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†Geriatrics Research Group, Charité - Universitätsmedizin, Reinickendorferstr. 61, D-13347 Berlin, Germany

Abstract—A novel approach to performing unsupervised mo-
bility assessment tests in domestic environments is presented. As
a part of the aTUG concept the approach is based on the idea to
segment assessment tests into components made up of recurring
movement patterns which are measured independently by use of
ambient sensor technologies. Quality criteria are defined which
compute a score of eligibility for usage of sensor data to assess
a certain test component. Valid component measurements are
recombined to complete assessment tests according to a technical
assessment test description defining the flow of segments and their
constraints. An experiment has been conducted within a field trial
with five elderly people aged 64-84 years over five weeks. The flats
of all people were equipped with home automation (HA) sensors.
A laser range scanner (LRS) was placed in one flat. Results from
the fully-equipped flat show that the presented quality criteria are
suitable to select LRS measurements according to their eligibility
to assess a certain component. HA sensors and the LRS were used
to compute a self-selected gait velocity of 0.71m/s unsupervised
at home. TUG using the aTUG apparatus and a stopwatch was
used as clinical reference data yielding a mean gait velocity of
1.18m/s. For the described setting a difference of 0.47m/s between
capacity and performance in gait velocity was found.

Index Terms—aTUG, Timed Up and Go (TUG), Mobility
Assessment, Domestic Assessment, Laser Range Scanner, LIDAR,
Force Sensors, Sensor Fusion

I. INTRODUCTION

The double aging of the society is a result of the de-
mographic change. It leads to more elderly people requiring
health services and less young people financing and providing
these services. While the increased need of care in elderly
people is also related to their multi-morbidity, the interchange-
effects of the diseases hamper to make an exact diagnosis.
In geriatrics the ultimate aim of a treatment is to recover and
maintain an independent lifestyle of patients. Estimating the
functional status of patients and compensating or removing
deficits by means of rehabilitation or provision of aid is
more important than a detailed diagnosis. The estimation of a
geriatric patient’s functional status happens within the geriatric
assessment by use of various standardized assessment tests.
Mobility is a fundamental requirement for an independent
lifestyle [1]. Pathological changes in mobility are related
to increased need of care and increased risk of falling [2].
Therefore, estimation of mobility is a central aspect of each
geriatric assessment. One of the most often applied assessment
tests regarding mobility is the Timed Up & Go (TUG) test [3].
Although assessment tests are widely used in daily clinical

practice some problems have been found over time (section
II). These problems impose the demand for two innovations:
(1) The technical support of assessment tests in professional
environments in order to make their execution more objective
and less time-intensive. (2) To bring assessment tests to the
domestic domain of people in order to estimate their real
performance over longer periods in unsupervised situations.
Recently, we have presented aTUG, a new approach to sup-
porting the TUG assessment test by exclusive use of ambient
sensor technologies [4]. The approach includes a technical ap-
paratus which is designed to effectively support the execution
of TUG in professional care facilities. On a long term, the
concept behind aTUG also aims at supporting the execution
of unsupervised TUG in domestic environments.
Within this paper we present the aTUG concept and its im-
plementation of performing unsupervised mobility assessment
tests, especially the TUG, in domestic environments. The use
of mobility assessment tests is briefly motivated and the state
of the art in technical systems for performing assessment tests
and mobility analysis is described. The presented approach
was evaluated in a field trial in Oldenburg, Germany. Results
of the conducted field trial are presented and problems in
performing unsupervised assessment tests are discussed.

II. MEDICAL MOTIVATION

Mobility is a fundamental requirement for an independent
lifestyle and impairments in mobility are closely related
to an increased need of care. Although mobility changes
while aging, pathological reasons lead to significantly more
sever changes in mobility [5]. Therefore, significant long-time
changes in mobility may point to pathological causes and may
thus be utilized for early diagnosis in various neurological
diseases [6] and for detecting increased need of care or risk
of falling [2]. However, for prevention and for ensuring a self-
dependent lifestyle it is more important to detect abnormal
changes in mobility than making an exact diagnosis at first.
Since many elderly people suffer from multi-morbidity a
diagnosis is often even hard to make. Therefore, geriatric
assessment tests are designed to detect abnormal changes
in certain domains but do not aim at supporting a detailed
diagnosis. The TUG test [3] is the probably most frequently
used mobility assessment test in the field of geriatrics. Within
TUG a stopwatch is used to measure the time a patient takes
to complete a set of components: rise from a chair, walk 3m,
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turn around, walk back, and sit down again. According to the
time taken by the patient to complete the test, he or she is
arranged into a result group which gives a hint to the treating
caregiver for required actions.

However, TUG is most often only applied in professional
care facilities after an acute incident already took place. It
is not yet and no longer applied when patients are at home.
Chances to identify gaps between capacity and performance
as proposed within WHO’s International Classification of
Functioning, Disability and Health (ICF) [7] are not exploited.
Additionally, despite its use in every-day clinical practice
and various studies, the TUG test is limited itself. For the
sake of simplicity it focuses only on the time used by the
patients to complete the whole test. Time taken to perform
the single components of the test and other deficits of moving
are ignored. Therefore, Wall et al. [8] proposed the so called
Expanded Timed Get-up-and-Go (ETGUG).
In summary, there is a clear need for technical support in
performing component-based TUG supervised in professional
care facilities and for implementing mobility assessments
unsupervised in domestic environments in order to objectively
measure capacity and performance of patients.

III. STATE OF THE ART

Today, gait and balance analysis is mainly executed in spe-
cialized wards of care facilities using high-tech equipment like
marker-based vision systems. Many geriatric stations are still
using only stop-watches to execute their mobility assessment
tests. Within this section we describe research approaches
to executing the TUG assessment test and to instrumented
mobility analysis in domestic environments and limitations of
those approaches.

A. Technical TUG

Instrumented TUG has so far only been implemented us-
ing body-worn inertial sensors. TUG-T [9] is a technically-
supported version of TUG by use of two inertial sensors
that measures the duration of six components (standing-up,
walking forward, turn 1, walking back, turn 2, sitting down).
Therapists found a good correlation (r = 0.998) between the
total time measured by TUG-T compared to a video analysis
of 20 hemiplegic patients.
More sophisticated approaches measure parameter of gait and
balance while performing the TUG test. Greene et al. [10]
employed two inertial sensors to assess the gait and balance
of 349 community-dwelling elderly during TUG. Overall, 29
from 44 computed features provided significant discrimination
between patients with a fall history and those without. Weiss et
al. [11] found that their instrumented TUG by use of a single
accelerometer can be used to discriminate 23 fallers from 18
health control subjects while the stopwatch-based version can
not. Marschollek et al. examined a group of 110 geriatric in-
patients, 26 fallers, 84 non-fallers, using a 3D accelerometer
attached to a waist belt [12]. Using only assessment data to
distinguish fallers from non-fallers yielded a sensitivity of
38.5% and a specificity of 97.6%, including sensory data as

well increased those values to 57.7% and 100% respectively.
Recently, the proposed system was extended with a monocu-
lar camera system in order to enhance computation of gait
parameters and to enable recognition of TUG components
[13]. Salarin and Zampieri developed iTUG an instrumented
version of TUG utilizing seven inertial sensors [14] that
measures duration of four components (sit-to-stand, steady-
state gait, turning, turn-to-sit) and a set of balance and gait
parameters. iTUG was utilized to perform mobility assessment
of Parkinson’s Disease patients in inpatient situations and at
home. Significant differences between early PD patients and
age-matched control groups where found in all components of
iTUG except sit-to-stand.
Recent research investigated means for execution of TUG
in unsupervised situations and domestic environments.
Narayanan et al. [15] employ a waist-mounted 3D accelerom-
eter within their so-called Directed Routine (DR). DR is a
set of movements, including TUG, which are meant to be
performed in a controlled manner but unsupervised by the
elderly themselves in order to estimate risk of falling. Within
a preliminary, supervised examination of DR with 68 elderly
patients 54 features were computed from the sensor recordings.
However, all 9 features computed from TUG were found to be
not discriminative between fallers and non-fallers. Regarding
an unsupervised application in domestic environment the au-
thors state that the most limiting constraint will be the possible
misplacement of the accelerometer device by patients.

B. Mobility Tele-Monitoring

Two main approaches arose for mobility tele-monitoring
using either wearable sensors or sensors installed into the
environment. Such environments are also called Health Smart
Homes. A good survey of systems employing body-worm
sensors can be found in [16]. Within this section we focus on
ambient approaches with a special regard to monitoring elderly
or demented people. Pavel and Cameron [17] employ passive
motion sensors placed in various rooms of a flat. Gait velocity
computed by dividing known distances between rooms by
measured transition times yielded rather imprecise results. By
placing three motion sensors along a frequently used walking
path within a flat much more precise results could be obtained.
Recently, the use of laser range scanners (LRS) for gait anal-
ysis has been investigated. Palleja et al. [18] have presented
an approach to basic gait analysis. By measuring the distance
to patients’ legs while walking along a straight line towards
the used LRS walking speed and some additional parameters
like average step width or swing and stance phase time are
computed. Within our own work [19] we have demonstrated
the use of a LRS for precise assessment of self-selected gait
velocity in domestic environments. The approach continuously
tracks a moving person’s center of mass and computes his
or her gait velocity even when changing walking direction
or standing still in between. The approach does not limit
the peoples’ walking path but is not capable of tracking the
patients’ feet separately.
Marker-less optical tracking for gait analysis has been inves-



tigated using the Microsoft Kinect sensor. Stone and Skubic
[20] have developed an approach using two Kinect sensors
which they compared to a previously developed web-camera-
based system and a Vicon marker-based optical system. Good
correlations were found during 18 walking trials. Regarding
deployment of the Kinect-based approach in domestic envi-
ronments the authors state limitations regarding clothing not
reflecting light in the infrared spectrum and for measurements
in which persons move too close to walls or furniture.

C. Limitations

In every-day clinical practice, the TUG assessment test
can be instrumented by using body-worn sensors. Regarding
an application of TUG in domestic environments, body-worn
sensors would have to be handled unsupervised by layman
which may pose problems regarding correct placement and
comfort especially when working with very old or demented
people. Explicitly donning body-worn sensors may also re-
mind people of being tested. Especially technical problems
may be the reason why the DR presented by Narayanan et al.
[15] remains the only approach to unsupervised assessment
tests. Various ambient sensors have been employed for tele-
monitoring achieving different precision in assessing mobility.
To the knowledge of the authors no results from unsupervised
TUG assessment tests have been presented so far, neither using
body-worn nor ambient sensors.

IV. APPROACH

We present a novel approach to performing unsupervised
assessment tests in domestic environments. The focus is on
assessing mobility but the approach may also be applied to as-
sessment tests from other domains. The approach builds upon
the general idea to segment assessment tests into components
made up of basic movement patterns. During unsupervised
assessment tests the single patterns are measured indepen-
dently from each other during normal movements every day
and are recombined to complete assessment tests later on.
Ambient sensors are used to record movements and a technical
description formalizing which patterns comprise an assessment
tests and their temporal and spatial constraints is used for
the recombination. In order to find out which recordings
represent valid assessment components we define objective
quality criteria. Such criteria are formulas generating scores
for all recordings representing their eligibility to measure the
patient’s performance regarding an assessment component.
The presented approach clearly differs from previously pre-
sented work in which researchers try to transfer the static
application flow of the clinical assessment tests to the domestic
domain. Supervision by a physician is often only replaced by
making the patients themselves ensure adherence to the tests’
textual descriptions. Such approaches undo the possible advan-
tages of domestic assessments since patients do again perform
a test while context factors are disregarded again. Using our
approach, nearly all movements of a patient during every-day
life are candidates for evaluating his or her performance. Even
if many movements are filtered out due to insufficient data

quality much more data should be available than from single
test situations. By this we also hope to get a deeper insight into
the open question of how long mobility has to be monitored
until sever changes in patients’ health status can be detected.
The presented approach is part of the aTUG concept (section
IV-A) to enable unsupervised assessments. The most important
part of our approach is the definition and evaluation of quality
criteria. Within the next sections we first briefly described the
previously presented aTUG approach and formalize a set of
quality criteria for the TUG assessment test. The remainder of
the paper focuses on presenting and discussing the results of
a conducted field trial in which the presented quality criteria
have been evaluated in a domestic environment.

A. The aTUG Concept For Instrumented Assessment Tests

The ultimate aim of the aTUG concept and approach
presented in [4] is to objectify and automate the execution
of the component-based Timed Up & Go assessment test.
Instrumentation is done by exclusive use of ambient sensor
technologies i.e. light barriers, force sensors, and a laser
range scanner (LRS) which are integrated into a single
apparatus i.e. a chair for easing clinical use. The concept
have three expansion stages: support for (1) traditional TUG,
(2) component-based TUG, and (3) mobility analysis. All
stages will be implemented in professional facilities and in
domestic environments, on a long term. The general concept,
sensor processing techniques for component detection, and
initial results have been presented previously.

B. Technical Description of Assessment Tests

Within aTUG mobility assessment tests are segmented into
components which are mapped to basic movement patterns.
The difference in terms is that components are the formal parts
of an assessment test while the movement patterns are the
concrete manifestation of components during natural move-
ments. For TUG a segmentation has already been proposed by
Wall et al. [8]. aTUG’s segmentation is additionally mapped to
components from the ICF [7]. Such segmentation may also be
performed for other mobility assessment tests like the Tinetti-
Test or the Chair-Rising-Test. The segmentation of assessment
tests and the flow of segments comprising a test is technically
formalized as finite state machines within the aTUG approach.
For most supervised clinical assessment tests the segments
or movement patterns have to happen according to certain
temporal and spatial constraints. When it comes to unsuper-
vised assessment tests in domestic environments the static
flow of supervised clinical assessments is no longer practical.
Therefore, our approach is to measure the single move-
ment patterns comprising an assessment tests independently
throughout the day without performing an explicit test. The
technical assessment description is used later on to recombine
the single patterns. However, not all sensor recordings from
the domestic domain will contain valid data to estimate a
patient’s performance for every component of the assessment
test. Therefore, criteria are required to evaluate recordings for



their eligibility for every component. We call these criteria
”assessment quality criteria”.

C. Assessment Quality Criteria for Timed Up & Go

The purpose of assessment quality criteria is to analyze if
certain sensor measurements contain sufficient data to assess a
certain assessment component, they do not provide any assess-
ment results. A score is assigned to measurements according
to their eligibility for the corresponding component. Which
component may be contained in recorded measurements and
thus which criteria are applied is detected by generated events
according to our approach described in [4]. The criteria
definitions are independent on any special sensors.
While the quality criteria are mainly designed for unsupervised
assessment tests they may also be used for computing the
quality of supervised tests in professional care facilities and
thus for ensuring adherence to certain guidelines for ensuring
comparability of results.
The maximum validity score Qc a measurement can reach
is 1. For now, all criteria for a component are considered
to evenly influence the validity. Therefore, all single criteria
score functions f criterioncomponent(x) are defined as binary functions
and are normalized to 1. Some score functions do additionally
tell how good a measurement can fulfill the corresponding
criteria others can only tell whether it is fulfilled or not. All
criteria scores of a component’s quality function are summed
up and divided by the number of criteria #criteriacomponent

of a component to find the overall validity score. The general
validity formula 1 is:

Qc =

∑#criteriacomponent

c=1 f criterioncomponent(x)

#criteriacomponent
(1)

Since during the conducted field trial we were only able
to evaluate the quality criteria for walking there/back and
turning we will only describe those quality criteria within this
section. Quality criteria for standing-up and sitting-down will
be subject to future studies.

1) Quality Criteria for Walking There and Walking Back:
Validity criteria for the components walking there and walking
back include: a walking distance s larger than a minimum
distance swalking

min (2), a deviation in step lengths sl lower
than a defined threshold slmax (3) and an average walking
speed v above a threshold vmin in order to ensure continuous
movement (4), a number of detected steps st above a min-
imum number of steps stmin in order to exclude unnatural
gait patterns (5), and a measurement for unstraightness of
walking str not exceeding a maximum threshold strmax in
order to exclude walking around corners (6). Straightness is
measured by computing the standard deviation in lengths of
the difference vectors from the center of gravity of the person
during each step and a theoretical ideal walking path. This
path is the vector pointing from the center of the first step to
the last step. These criteria are defined in formulas 2 to 6:

fdistancewalking (x) =

{
1 x > swalking

min
x

swalking
min

otherwise (2)

fsteplength
walking (x) =

{
1 x < slmax
slmax

x otherwise
(3)

fspeedwalking(x) =

{
1 x > vmin

x
vmin

otherwise
(4)

fstepswalking(x) =

{
1 x > stmin

x
stmin

otherwise
(5)

fstraightwalking (x) =

{
1 x < strmax
strmax

x otherwise
(6)

2) Quality Criteria for Turning: Turning has three quality
criteria: The first criterion defines that the angle of the turning
α should be above a certain threshold αmin and below a
threshold αmax. α is the angle computed between two vectors:
The first vectors points from the center of first step during the
turning to the point with the maximum distance from both the
first and the last step of the turning. The second vector points
from the maximum distance point to the center of the last step.
There should be no forward movement i.e. the distance walked
s should not exceed a certain threshold sturningmax . Additionally,
in order to separate turning from standing, the duration of
the turning tturning between the first and the last step of the
turning should not exceed a duration threshold tturningmax . These
criteria are defined in formulas 7 and 9:

fangleturning(x) =

{
1 αmin < x < αmax

0 otherwise
(7)

fdistanceturning (x) =

{
1 x < sturningmax
sturning
max

x otherwise
(8)

fdurationturning (x) =

{
1 x < tturningmax
tturning
max

x otherwise
(9)

V. EXPERIMENT

An experiment conducted during a field trial had two main
aims: (1) to proof the general feasibility of quality criteria
to examine sensor recordings of a laser range scanner (LRS)
for the components walking there/back and turning and (2) to
compare gait velocity computations from a supervised TUG
test to gait velocity results computed from LRS measurements
and consecutive activations of home automation sensors (ap-
proach presented in [19]) during unsupervised assessments.

A. Methods

The field trial was conducted over a period of five weeks,
from 2011/10/10 to 2011/11/10. Five community-dwelling
elderly people aged 64-84 years (2m, 3f) living alone and
mostly independent participated but only the data of a single
flat is evaluated during this experiment. Home automation
(HA) sensors, five light barriers and five reed contacts, were
installed in all flats. Figure 1 shows an abstracted room model
of a flat including sensor placement (grey boxes, LB=light
barrier, RC=reed contact) and computed walking paths (lines)
at the left side. The model is used to compute the length of
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Fig. 1. Abstracted Room Model, Sensor Placement, and Laser Range Scanner Recordings During Field Trial

possible moving paths between those sensors (details in [21]).
Only the flat of a 76 years old female participant was equipped
with a LRS (Hokuyo URG-04LX) which was placed at a
central point within the floor (Figure 1 in the middle). The
sensor recorded continuously and each activation of a HA
sensor was marked within the data stream. Figure 1 shows
a visualization of LRS in a Cartesian coordinate system at
the right. Black dots indicate measured environment. Circles
and squares indicate stand phases for the left and right leg
recognized from someone walking along the floor. The bold
dashed line indicates the ideal walking path for this measure-
ment to which differences for each stand phase are computed
in order to compute the straightness of walking. As a clinically
validated reference value each participant completed six Timed
Up & Go assessment tests using the aTUG apparatus before
and four tests after the field trial in an unobstructed room.
Over a period of five weeks a total amount of 189 GB sensor
recordings were collected. These data included overall 105050
activations of HA sensors from which 27595 traversed walking
paths could be detected. 170 different walking paths were
defined in all flats together. However, for the purpose of this
evaluation, only data recorded in the fully-equipped flat are
considered. In this flat, 8766 walking path transitions could
be measured by HA sensors and LRS continuously. Before
evaluating, recordings longer than 60 seconds and shorter
than 2 seconds were excluded due to plausibility. Recordings
outside those borders do in most cases either represent no clear
movement like e.g. using a vacuum cleaner in the floor or do
not provide enough data for analysis. The filtering leaves 2122
recordings for evaluation. For those recordings the duration for
the transitions as measured by the HA sensors and the LRS
and the resulting gait velocities are computed. Using only the
data recorded by the LRS the real distance traversed and the
quality criteria scores for walking there/back and for turning
are computed.

TABLE I
TUG RESULTS (IN S) USING A STOPWATCH (SW) AND ATUG APPARATUS

SW aTUG
# Total Total Standing

Up
Walking
There

Turning Walking
Back

Sitting
Down

1 11.50 9.34 0.46 3.53 1.04 2.39 1.92
2 9.50 8.27 0.39 3.18 0.40 2.58 1.71
3 8.01 7.41 0.47 2.19 1.69 1.89 1.17
4 8.23 7.32 0.35 2.19 1.79 1.69 1.31
5 9.80 8.51 0.58 3.18 1.19 1.89 1.68
6 9.80 7.68 0.48 3.17 0.20 2.59 1.24

x̄,
σ

9.47,
1.27

8.09,
0.77

0.46,
0.08

2.91,
0.57

1.05,
0.65

2.17,
0.40

1.50,
0.30

B. Results

Since a clinically validated reference system for measuring
gait was not available within the flats the only chance to
obtain values for comparing the results of the experiment
to was to perform an assessment before and after the trial
was started. Table I shows the results of six TUG tests
measured using a stopwatch (SW) and the aTUG apparatus.
The first two tests were performed the day the experiment
started, tests 3-4 at the last day of the trial, and tests 5-6
one week after the field trial was stopped. The tests were
performed and evaluated exactly the same way as described
in [4]. Results show that the participant completed all TUG
tests within the range of 8.2s to 10.74s measured with SW
(mean +/- std), and between 7.3s and 8.86s measured with
the aTUG apparatus. The difference of 1.38s between SW
measurements and measurements from aTUG are not relevant
for a different classification. No significant difference between
the tests performed before and after the field trial were found.
Standard deviation for aTUG results is lower than for the SW
measurements which points to subjective usage of the SW by
the human tester. Using only the time for completing walking
there and walking back, so excluding all delay from standing



TABLE II
COMPUTED GAIT VELOCITY VALUES (M/S) AND QUALITY CRITERIA

#
S1,S2

fspeed
walking

,
(v)

fdistance
walking ,

(s)
f
steplength
walking

,
(s̄l/σ(sl))

fsteps
walking

,
(st)

fstraight
walking

,
(str)

1
LB1,LB2

0.21
(0.10)

0.97
(1.94)

0.75
(0.37,0.20)

1.00
(25.00)

1.00
(0.13)

2
LB5,LB2

0.93
(0.47)

0.51
(1.02)

1.00
(0.40,0.10)

1.00
(6.00)

1.00
(0.06)

· · · · · · · · · · · · · · · · · ·
2030
LB2,RC2

1.00
(0.62)

0.89
(1.78)

1.00
(0.60,0.04)

1.00
(6.00)

1.00
(0.02)

x̄, σ 0.84,0.26
(0.53,0.22)

0.85,0.23
(2.33,1.00)

0.93,0.15
(0.47,0.11 /
0.13,0.09)

0.97,0.12
(11.72,5.95)

0.76,0.29
(0.22,0.20)

x̄, σ :
Qc > 0.5

0.84,0.26
(0.53,0.22)

0.85,0.23
(2.33,1.00)

0.93,0.15
(0.47,0.11 /
0.13,0.09)

0.97,0.12
(11.73,5.95)

0.76,0.29
(0.22,0.20)

x̄, σ :
Qc > 0.75

0.90,0.19
(0.58,0.19)

0.89,0.19
(2.46,0.92)

0.96,0.11
(0.47,0.10 /
0.12,0.08)

0.99,0.06
(11.48,4.97)

0.77,0.29
(0.21,0.19)

x̄, σ :
Qc = 1

1.00,0.01
(0.71,0.12)

1.00,0.00
(2.76,0.47)

1.00,0.00
(0.47,0.04 /
0.09,0.03)

1.00,0.00
(11.54,2.53)

1.00,0.01
(0.09,0.04)

(a) Walking There/Back

#
S1,S2

v fangle
turning ,

(α)
fdistance
turning ,

(s)
fdurationturning ,
(t)

1
LB2,LB4

0.60 1.00
(27.12)

0.56
(2.67)

0.67
(4.48)

2
LB4,LB3

0.09 1.00
(47.73)

1.00
(0.60)

0.46
(6.48)

· · · · · · · · · · · · · · ·
91
RC2,LB5

0.06 1.00
(45.59)

1.00
(0.71)

0.24
(12.75)

92
LB4,LB3

0.40 1.00
(36.15)

1.00
(0.16)

1.00
(0.40)

x̄, σ 0.22,
0.15

1.00, 0.00
(35.91, 17.19)

0.81, 0.21
(1.83, 0.90)

0.39, 0.28
(12.23, 7.61)

x̄, σ :
Qc > 0.5

0.22,
0.15

1.00, 0.00
(35.91, 17.19)

0.81, 0.21
(1.83, 0.90)

0.39, 0.28
(12.23, 7.61)

x̄, σ :
Qc > 0.75

0.27,
0.14

1.00, 0.00
(34.49, 18.75)

0.97, 0.07
(1.16, 0.47)

0.65, 0.27
(5.27, 2.47)

x̄, σ :
Qc = 1

0.36,
0.10

1.00, 0.00
(37.58, 16.02)

1.00, 0.00
(0.77, 0.39)

1.00, 0.00
(2.22, 0.96)

(b) Turning

up, sitting down, or turning, and the total walking length
of 6m a mean gait velocity of 1.18m/s (min. 1.01m/s, max.
1.45m/s including standard deviations) for straight walking
was computed. We use this value as a clinical reference value
for capacity in walking speed during our evaluation.
Additionally, thresholds for quality criteria were computed
during TUG using the aTUG apparatus. Regarding straight
walking the minimum walking distance dwalking

min was set to 2m
since in many households no straight path of 3m is available
(in the equipped flat as well). The minimum walking velocity
vmin was set to 0.85m/s which is mean velocity minus double
standard deviation measured during the tests. The maximum
deviation in step length slmax was set to the double standard
deviation measured, 150mm. Half of the number of steps
detected in mean during the test, five steps, was used for smin.
The maximum distance a person should in sum differ from a
straight walking line stmax was 150mm which ensures a rather
straight walking. Again this value is the mean plus the double
standard deviation measured. Regarding turning the angles
αmin and αmax were set to be 1◦ and 60◦. The maximum
turning distance dturningmax was set to 1.5m, the maximum
turning duration tturningmax to 2.36s which is the duration for
turning during the tests plus the double standard deviation.
Our first aim is to proof that the defined quality criteria are
suitable to evaluate measurements from the LRS according
to their eligibility to measure walking there/back and turn-
ing. Table II(a) and (b) shows the computed scores and the
corresponding criteria in brackets for some transitions (path
as shown in Figure 1 printed in the first column) classified
as walking there/back respectively for turning. Looking at the
single rows one can see that scores for the single criteria de-
crease the more they differ from the defined thresholds. Most

interesting are the computed means x̄ and standard deviations
σ for the scores and criteria when filtering according to the
total validity score as shown in the last four rows. It has to
keep in mind that scores are cut at a maximum value of 1
which means that the mean scores will not grow as fast as the
corresponding criteria. Overall 2030 transitions for walking
were found. 2028, 1735, 382 had a validity score above 0.5,
0.75, and 1. The larger the computed validity score the closer
is the computed mean gait velocity v̄ to the reference value
of 1.18m/s. Therefore we conclude that the defined quality
criteria can be used to filter sensor recordings so that only
those recordings are kept that represent valid results. Overall
a mean walking distance s̄ of 2.76m, a mean step length s̄l
of 0.47m, a mean number s̄t of 12 steps per transition, and a
mean standard deviation ¯str of only 9cm in straightness were
found for all measurements with a score of 1. The straightness
criteria influenced the score most, even reaching only a mean
score of 0.77 when filtering results with a total score less than
0.75. The standard deviation for straightness is always high.
Similar results were found for turning. Again scores decrease
the less similar a movement is to turning. Overall only 92
transitions were found to represent a clear turning. From those
all 92 had a score above 0.5, 34 a score larger than 0.75, and
only as little as 7 a score of 1. This does also mean that
turning did happen much more infrequently during every-day
life than walking straightly - at least within the floor of this flat.
The mean turning angle ᾱ was 37.58 degrees. Mean distance
s̄ walked during turning was 0.77m, mean duration t̄ was
2.22s. The computed mean gait velocity during turning was
0.22m/s over all measurements, respectively 0.22m/s, 0.27m/s,
and 0.36m/s for measurements with a total validity score above
0.5, 075, and 1 respectively. Again results come closer to the



reference values the higher the validity score is. Regarding
the influence of criteria upon the validity score the turning
angle α does in all cases reach a score of 1. Distance during
turning reaches equally good results. Highest fluctuations and
influence on the score are found for duration of turning. A
reason might be that turning at home does often not happen
without walking somewhere before or after and can thus only
hardly be measured without walking for some distance. Such
walking before and after the turning does lead to smaller scores
for many measurements regarded to be turnings.

The second aim is to compare results for gait velocity
computation during supervised tests and unsupervised tests
using the LRS and HA sensors separately. Table III shows
the computed gait velocities vHA using HA sensors and v
using the LRS for some available walking path separately.
Values in brackets show corresponding standard deviations.
Regarding the LRS, gait velocities have been computed from
measurements with different validity scores. Additionally, the
first column shows the number of total transitions available for
each walking path in brackets. Only measurement classified as
straight walking are included. Similar to an experiment con-
ducted in a laboratory presented in [19] computations based
on LRS measurements are more precise and come closer to
the reference value of 1.18m/s when excluding measurements
with lower scores. This does mainly result from the fact that
the LRS measures the real distance walked and does not rely
on previously measured theoretical distances between sensors.
Additionally, the LRS is able to detect standing still in-between
and does exclude the corresponding measurements from the
gait velocity computation. In the mean, all results obtained
from LRS measurements are more precise than those obtained
from HA sensors (0.53, 0.53, 0.58, 0.71 m/s vs. 0.5m/s).
Standard deviations are also lower. However, results from HA
sensors are not filtered in any way. There is certainly a chance
to get better results by applying statistical methods to data ob-
tained from HA sensors. The remaining difference between the

TABLE III
COMPUTED GAIT VELOCITY VALUES (M/S) FOR SINGLE WALK PATHS

HA LRS
Path ¯vHA v̄ v̄ with

Qc > 0.5
v̄ with Qc >
0.75

v̄ with
Qc = 1

· · · · · · · · · · · · · · · · · ·
LB2,LB3
(266)

0.58
(0.25)

0.62
(0.18)

0.62 (0.18) 0.64 (0.15) 0.68 (0.07)

LB2,LB4
(239)

0.50
(0.18)

0.58
(0.20)

0.58 (0.20) 0.60 (0.18) 0.67 (0.10)

LB2,LB5
(375)

0.43
(0.22)

0.41
(0.20)

0.41 (0.20) 0.48 (0.15) NaN

LB3,LB4
(102)

0.25
(0.09)

0.48
(0.22)

0.48 (0.22) 0.56 (0.18) NaN

LB3,LB5
(207)

0.77
(0.34)

0.63
(0.22)

0.63 (0.22) 0.64 (0.22) 0.72 (0.14)

LB4,LB5
(298)

0.58
(0.21)

0.61
(0.22)

0.61 (0.22) 0.62 (0.21) 0.72 (0.11)

· · · · · · · · · · · · · · · · · ·
x̄, σ
(2030)

0.50,
0.26

0.53,
0.22

0.53, 0.22 0.58, 0.19 0.71, 0.12

reference value and the LRS results may be explained by the
general difference between capacity under ideal circumstances
in a test situation and performance in obstructed situations
e.g. due to walking not on a totally straight path. The mean
error between LRS results obtained from measurements with
a score of 1 and results from HA sensors is only 0.12m/s with
a standard deviation of 0.09m/s. Standard deviations for both
measurement techniques are rather low (below 0.3m/s in the
mean) which points to stable measurements. For some paths
no results with scores of 1 could be found which is indicated
by NaN values in the table. The affected paths are all formed
by spatially close-by sensors which may have let to too short
measurement times and thus to too little information to obtain
good results. NaNs were excluded when computing mean
values. In summary we conclude that our previous results from
a laboratory setting are also valid in a domestic environment:
Self-selected gait velocity can be computed unsupervised using
HA sensors as well as with a LRS. LRS is more precise,
HA sensors provide reasonable results while being more cost-
effective. In the domestic environment we found a gait velocity
of 0.71m/s compared to 1.18m/s under ideal circumstances.
For this participant and setting there is a difference of 0.47m/s
between performance and capacity in gait velocity.

C. Discussion and Future Work

In the future we plan to extend the presented approach in
order to be able to measure all components relevant to the
TUG test by installing all sensors which are part of the aTUG
apparatus in domestic environments. The presented experiment
was mainly a technical trial in order to get a deeper insight
into problems regarding unsupervised assessments and in order
to proof the general feasibility of our envisioned approach.
As a results of our experiment, formula 1 for computing the
total validity Qc may have to be redesigned since the data has
shown that criteria do in most cases not equally influence the
quality of assessment data.
However, limitations of the field trial are obvious: Since
only one participant’s flat was equipped with a LRS results
may not be representable. However, measurements from light
barrier installations in four other flats show similar results as
presented within this paper. A detailed analysis of all available
HA measurements applying also additional techniques to filter
available data will be published soon. Due to a missing
validated gold standard for gait analysis to compare results of
HA sensors and LRS to, it is hard to proof the general validity
of outcomes. When asking people whether they were willing
to have camera systems installed into their homes all people
strongly refused. A third problem of domestic assessment
tests is the encoding of results obtained over time. We are
currently working on an encoding using the Clinical Document
Architecture (CDA) format and relevant ICF codes.
Unsupervised assessment tests in domestic environments have
the potential to provide a much deeper insight into peoples’
remaining abilities. The differences and possible advantages
have been formalized within the 3DLC model [22]. Despite
all technical problems, it remains future work to clarify the



relationship between results obtained from clinical assessment
tests and those performed in domestic environments. A new
field trial in three cities in Lower Saxony, Germany is currently
under preparation. At each site 10-15 flats will be equipped
with sensors to further investigate unsupervised assessments.

VI. CONCLUSION

A new approach to performing unsupervised mobility as-
sessments in domestic environments as part of the aTUG
concept was presented. In difference to other approaches, we
discard the static flow of assessment tests within the domestic
domain. Instead our approach is based on the idea to segment
assessment tests into recurring movement patterns which are
measured independently by use of ambient sensor technolo-
gies. Corresponding measurements are evaluated according to
quality criteria which compute a score of eligibility for usage
of sensor data to assess a certain test component.
An experiment has been conducted within a field trial in
Oldenburg, Germany with five elderly people. All flats were
equipped with home automation (HA) sensors. A laser range
scanner (LRS) was placed in one flat. TUG using the aTUG
apparatus and a stopwatch was used as reference data. Results
from the fully-equipped flat show that the presented quality
criteria are suitable to select LRS measurements according to
their eligibility to assess a certain test component. Addition-
ally, we have shown that HA sensors and the LRS can be used
to compute self-selected gait velocity unsupervised at home.
The monitored patient moved with a mean gait velocity of
1.18m/s under ideal circumstances and reduced her speed to
0.71m/s during the field trial in an obstructed environment.
A difference of 0.47m/s between capacity and performance in
gait velocity for this patient and setting was found.
Within our future work we will use lessons learned during
a new field trial. We will use additional sensors in order to
cross-validate and replace the missing gold standard. Within a
clinical study we are currently validating the aTUG apparatus
and its sensors against a gait analysis system. An algorithm
for recombining segments to complete assessment tests while
keeping temporal and spatial constraints is under development.
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[19] T. Frenken, M. Gövercin, S. Mersmann, and A. Hein, “Precise As-
sessment of Self-Selected Gait Velocity in Domestic Environments,”
in Pervasive Computing Technologies for Healthcare (PervasiveHealth).
IEEE, 2010, ISBN 978-963-9799-89-9.

[20] E. E. Stone and M. Skubic, “Evaluation of an Inexpensive Depth Camera
for Passive In-Home Fall Risk Assessment,” in Pervasive Computing
Technologies for Healthcare (PervasiveHealth), 2011 5th International
Conference on, 2011.

[21] T. Frenken, E.-E. Steen, M. Brell, W. Nebel, and A. Hein, “Motion Pat-
tern Generation and Recognition for Mobility Assessments in Domestic
Environments,” in Proceedings of the 1st International Living Usability
Lab Workshop on AAL Latest Solutions, Trends and Applications. In
conjunction with BIOSTEC 2011. SciTePress, 28-29 January 2011, pp.
3–12, ISBN 978-989-8425-39-3.

[22] A. Helmer, M. Lipprandt, T. Frenken, M. Eichelberg, and A. Hein,
“3DLC: A Comprehensive Model for Personal Health Records Support-
ing New Types of Medical Applications,” Journal of Healthcare Engi-
neering, vol. 2, pp. 321–336, 2011, iSSN 2030-2295 DOI 10.1260/2040-
2295.2.3.321.


