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Abstract—Falling is a common health problem for elderly. It is 

reported that about 12 million adults 65 and older fall each 

year in the United States. To address this problem, at the 

Center for Eldercare and Rehabilitation Technologies in the 

University of Missouri we are investigating multiple fall 

detection systems. In this paper, we present an automatic fall 

detection system called VAMPIR based on a vertical array of 

multiple passive infrared (PIR) sensors. PIR sensors provide 

an inexpensive way to recognize human activity based on its 

infrared signature. To differentiate between falls and other 

human activities such as walking, sitting on a chair, bending 

over etc., we used a pattern recognition algorithm based on 

hidden Markov models (HMM). We obtained encouraging 

classification results on a pilot dataset that contained 42 falls 

and multiple non-fall human activities performed by trained 

stunt actors. 
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I. INTRODUCTION 

Falls are the leading causes of accidental death in the US 
population over age 65 [1, 2]. In 2007, about three thirds of 
all people that died as a result of a fall were above age 65 
[2]. The death rate caused by falls among elders is increasing 
quickly over the past decade [3]. Multiple studies showed 
that delay of the medical intervention after a fall is 
negatively correlated to its outcomes. If the nursing 
personnel is informed as soon as possible after a fall they can 
provide invaluable assistance that may significantly improve 
the intervention outcomes [4]. One of the possible solutions 
for reducing the intervention time is to automatically detect 
and then promptly report the fall to the related medical 
personnel. 

There are multiple companies and academic research 
centers in US and other parts of the world that focus on 
finding solutions for prevention and early detection of falls. 
At the Center for Eldercare and Rehabilitation Technologies 
(CERT) from the University of Missouri, Columbia, we are 
also investigating multiple fall detection systems. Early on, 
during the design of our research strategy, we decided to 
explore only non-wearable sensors for deployment in elderly 
apartments. Indeed, multiple focus groups conducted with 
elderly at that time [5-7] pointed us in that direction. We are 
currently developing fall detection system based on a variety 
of non-wearable sensors such as dual web cameras [8], 
Kinect [9], microphone array [10] and Doppler radar [11]. 

Each of the above sensors has its advantages and limitations. 
For example, the dual web camera system [8] has a very low 
false alarm rate during the day and when the subject is closed 
to the camera. However, the performance is reduced during 
light transitions or at the edge of the field of view. The first 
above issue is addressed when a Kinect sensor is used for 
gait analysis [9] and fall detection. In this case, the light 
intensity and change are no longer a problem. The second 
issue may be addressed by employing a microphone array 
[10] that has a wide area of coverage. However, the 
microphone array is sensitive to sound interference. In rooms 
with strong sound sources (such as TV sets) a Doppler radar 
fall detection system might be more suitable. The Doppler 
radar [11] is only sensitive to motion and can penetrate 
apartment walls.  

In this paper we are presenting a new fall detection 
system based on a vertical array of multiple passive infrared 
(PIR) sensor denotes as VAMPIR. The VAMPIR sensor uses 
multiple PIR sensors (two in this work) at each height level 
to increase data reliability. This system is ideal for tight 
spaces where privacy is an issue such as bathrooms. PIR 
sensors provide an inexpensive way to recognize human 
activity based on its infrared signature. The pattern 
recognition algorithm used in this work to discriminate 
between falls and other human activities such as walking, 
bending over and sitting on a chair is based on hidden 
Markov models (HMM). 

This paper is organized as follows. In section II, we 
present the VAMPIR system architecture and in section III 
we describe the datasets used in this paper. In section IV we 
give the HMM-based algorithms employed for automatic fall 
detection and in section V we show the experimental results. 
The conclusions are given in section VI. 

II. VAMPIR SYSTEM ARCHITECTURE 

The architecture of the VAMPIR sensor [15] is shown in the 
picture from Fig. 1. The system consists in four sets of two 
PIR sensors arranged on a vertical support 1 foot apart from 
each other. In this research we used a Panasonic MP PIR 
Motion sensor [12] with a 20° vertical field of view (FOV) 
and 40° horizontal FOV. The infrared light that is reflected 
from the human body has a wavelength of about 10 
micrometers. Our sensors have an infrared filter which 
allows only infrared light with a 10 micrometer wavelength 
[12]. This helps to reduce the effect that non-targeted sources 
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of infrared radiation (other than humans) have on the sensing 
elements. When a human walks through the field of view of 
the PIR sensing element, the infrared energy which is 
reflected from their body activates, first the left sensing 
surface and then the right one. When the left sensing surface 
is activated, it induces a positive differential voltage at the 
sensor output. When the right half is activated a negative 
differential voltage is generated. An example of the typical 
signal that the sensor would generate for a human body 
motion is shown in Fig. 2.a. The output signals from the 8 
PIR sensors are concomitantly processed to estimate the 
behavior of a person that is moving within the field of view 
of the VAMPIR sensor array.  

 
Figure 1. VAMPIR sensor and its experimental setup 

In fact, in this work, only 4 signals are used in processing 
since the (two) signals in the same set (or level, marked 1 to 
4 in Fig. 1) are averaged to increase data reliability. From 
now on, we consider (and refer to) the signal of the sensors 
from a given level set as a single signal. 

The experimental setup used in this paper is shown in 
Fig. 1. The 8 PIR signals were captured using a National 
Instruments data acquisition card NI 9201 with 8-channel 
analog inputs. Sampling frequency was fs=1000 Hz. The 
signals were then recorded on a laptop using National 
Instruments (NI) SignalExpress software and later processed 
in Matlab (http://www.mathworks.com). 

  
a. Raw fall signal             b. Raw non-fall - bending down 

Figure 2. Sample fall (a) and non-fall (b) raw signal collected from a 

VAMPIR sensor. 

In Fig. 2 we show a typical output VAMPIR signal for a 
fall event and a non-fall event. The “start” and the “end” of 
the fall are marked on the figure, leading to a total length of 

the fall signal of about =2 s. Although a fall happens in a 
much smaller time interval (about 0.5 s) we included in the 
fall signature some of the pre and post impact data. In fact, 
we can observe a quasi sinusoidal pattern repeated 4 times in 
Fig. 2.a. We see that, as expected the bottom sensor (no. 4) 
“sees” the most amount of motion (hence larger amplitude 
signal) while the upper sensor (no. 1) detects the least 
amount (hence lower amplitude). In addition, the temporal 
order of the signal produced by individual sensors shows, as 

expected, a delay (shift) from the upper to the lower 
VAMPIR sensor as the upper sensor “sees” action first. In 
the signals from “bending down” false alarm presented in 
Fig. 2.b it can be seen that although the patterns of the two 
sensors 1 and 2 are somewhat similar to the one form a fall, 
the ones from the lower sensors are shifted to the right as 
they are starting to see motion in the opposite direction when 
the person comes back to standing position.  

These observations suggest that a fall has a unique 
pattern of human motion shifting gradually (vertically) from 
the upper to the lower PIR sensor. Consequently, this implies 
that the best pattern recognition approach for our problem is 
a hidden Markov model with N=4 states, that is, state 1 is 
physically related to sensor 1, state 2 to sensor 2, etc. In 
section IV we will describe in more details the pattern 
recognition algorithm used in this work. 

III. DATA COLLECTION AND DATASETS 

The data used in this paper consists in human activity 
VAMPIR signatures collected in 42 fall files and 15 non-fall 
files, respectively. Each fall data file is about 20 s long and 
contains only one fall. The non-fall data files are about 3 
min. long and contain 4-5 non-fall activities per file. In 
summary, we collected 42 falls and about 50 possible false 
alarms (non-falls) signatures. The falls were performed by a 
professional stunt actor. The stunt actor was trained by our 
nursing collaborators to fall like older adults. We replicated 
various types of falls such as forward fall, backward fall, 
left-side fall, right-side fall, etc. The 50 “non-fall” signatures 
were acquired from various activities performed by 8 human 
subjects (our entire team). Among the recorded human 
activities we mention bending over to pick up objects from 
the floor, kneeling, tying shoes, sitting on a chair, arm/leg 
swing, walking, etc. 

We processed the collected data into two datasets. In one 
dataset, denoted DS1, we included 15 fall and 15 non-fall 
signatures randomly selected from the 57 available data files. 
Each signature is 2 s long (similar to the one shown in Fig. 
2.a between arrows), that is 2000 samples. We used this 
dataset to train and tune our HMM fall and non-fall models. 

In the second dataset, denoted as DS2, we concatenated 
all our data in one file about 26 min long (about 1.5 million 
samples). We used this dataset to implement and test a 
temporal version of an automated fall detection algorithm. 
We present the results obtained on both datasets in the next 
section. 

IV. AUTOMATIC FALL DETECTION ALGORITHM 

A. Hidden Markov Models for fall sequence recognition 

Assume we have a sequence of observations 

o={o1,…,oT}, otR
P
 that are emitted by a system S during 

transitions between a set of states q={q1,…qT}. T is the 
available observation sequence length. Since states qt are not 
observable, we can only describe the behavior of the system 
using observations ot. A continuous HMM (CHMM) model, 

, for the behavior of the system, S, can be described as 

={A,B,} where [13]: 
- N is the number of states in the model;  
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- A={aij}i,j=1,N is the state transition probability matrix: 
aij=P[qt+1=j|qt=i],   (1) 

and qt is the state at time t. An HMM with all aij>0 is 
called ergodic. This means that any state transition is 

possible. In a left-right HMM, only transitions aij where ji 
are possible. 

- B={bj(ot)}j=1,N;t=1,T is the observation emission probability 
density which is the probability of seeing observation ot 
when the system is (probably) in state qj, where: 

),,o(c)o(b jkjk

M

1k tjktj Σμ 
  N , j=1, N (2) 

and N is a Gaussian distribution with mean jkR
P
 and 

covariance jk. In this work we set M=1 and jk = 
diagonal; 

- ={j} is the initial state distribution i =1… N, in which 

i=P[q1= i].   (3) 
In all our current models we assumed N=4 (we have 4 

sensors). Also, we set =(1, 0, 0, 0) assuming that a fall 
starts from state 1 (is observed first by PIR set 1). We 
mention that some falls, from chair or bed for example, 
might not obey this rule which might be the reason for some 
of our false negatives. However, the main reason of this 

assumption is to avoid training , due to the small size of our 
training set. 

In order to differentiate falls from non-fall we train two 

models: one fall model, f, and one non-fall model, n. In 
order to train a HMM model we need a set of K training 
sequences of length T. Then, the parameters of the model, A, 

B and , are compute using the Baum-Welch equations. 

After the two models,f and n, are obtained, we assign a 
label (fall, not-fall) to an unknown sequence ou by choosing 
the model that best explains the observation. This is 

performed by computing the likelihoods, Lf=P(ou|f) and 

Ln=P(ou|n), that ou comes from a fall or a non-fall event, 
respectively. The likelihoods are computed using the Viterbi 
algorithms. 

We show neither the Baum-Welch nor the Viterbi 
algorithm here due to the lack of space. The interested reader 
is referred to works by Rabiner such as [13]. In this paper we 
used a simple HMM Matlab implementation, h2m, provided 
by [14]. 

The observation sequence ot was represented using the 
raw signal (4 features) and the difference between two 
consecutive sensor signals and the derivative of each signal 
(slopes), resulting in a total of P=12 features. In addition, we 
used a sampled version of the raw observation sequence such 
that the sequence length becomes T=10.  

B. Fall detection algorithm 

Here we used two version of the fall detection algorithm: 
a single sequence algorithm (SSA) and a sliding window 
algorithm (SWA). The main SSA steps are: 

SSA0: Input: a set of K1 fall sequences {of} and a set of 
K2 non-fall sequences {on}. All sequences have the same 
length T; 

SSA1: Baum-Welch: Consider one sequence from 

{of}{on} unknown, say ou. Use the remaining {of} 

sequences to train a fall HMM model f and the remaining 

{on} sequences to train a non-fall model n ; 
SSA2: Viterbi: Compute the likelihood difference 

L(ou)=Lf-Ln where Lf=P(ou|f) and Ln=P(ou|n); 
SSA3: Cross validation: Repeat steps 1-2 above K2+K1 

times. 

Use a set of NT thresholds, {i}i=1,NT for L to compute 
the receiver operator characteristic (ROC) curve. For a given 

threshold, if L(ou)>0 we label  sequence ou as “fall”, else 

we label it as “non-fall”. By thresholding L with each 
threshold in the set we obtain NT {true positives, false 
positives} pairs that are used to plot the ROC. The detection 
rate for each threshold was computed as (# of falls 
detected)/K1 and the false alarm rate as (#false alarms/K2). 

The steps of the SWA are: 
SWA0: Input: a temporal sequence, O, of raw signals of 

length , where length(O)>>T; two HMM models f  and n 
previously computed (in SGA above). 

SWA1: Use a sliding window =2 s to extract an 
observation ou from O, first by downsampling it to length 
T=10 and then computing the slope and difference features. 

SWA2: Compute the likelihood difference L(ou) as in 
SSA1 and 2 above and using the same models. 

SWA3: Advance window position by 1 s (50% overlap) 
and repeat SWA2. 

Compute a ROC curve by thresholding the resulting L 
as in the SSA case above. However, the false alarm rate will 

be computed per unit of time as (#false alarms/ min.). Also, 
after thresholding a post-processing step was performed to 
merge consecutive hits. 

V. RESULTS 

A. HMM training using DS1 dataset 

We decided to choose a number of four states, N=4, for 
the structure of both HMMs (fall/non-fall). We used a 
sequence length T=10, which means that we aggregated 

signal data in time intervals t=0.2 s. While the structure of 
the fall HMM is dictated by the VAMPIR physical structure 
(i.e. four sensor sets), we chose the same number of states 
from the non-fall HMM for convenience. We applied the 
single window algorithm (SSA) with Kf=15 and Kn=15. The 
ROC curves for the two possible variants, ergodic and left-
right, obtained in a leave-one-out cross-validation 
experiment (SSA) on DS1 are shown in Fig. 3. 

  
a.ROC for ergodic HMM   b. ROC for left-right HMM 

Figure 3. HMM results on DS1 data 

 
From Fig. 3 we see that the left-to-right models produce 

better results (area under ROC, AROC=1 vs. AROC=0.93). 
This fact has two main explanations. First, the physics of the 



problem dictates a left-right model for falls. A fall happens 
when a human body has a fast sequential vertical transition 
through PIR sensors 1, 2, 3 and 4, respectively. Second, the 
available training data might not be sufficient to train HMM 
models with an increased number of variables. In our case, 
each ergodic model requires training 3 more state transition 
variables, aij, than a left-right one. 

B. Automatic fall detection using VAMPIR signatures in 

DS2 dataset 

The ROC curves obtained using the SWA algorithm on 
DS2 dataset for various sequence lengths T={10, 20, 30, 40, 
50} are shown in Fig. 4.a. 

a.   b.  
Figure 4. (a) The ROC curves for various sequence lengths, T, and (b) 

improvement obtained by thresholding (bold line) vs. no threshoding (thin 
line) 

 

From Fig. 4.a we see that the classification performance 
increases as the sequence length decreases. The “best” 
performance is obtained at T=10. While the performance 
itself is not great (detected 85% of the falls with a false alarm 
every 7 min), we mention that the ROCs presented in Fig. 
4.a are useful only for algorithm development purposes.  

Next, we improved our previous algorithm by setting a 
threshold LT (experimentally determined) on both fall and 
non-fall likelihoods Lf,Ln. Then, Lf,Ln are compared only if 
both Lf,Ln >LT. If not, no comparison is performed and the 
window is declared a “non-fall”. The results obtained with 
this algorithm modification are shown in Fig. 4.b. 

From Fig. 4.b we see that by thresholding both model 
likelihhods (bold line) we significantly reduced the false 
alarm rate from an alarm every 7 min. (thin line) to one 
every approx. 30 min (which given the length of our data 
file, it probably represents 1 false alarm).  

VI. CONCLUSIONS 

In this paper we present an automatic fall detection 
system based on a new type of PIR sensor, called VAMPIR. 
The system measures the relative motion of a human body. 
Since human falls typically consist in rapid vertical motions 
that are somewhat unique in their dynamics, it is reasonable 
to try recognizing a fall based on its VAMPIR signature. 

We obtained perfect recognition results for single 
sequence recognition in a leave-one-out cross-validation 
experiment on 30 sequences (Fig. 3.b), which means that our 
approach has the potential to differentiate between falls and 
non-falls. However, in more realistic experiments (Fig. 4) the 
false alarm rate is still high while some falls remain 
undetected. 

In future work we plan to investigate the placement of 

multiple sensors at the same level in a 360 geometry to 
increase the detection range. In addition, we plan to improve 
the automatic fall detection algorithm and apply it to realistic 
datasets collected in our living laboratory (Tiger Place). At 
the same time, more experiments are needed to address the 
influence of the distance to sensor on detection performance. 

ACKNOWLEDGEMENTS 

This work has been supported in part by the NSF grant 
CNS-0931607. 

REFERENCES 

[1] S.L. Murhy, “Deaths: Final Data for 1998,” National Vital Statistics 
Reports, vol. 48, no. 11. Hyattsville, Maryland: NCHS, 2000. 

[2] CDC, National Center for Injury Prevention and Control. Web–based 
Injury Statistics Query and Reporting System (WISQARS) [online]. 
Accessed Nov. 30, 2010 

[3] J.A. Stevens. Fatalities and injuries from falls among older adults – 
United States, 1993–2003 and 2001–2005. MMWR 2006a;55(45).  

[4] C. G. Moran, R.T. Wenn, M. Sikand, A.M. Taylor, Early mortality 
after hip fracture: is delay before surgery important", J. of Bone and 
Joint Surgery, pp. 483-9, 2005. 

[5] G. Demiris, M.J. Rantz, M.A.Aud, K.D. Marek, H.W. Tyrer, M. 
Skubic, and A.A. Hussam, "Seniors' Attitudes Towards Home-based 
Assistive Technologies," 29th Annual MNRS Research Conference, 
Cincinnati, Ohio, April 1-4, 2005. 

[6] G. Demiris, M. Skubic, M. Rantz & B. Hensel, "Smart Home Sensors 
for Aging in Place: Older Adults' Attitudes and Willingness to 
Adopt," The Gerontologist, 46 (Special Issue 1): 430, 2006. 

[7] G. Demiris, M. Skubic, M.J. Rantz, K. Harris, B. Hensel, M.A. Aud, 
J. Lee, K. Burks, D.R. Oliver, Z. He, H.W. Tyrer & J. Keller, "Older 
Adults' Attitudes Towards Smart Home Features," International 
Conference on Aging, Disability and Independence (ICADI), St 
Petersburg, Florida, February, 2006. 

[8] D. Anderson, R. Luke, M. Skubic, J.M. Keller, M. Rantz & M. Aud, 
"Evaluation of a Video Based Fall Recognition System for Elders 
Using Voxel Space," Proceedings, International Conference of Int. 
Society for Gerontechnology, Pisa, Italy, June 4-7 2008, pp 77-82. 

[9] E. Stone & M. Skubic, "Evaluation of an Inexpensive Depth Camera 
for In-Home Gait Assessment," Journal of Ambient Intelligence and 
Smart Environments, 3(4):349-361, 2011 

[10] Y. Lee, D. Ho, M. Popescu, “Microphone Array System for 
Automatic Fall Detection”, IEEE Transactions on Biomedical 
Engineering, to appear 2012. 

[11] L. Liu, M. Popescu, M. Skubic, M. Rantz, T. Yardibi, P. Cuddihy, 
“Automatic Fall Detection Based on Doppler Radar Motion 
Signature”, 5th International Conference on Pervasive Computing 
Technologies for Healthcare, Dublin, Ireland, May 23-26, 2011. 

[12] Panasonic, “Panasonic MP Passive Infrared Motion Sensor 
Datasheet”, http://pewa.panasonic.com/assets/pcsd/catalog/napion-
catalog.pdf (Apr. 2011). 

[13] R. Rabiner, “A tutorial on HMM and selected applications in speech 
recognition”, Proc. IEEE, 77(2):257-285, February 1989. 

[14] O. Cappe, “h2m : A set of MATLAB/OCTAVE functions for the EM 
estimation of HMMs with Gaussian state-conditional distributions”, 
http://perso.telecom-paristech.fr/~cappe/h2m/. (Feb. 2012) 

[15] M. Moore, PIR sensing array for fall detection, MS thesis, ECE 
Dept., Univeristy of Missouri, May 2011. 

 


