
Use of Kinect Depth Data and Growing Neural Gas
for Gesture Based Robot Control
Paul M. Yanik1, Joe Manganelli2, Jessica Merino1, Anthony L. Threatt2,

Johnell O. Brooks3, Keith E. Green2, Ian D. Walker1
1Department of Electrical and Computer Engineering

2School of Architecture
3Department of Psychology

Clemson University
Clemson, South Carolina, USA 29634

{pyanik, jmanganelli, jmerino, threatt, jobrook, kegreen, iwalker}@clemson.edu

Abstract—Recognition of human gestures is an active area of
research integral to the development of intuitive human-machine
interfaces for ubiquitous computing and assistive robotics. In par-
ticular, such systems are key to effective environmental designs
which facilitate aging in place. Typically, gesture recognition takes
the form of template matching in which the human participant
is expected to emulate a choreographed motion as prescribed
by the researchers. The robotic response is then a one-to-one
mapping of the template classification to a library of distinct
responses. In this paper, we explore a recognition scheme based
on the Growing Neural Gas (GNG) algorithm which places no
initial constraints on the user to perform gestures in a specific
way. Skeletal depth data collected using the Microsoft Kinect
sensor is clustered by GNG and used to refine a robotic response
associated with the selected GNG reference node. We envision a
supervised learning paradigm similar to the training of a service
animal in which the response of the robot is seen to converge
upon the user’s desired response by taking user feedback into
account. This paper presents initial results which show that GNG
effectively differentiates between gestured commands and that,
using automated (policy based) feedback, the system provides
improved responses over time.

I. INTRODUCTION

As people age, they must often deal with decreased mobility.
Such reductions may ultimately impair one’s ability to perform
essential Activities of Daily Living (ADLs). For those wishing
to age in place, a diminished capacity to conduct ADLs is
frequently an indicator for diminished quality of life, decreased
independence, increased caregiver burden, or institutionaliza-
tion [13]. With this population in mind, the authors envision a
comprehensive system of adaptive architectural and robotic
components to support independent living for individuals
whose capabilities and needs are changing over potentially
long periods of time [47].

Heretofore, architects and environmental designers have
attempted to accommodate those with physical impairment
through the use of Universal Design Principles (UDP) and
smart home technologies. UDPs ensure that the environment
does not confound an individual’s efforts to complete tasks.
UDPs aim to make the environment safe, clean, legible and
barrier-free [18],[23],[37] for all occupants, regardless of abil-
ity. These strategies facilitate resident mobility and indepen-

dence. However, the majority of current implementations are
static and of low fidelity, with accommodation solely the result
of the form and placement of furniture and fixtures.

Smart homes extend awareness, increase control over sys-
tems, and enhance the security, healthfulness and safety of the
environment through sensing, inference, communication tech-
nologies, decision-making algorithms and appliance control
[12],[17],[22],[28]. These efforts are mostly focused on build-
ing systems since the real-time processing of occupant activity
has historically been expensive and often relies on technolo-
gies considered intrusive of people’s privacy (e.g. cameras). As
a result, most occupant sensing in smart homes remains of low
fidelity. Smart home technology would benefit greatly from the
capacity to sense and interpret motion anonymously and with
high fidelity. In particular, this would facilitate development
of robotic components to actively support user need while
preserving privacy.

Effectively implemented, such robotic components would
allow for learned inference of user action and intention through
persistent monitoring. Further, degradation in the abilities of
the user could be tracked over time so as to adaptively inform
the robot’s assistive action plans. With knowledge of typical
user motion patterns the robot could respond to gestured com-
mands or detect infrequent needs such as assistance with reach,
weight transference, or ambulation [47]. Toward this goal, this
paper presents initial research into the use of arm-scale gesture
as a possible basis for a command vocabulary allowing human-
machine interaction that is effective, extensible and familiar to
the user.

II. RELATED WORK

Human gesture may occur in various forms including hand
and arm gesticulation, pantomime, sign language, static poses
of the hand and body, or language-like gestures which may
replace words during speech. Of these, hand and arm ges-
ticulation account for some 90% of gestured communication
[34]. Hence, the exploration of gesture at this scale as a
means of command interaction with robotics and computing is
warranted. Efforts at automated gesture recognition generally
involve a common set of considerations and problems to
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be addressed. These include some combination of sensor
platform, data representation, pattern recognition and machine
learning. This section discusses previous approaches to these
problems relative to the methods applied in this paper.

A. Sensing

In order for gestures to be detected and classified, the
motion or pose of the actor must be sensed. Typical sensor
strategies include wearable devices such as data gloves or body
suits which are instrumented with magnetic field tracking de-
vices or accelerometers, or vision-based techniques involving
one or more cameras [34]. Still other approaches involve IR
motion or proximity sensors.

Jin et al. [24] use a glove-based orientation sensor to extract
static hand positions to be used as commands. Lementec and
Bajcsy [32] use wearable (arm) orientation sensors for sensing
arm gesture models composed of Euler angles. These are
intended for use in an unmanned aerial vehicle (UAV) and
implemented as a lab simulation. Zhou et al. [48] use MEMS
accelerometer data to characterize hand motions including up,
down, left, right, tick, circle and cross. Wearable sensors are
also used in [45], [48], [49], and others. Typically, however, the
usefulness of wearable devices for measuring gestured motion
is accompanied by the acknowledgment that such devices may
limit user motion and often require a wired connection to a
computer. Thus, they present inherent impediments to practical
application [34].

IR proximity sensors are used by Cheng et al. [10] to
create a reliable gesture recognition system for a touchless
mobile device interface. The method uses the pair-wise time
delay between a passing user’s hand and two IR proximity
sensors. This system detects gestures of swipe right, swipe
left, push and pull. Rhy et al. [39] propose a computer
control interface design using a proximity sensor to extract
hand commands to a GUI. The mechanism is scaled as a
mouse replacement. Such coarse assessment of motion is not
sufficiently descriptive to support an extensive vocabulary of
gestures. However, as shown by Yanik et al. [47], an array of
IR motion sensors can provide sufficiently rich data to allow
for accurate classification of gross motions.

Much of the work in gesture recognition is performed using
video image sequences due to the richness of information and
cost effectiveness of cameras. Vision based approaches may
suffer from disadvantages associated with latency, occlusion,
or lighting. Further, since most video sequences represent a
3D to 2D projection, a loss of information is inherent in
the processing of data [34]. Also, although the presence of
cameras in an individual’s personal environment is becoming
more common, they are often considered intrusive of privacy
in certain scenarios [6],[16].

With the limitations of these various sensor types in mind,
the research reported in this paper utilizes the Microsoft Kinect
depth sensing system [2]. The Kinect provides a rich, real-
time, 3D data stream that preserves user anonymity and is also
functional in dark environments where conventional cameras
would be ineffective.

B. Data Representation

Given an input data stream, a compact data representation
must be computed. Representations may be roughly divided
into feature-based (parametric) versus holistic (nonparametric)
forms. Parametric representations extract features related to the
physical geometry and kinematics of the actor. Spatial infor-
mation is preserved. Holistic representations utilize statistics
of the motion performed in (x, y, t) space. Hence, with regard
to the frequently employed visual images of motion, these
can also be characterized as pixel-based representations [7].
In general, however, the problem of data representation is one
of feature selection. Some vector of characterizing numerical
features is selected and applied to a classifier.

Motion History Images (MHI) have been used to form a
visual template of motion that preserves directional informa-
tion [8], [27] . Histograms of Oriented Gradients (HOGs) are
used in [15] to generate regional descriptors of still images
for human detection. Periodic motions such as walking or
running may be recognizable solely from the movement of
lighted feature points placed on the actor’s body [25]. This
phenomenon is exploited by Benabdelkader et al. [7], and
Cutler and Davis [14] through the concept of self-similarity.
In this approach, the locations of features (e.g. edges) in
an image sequence are seen to generate a repeating pattern
from which a motion descriptor may be generated. The set of
features is tracked through the course of an image sequence.
The summed distances of features between image pairs is
computed. Performing this summation exhaustively across all
image pairs forms a Self-Similarity Matrix (SSM).

HOGs and SSMs are combined to produce view-invariant
representations for non-periodic motions in [26] and [47].
Results described in these works show that recurrences in
spatial sensor or video data can produce robust discriminants.
Although these representations possess strong discriminative
qualities, they tend to be of high dimension and require either
compression or excessive computation.

In this paper we extend the concept of dynamic instants
advanced by Rao et al. [38] to three dimensions. Dynamic
instants are described as the extrema (or discontinuities) of
acceleration in an actor’s motion. The Kinect allows us to
directly extract a third dimension rather than working with
typical 2D video. We form our representation using the five
most significant dynamic instants in (x, y, z) space along
with their frame number over a 5 second interval at 30 Hz
sampling. This is described further in section III.

C. Pattern Recognition

In order to classify gestures, the feature vector is typically
sorted into one of a known gallery of types. Numerous
methods have been introduced to such time series data in-
cluding Hidden Markov Models (HMM), Principal Component
Analysis (PCA), Finite State Machines (FSM), clustering
techniques such as Nearest Neighbor (kNN) and C-means, and
various types of artificial neural networks including Multilayer
Perceptron (MLP) networks, Time Delay Neural Networks



(TDNN) [34], Neural Gas (NG) [33], and Growing Neural
Gas (GNG) [19].

Hidden Markov models have well established success in the
classification of gestures and of generalized motion and are
used in numerous research efforts. Notably, these include [43],
[44] and others. A survey of such approaches can be found in
[35]. The authors note that HMM approaches may inaccurately
assume that observation parameters may be approximated by
a mixture of Gaussian densities. Further, HMMs often have
poorer discriminative outcomes than neural networks.

Bobick and Wilson [9] use finite state machines to classify
gestures collected from video images. Lee et al. [31] seek
to classify video motion sequences as whole-body gestures
by mapping sequences of estimated poses to gestures. PCA
is used for visualization; EM-based (Expected Maximum)
Gaussian Mixture Model is used for clustering of poses.
Prasad and Nandi [36] explore the effectiveness of several
methods for vectorizing and clustering gesture motion data
including: hierarchical, mean shift, k-means, fuzzy c-means
and Gaussian mixture. Schlömer et al. [40] use k-means to
determine clusters in basic hand/arm gestures generated using
a wiimote controller including square, circle, roll, Z, and tennis
swing.

Zhu and Sheng [49] use wearable sensors to detect both
hand gestures and simple Activities of Daily Living (ADLs).
Neural networks are used for gesture spotting. HMMs are
used for classification. Varkonyi-Koczy and Tusor [42] use
Circular Fuzzy Neural Networks (CFNN) to classify static
hand postures for their iSpace intelligent environment. CFNNs
are seen to have reduced training time. Sequences of hand
postures are composed into hand gestures. Yang and Ahuja
[46] use Time Delay Neural Networks (TDNN) to classify
sequences of motion trajectories in hand motion for American
Sign Language (ASL).

Stergiopoulou and Papamarkos [41] use GNG to model the
topology of the hand itself (rather than more abstract features
of the scene) in various finger-extended postures. Skin color
is used as the dominant feature. From this, finger directions
are extracted based on the centroid of the palm. Classification
is accomplished using Gaussian probability of finger angles.
Angelopoulou et al. [5] present a probabilistic growing neural
gas (A-GNG) method for tracking the topology of the human
hand as it progresses through various gestures. A-GNG offers
improved topology mapping to the basic GNG algorithm.
However, the approach is chiefly video based and forms the
GNG codebook vectors based on the appearance of the hand
rather than on any of the movement characteristics of the
action. In this way, the method is mainly that of a static
analysis of hand shape.

The GNG algorithm [19] is a variant of the self-organizing
feature map. Because it is capable of tracking a moving
distribution [21], adding new reference nodes, and operating
from static input parameters, it is well suited to the task of
gesture recognition where no labelled data is available. Indeed,
since the acquisition of gesture data is often expensive, such a
technique which learns online is particularly desirable. Further,

its ability to grow and alter its topology over time suggests
that it may be effective in learning new gestures as they are
observed. For these reasons, GNG is the clustering method
explored in this paper.

D. Machine Learning

Although techniques described in subsection II-C may be
broadly categorized as machine learning methods, our use of
this term applies to the mechanism by which some manner
of feedback is used to improve future outcomes. Typically,
such a mechanism implies the use of training data to refine
the classifier of choice off line as with conventional neural
networks. However, a goal of this research is to create an
online learning modality that utilizes direct interaction with
the user so that a robot agent converges upon a desirable
configuration.

Reinforcement learning approaches are frequently applied to
such problems. In these, a learning algorithm applies an action
policy and attempts to maximize a reward function. Higher
level approaches utilize a value function which attempts to
maximize long term reward despite a possible short term dis-
advantage. Conn and Peters use supervised remote control of
a mobile robot to generate a goal seeking policy [11]. Gaskett,
et al. [20] implement a wandering behavior in a mobile robot
to seek interesting objects in unknown environments. A recent
survey of other notable reinforcement learning approaches to
robotics problems is given in [29].

Kuno et al. [30] use face identification and hand gesture
recognition to control an intelligent wheelchair. The system
makes an initial assumption of an appropriate direction and
speed response for the wheelchair based on a best guess at
the user’s gesture. If the user approves of the response, it
is assumed that they will repeat the gesture. In this way,
the chair’s response is reinforced and the gesture is deemed
registered for future use. Our initial reinforcement policy
definition approximates this approach as described in a later
section.

These works suggest that user generated feedback is useful
in guiding the response of a robotic system. They further
support our efforts to avoid gesture classification and instead
apply the outcome of clustering directly to the refinement of
response. The outlook of this research is thus oriented toward
desirability of the generated response and no effort is made to
correctly label the sensed gesture.

III. METHOD

This section describes the laboratory fixture used to collect
gesture data as well as the data representation, clustering
technique, generation of robotic response, and user feedback.
An operational flow diagram of the system is given by Figure
1. Data were collected for three essential hand gestures which
were deemed a baseline command set for the eventual oper-
ation of an assistive robot. Although our approach places no
expectation on the user to perform gestures in any particular
manner, motion models for these gestures were taken from
the American Sign Language Dictionary (as demonstrated at



[1]) to facilitate repeatability. The gestures included come
closer, go away and stop. The stop gesture requires special
consideration since it intuitively suggests that the robot is
presently executing an earlier command. Hence, the problem
of gesture segmentation arises. Because segmentation is a
significant unsolved problem in gesture recognition, we leave
it to future work. Instead, stop will not be interpreted in its
literal sense, but rather as having a specific goal configuration
similar to that of come closer and go away.

Fig. 1. System flow diagram.

A. Data Collection

Data samples were collected using the Microsoft Kinect
depth sensor [2]. The Kinect generates depth maps of the user
at approximately thirty frames per second. Samples were col-
lected over five second intervals for a total of 150 data points
per sample. The data collection program was developed using
the Robot Operating System (ROS) [4]. ROS was selected
for its open source and for its active community of research
oriented users. Further it supports a variety of simulated
and real world robotic platforms through a message based
publisher/subscriber environment. Thus, direct migration of
this research to working hardware is expected to be a viable
path.

Within ROS, the Kinect data stream was accessed using the
PrimeSense OpenNI Kinect package [3] to track the skeletal
joints of the participant by ROS messages. An example of
the Kinect depth image showing skeletal tracking is given
by Figure 2. Depth data for eleven joints were collected
over the sampling interval for possible future work. However
only the participant’s left hand joint is considered for gesture
characterization. Data points consisted of (x, y, z) coordinates.

Fig. 2. The PrimeSense OpenNI depth image showing skeletal tracking.

B. Feature Extraction

Using an approach similar to [38], Dynamic Instants (DI)
were extracted from each 150 point data sample for motion
of the left hand joint. Position data for each of the three di-
mensions was first smoothed by convolution with the discrete
Gaussian kernel given by (1) with σ2 = 1.0.

G = [1, 4, 6, 4, 1]/16 (1)

Velocity and acceleration data were then computed from
position data for each dimension. As a further smoothing step,
an evolution time of seven time steps was used for velocity and
acceleration computation so that short term jitter of the actor
could be filtered and longer term trends could be captured. The
five highest occurrences of peak acceleration were selected as
the dynamic instants. As discussed in [38], such peaks occur
at sharp changes of direction or speed, and starts/stops. For
our DIs, the (x, y, z) coordinates and the frame number were
recorded. Given the ability of the Kinect to represent these
peaks in 3D space and with the frame number accounting for
discrete time, a spatial graph of gesture execution is effectively
generated. Hence, DIs did not require the extra dimensions of
velocity and acceleration to be stored for useful discrimination
between gesture types.

Feature vectors for each sample were constructed by the
concatenation of the five DIs to yield a 20 × 1 descriptor
as shown in Figure 3. Both frame numbers and coordinate
values were scaled to [0, 1] based on the range of values
of their respective types so as to prevent any given field
from dominating the feature vector. Feature vectors were then
applied to the GNG algorithm.

C. The Growing Neural Gas Algorithm

The Growing Neural Gas (GNG) algorithm proposed by
Fritzke [19] is a vector quantization technique in which
neurons (nodes) represent codebook vectors that encode a
submanifold of input data space. In this regard, GNG is similar
to the Neural Gas (NG) algorithm proposed by Martinetz and



Fig. 3. Feature vector format for a depth-sampled gesture.

Schulten [33]. GNG differs from NG in its ability to form
connections between nodes, and to continue adding new nodes
so as to effectively map the topology of the input data distri-
bution. The process continues on until a specified performance
criteria has been satisfied. The basic GNG algorithm is given
by Algorithm 1 [19]. For our implementation of GNG, the
following parameters were used: εb = 0.05, εn = 0.0006,
λ = 100, α = 0.5, β = 0.0005 and amax = 88.

Algorithm 1 Growing Neural Gas
1: Begin with a set A of two nodes at positions wa and wb

in Rn: A = {a, b}.
2: Initialize a set of connections to the empty set: C = ∅.
3: repeat
4: Apply an input signal ξ according to P (ξ).
5: Find nodes s1 and s2 in A closest to ξ.
6: Establish a connection between s1 and s2 if one does

not exist: C = C ∪ {(s1, s2)}.
7: Set the age of the connection (s1, s2) to zero.
8: Increment the ages of all edges connected to s1.
9: Adjust the local error of s1 by the square of its distance

to the input: ∆Es1 = ||ξ − ws1||2.
10: Move s1 toward ξ by fraction εb: ∆ws1 = εb(ξ−ws1).
11: Move the topological neighbors of s1 toward ξ by

fraction εn: ∆wn = εn(ξ − wn).
12: Remove all edges having an age greater than amax. If

this leaves any nodes with no connecting edges, remove
them also.

13: if (numInputs mod λ = 0) then
14: Determine the node q with maximum error.
15: Insert a new node r halfway between q and its

neighbor f with the largest error: A = A∪ {r} such
that wr = 0.5(wq + wf ).

16: Decrease the error of q and f by fraction α: ∆Eq =
−αEq and ∆Ef = −αEf .

17: Initialize the error of the new node to the interpolated
error of its neighbors: Er = (Eq + Ef )/2.

18: Decrease all node error variables by fraction β:
∆Ec = −βEc (∀c ∈ A).

19: end if
20: until Stopping criteria is met.

In our approach, the A data structure consists of a C++
vector class of reference nodes. Each reference node carries
its feature vector w, its node label, and of key importance, the
response configuration (x, y, θ) for a 2D mobile robot. There-
fore, as the GNG algorithm updates the cloud of reference
nodes with each input vector, the nearest neighbor in the GNG
cloud already holds a learned robotic response based on the
history of the system. In this way, the GNG algorithm avoids
the task of correctly labelling the input in favor of generating
a desirable response. Using feedback from the user to gauge
the quality of response, the algorithm attempts to improve the
response outcome even as it quantizes the input space.

As a simulated proxy for our mobile robot, the ROS
Turtlesim environment was used. Turtlesim is a basic ROS
tutorial construct capable of accepting and attaining successive
(x, y, θ) configuration goals. For simplicity, this research limits
the goal response to movement in 1D (along the line y = x)
with no change in the final angle of approach (θ). The
Turtlesim environment and goal responses can be seen in
Figure 6. Movement with higher degrees of freedom is left
to future work.

D. User Feedback

A key aspect of our approach is the use of user supplied
feedback on the relative success of a robotic response to
gesture. User feedback is utilized to effectively supervise
online system learning in real time and with no initial training
data. However, as previously stated, obtaining gesture data
and user feedback may be expensive. For this early work,
user feedback was automated programmatically according to
predefined goals. These defined goal configurations represent
relative translations (x, y, θ) from the starting position of the
robot and were chosen so as to be easily distinguished:

• come closer = (3.95, 3.95, 315o)
• go away = (−3.95,−3.95, 315o)
• stop = (−2.00,−2.00, 315o)

Feedback was generated as an integer value in {0 . . . 10}
as shown in Figure 4. Feedback values less than 5 indicate
a response that moved toward a configuration that was worse
than where it began. Values greater than 5 indicate movement
toward a desired goal. For example, a response which moved
the robot 20% farther from the goal than where it started
would cause a feedback of 4 to be generated. A response
which moved the robot 20% closer to the goal would cause a
feedback of 6 to be generated.

E. Response Refinement

The system receives the feedback value and uses it to refine
and update the generated response. The portion of the system
responsible for this update is isolated from the generation of
the feedback. This is to emulate a future scenario when an
actual user is providing the feedback. Currently, this update is
the simple policy based approach given by Algorithm 2.



Fig. 4. User feedback scale.

Algorithm 2 Response Update Policy
1: if feedback < 5 then
2: Move in the opposite direction by a fraction of the

distance indicated by the feedback.
3: else if feedback > 5 then
4: Move in the current direction by a fraction of the

distance indicated by the feedback.
5: else
6: Move in the direction indicated by signs of (x, y) in the

present response (i.e. make a guess).
7: end if

IV. EXPERIMENTATION

The Kinect was set at desk height (75 cm) with the
participant standing at a distance of 1.3 m. The Kinect was
angled so that the eleven tracked joints were fully visible in
the depth image. Participants were invited to occasionally shift
their weight or angle of approach slightly so as to introduce
a nominal variation in the collected data. Five volunteers
were asked to perform fifty repetitions for each of the three
candidate gestures: come closer, go away and stop. This
yielded 250 samples for each gesture type for a total of 750
samples.

These 750 samples were randomized and presented to the
system as a single epoch. For each sample, feature vectors
were computed and passed to the GNG algorithm, a response
was issued, feedback was automatically generated and the
response was updated accordingly. The per sample error was
calculated between the updated goal configuration and the
known goal for that sample’s gesture type. Following each
epoch, the average error per gesture type was also computed.
In this manner, sixty epochs were executed. Results are shown
in Figure 5(a). Average error can be seen to trend downward
with typical error of less than 1 m within approximately 15
epochs. Typical goal seeking results (in Turtlesim) using the
mature GNG cloud can be seen in Figure 6.

Dissimilarity among computed DIs was seen to effect the
smoothness of convergence: Some samples of a given gesture
differed significantly the majority. For comparison with the

original dataset, a filtered subset of samples was also gen-
erated. Those samples having fewer than twenty data points
farther than 1.5 standard deviations from the mean for the
gesture type were retained. This reduced the data set to an
average 191 samples per gesture type for a total of 573
samples. These results are shown in Figure 5(b). Although
the downward trend is smoother for the subset, the rate of
convergence is similar. In a real world setting, users would
be expected to exhibit natural variation in the performance
of gestures. These results suggest that our system would be
robust to such variation.

Perturbations within the GNG cloud can also be seen as the
error curves do not descend smoothly. This may be explained
again by samples within the data set which remain poorly
separable despite filtering. Samples implicitly mistaken for the
wrong gesture type would find their generated response to be
far from desirable. However, despite such cases, the algorithm
reliably reconverges toward goal configurations and average
error continues to trend downward.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented early work toward devel-
opment of a gesture based human-machine interface. It has
been shown that 3D data from the Kinect depth camera can
be used to generate a useful descriptor of gesture in the form
of prominent dynamic instants. Further, the GNG algorithm
is capable of differentiating between these descriptors. Most
interestingly, the goal of gauging the success of our learning
algorithm based on the desirability of response rather than on
a classifier label is shown to be practical. Clearly, the policy
based update method we employ in this initial experiment is
a simplistic approach to reinforcement learning. Development
of a longer term value function to maximize user satisfaction
will be of central focus in our work.

Segmentation of gestures is a typical problem in gesture
recognition. Future work may include investigation of the
segmentation problem.

The use of DIs as a data representation will likely be revis-
ited. In addition to the need for improved separability in the
data set, DIs present concerns regarding both spatial scale and
speed of execution of the performed gesture. Progress in this
area could be expected to increase the speed of convergence
by the GNG algorithm, thereby reducing the expense of data
collection.

Finally, the online addition of new gestures will be explored.
Certainly, for the envisioned system to effectively assist the
user, the vocabulary of known commands must be open to
amendment as needed. Indeed, this is a key facet of the gesture
recognition problem that frames our ongoing research.
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(a) Results using unfiltered samples.

(b) Results using filtered samples.

Fig. 5. Average gesture response error per epoch.
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