (i.e. sensors) with minimum cost for PAD detection.

We have simulated the waveform data of 2000 people in
total. Among them 50% of the samples are healthy people;
the other 50% consist of a uniformly random selection of 55
types of PAD (corresponding to the 55 arterial segments). We
randomly chose 60% of the data as the training data and the
other 40% as testing data. We first apply the feature selection
method to select a subset of k sensors based on the training
data and the training labels; then we train a SVM classifier
based on the training data using only the selected sensors;
lastly, we perform prediction on the testing data, again only
using the selected k sensors.

In our experiments we have used the RBF kernel in the
SVM, which is well known to be able to map the data
into an infinite-dimensional Hilbert space and allows us to
learn a highly nonlinear decision function to model com-
plex practical problems. We use libsvm1 which is a state-
of-the-art nonlinear SVM solver that is very efficient on
medium-sized data sets. The parameters of the SVM are
chosen as follows. The regularization parameter C is cho-
sen as {0.1, 1, 10, 100, 1000, 10000}; the kernel width in the
kernel function k(xi, xj) = exp

(
−∥xi − xj∥2γ

)
is chosen

from γ0 × {2−5, 2−4, 2−3, 2−2, 2−1, 1, 2, 4, 8, 16, 32}, where
γ0 is chosen as the reciprocal of the averaged squared pair-
wise distances between the training instances, i.e., γ−1

0 =
1
n

∑n
i,j=1 ∥xi − xj∥2. Then we use 5-fold cross validation to

choose the best candidate parameter in SVM, as well as λ in
(5) which is the most widely used way of parameter selection
in practical applications.

B. Results and Discussion

We compare the performance of the following methods:
(1) Our method: the probabilistic budgeted feature selection

1http://www.csie.ntu.edu.tw/∼cjlin/libsvm

method proposed in this paper; (2) MRMR: maximum rel-
evance and minimum redundancy feature selection method
proposed in [15]; (3) Random: feature selection of a random
subset of features.

To perform a comprehensive evaluation of the feature se-
lection capacity of different methods, we gradually increase
the number of sensors they select in the range [1, 20]. We
do not consider sensors for all 55 segments, because that is
not a realistic scenario. When a subset of sensors is selected,
we then use it to perform training and testing, and plot the
accuracy-versus-cost curves for comparison. For our method,
the computed probabilities pi’s provide a natural ranking of the
importance of different sensors, therefore gradually increasing
the number of sensors one by one using this order. For MRMR
and random method, we can directly specify the number of
sensors as an input to the method. We used the MRMR
implementation from the authors’ website2. Note that the
MRMR uses the feature maximally aligned to the target as the
initial start; therefore, the reported results are deterministic. In
case a random initial feature is selected, the MRMR feature
selection results would have more variations. For the random
feature selection method, given a desired number of sensors to
be selected, we repeat the experiments 100 times and compute
the mean cost and mean accuracy, together with the standard
deviation of the accuracies.

We also separate the simulated data into three categories
according to the severity of occlusion used to create them,
which includes three levels, ≈ 10%,≈ 20%, and ≈ 30% cor-
responding to slight, moderate, and medium PAD disease, and
examine how different feature selection methods perform on
them. We plot the results in Figure 3. As seen, as the number
of selected sensors increases, the performance of all the three
methods tend to improve. For our method and the MRMR
method, the improvement of performance is significant when
the number of sensors is very low, and the improvement slows
down when the number of sensors or the total cost reach a
certain threshold, indicating that both methods will select most
informative features first, and additional features are more and
more redundant. In comparison, for the random method, the
performance improves linearly. In addition, it can be observed
that patients with higher severity are generally easier to detect
due to the more pronounced patterns in the input waveforms
than those with lower severities.

The MRMR method demonstrates a significant improve-
ment compared with the random feature selection, which
validates the usefulness of the MRMR criterion as well as
the fact that selecting informative sensors are quite beneficial
to good classification performance. However, we note that
MRMR does not take into account the cost of the sensors.
Therefore although the sensors selected by MRMR can lead
to a good accuracy, the cost of the selected sensors can also
be quite large. In comparison, our method directly controls
the cost of the selected sensors. As seen, with the same
cost of measurement acquisition, our method almost always

2http://penglab.janelia.org/proj/mRMR/



leads to a better classification performance. In addition, to
achieve a similar classification accuracy, our method will need
lower cost. For both methods, the performance is significantly
better than for random feature selection. Another interesting
observation is that for patients with lower PAD severity (and
hence more difficult detection problem), the classification
improvement of our method compared with either MRMR or
random method is more obvious. This indicates that our feature
selection method is more suited for early PAD diagnosis.

In Figure 4, we illustrate the probabilities pi’s computed
by our method by plotting them versus sensor deployment
costs ci’s. As can be seen, Low-cost nodes typically have
higher probabilities to be selected than high cost nodes3,
which clearly validates the budget control effect of our feature
selection scheme. In particular, the many pi’s for the high
cost sensors (half of all features) are exactly zeros, showing
the sparsity of our feature selection results. This is consistent
with the discussion in Section 4.2 on the connection of our
approach with adaptive sparse modeling.
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Fig. 4. The cost of each sensor (x-axis) and the probability of selecting the
sensor (y-axis) computed by our method. Observations: (1) low-cost nodes are
more likely to have a higher probability to be selected than high-cost nodes,
reflecting the validity of budget constraint; (2) many probabilities (about 50%)
are exactly zero, indicating a sparse feature selection result.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a budgeted sensor selection
method to address the issue of high sensor deployment cost
in system state classification via sensor networks, and apply
it successfully in early PAD detection. Our method explicitly
controls the cost of sensor deployment while preserving high
accuracy of diagnosis, which has significant practical value
in health care applications; it gives satisfactory accuracy in
classifying healthy people and PAD patients, while at the same
time requiring much lower cost of invasiveness compared with
state-of-the-art feature selection approach.

3It is worthwhile to note that this does not necessarily mean lower cost
nodes are intrinsically more useful, since our probabilities are computed as
a combined effect of maximizing feature relevance and minimizing feature
costs. It may be properly read as “given equally relevant features, our approach
would favor the cheaper ones, thereby assigning higher probabilities to them”.

Our study provides a promising way for early PAD diagno-
sis. The selected sensor positions can be used as an important
guidance for physicians to select easy and patient-friendly
sensor measurements to facilitate their decision. Now we are
working closely with biomedical engineers on designing robust
and reliable sensors and testing our approach on real data. In
the future we will also be tackling the more challenging prob-
lem of PAD localization, i.e. identifying the location of PAD
arteries, which is a more challenging classification problem
with structured output. We will also apply our approach to
other kind of networks with larger number of nodes [27].
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Fig. 3. The classification performance of different feature selection methods under different severities ≈ 10% (left), ≈ 20% (middle) and ≈ 30% (right).

TABLE I
THE PHYSIOLOGICAL PARAMETERS USED FOR THE ARTERIAL TREE AND THEIR PHYSICAL MEANING
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µ g · cm−1 · s−1 blood viscosity 0.04
E 106 · g · cm−1 · s2 arterial wall elesticity 8
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THE LIST OF ARTERIES REQUIRING LOW, MEDIAN, AND HIGH COSTS IN SENSOR DEPLOYMENT. NODE NUMBERS ARE THE SAME AS IN FIGURE 2.
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Abdominal A(28) Abdominal B(35) Abdominal C(37)

High 4∼6 Abdominal D(39) Abdominal E(41) L. Renal(36)
R. Renal(38) Gastric(32) Splenic(33)
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