
A framework for the development of ubiquitous
patient support systems

Jelena Mirkovic
Center for Shared Decision Making
and Collaborative Care Research,

University Hospital
Oslo, Norway

jelena.mirkovic@medisin.uio.no

Haakon Bryhni
Department of Informatics

University of Oslo
Oslo, Norway

haakon@bryhni.com

Cornelia M. Ruland
Center for Shared Decision Making
and Collaborative Care Research,

University Hospital
Oslo, Norway

cornelia.ruland@rr-research.no

Abstract —Ubiquitous healthcare systems can provide advantages
to patients, enabling them to access medical information and
support systems independent of their current place and time.
However, due to specific requirements regarding security and
usability standard mechanisms for enabling terminal and
application mobility are not acceptable for healthcare
information systems. We propose a service architecture
framework (the CONNECT framework) that enables content
adaptation and session management for ubiquitous patient
support systems and addresses requirements specific for
healthcare systems. The CONNECT framework provides support
for terminal and application mobility, and enables easier
implementation, maintenance and adaptation of patient support
systems for different types of terminals, networks and services.
Additionally, it addresses security and usability requirements
that are of high importance for healthcare systems. Based on the
proposed framework the testing environment is implemented;
and as a result, we conclude that the system’s scalability and
performance is not significantly affected.

Keywords- mobile devicse; healthcare system; mobility; session
management; security; usability; content adaptation.

I. INTRODUCTION
New terminals such as smartphones and tablet PCs have

enabled ubiquitous information services. Users can access
services independent of time and place, and content can be
dynamically adjusted to the current context and terminal type.
The potential of these services is increasingly recognized in
application areas such as learning and business, but ubiquitous
and seamless information systems can also be leveraged in
healthcare. Mobile devices, home computers and embedded
patient terminals can be utilized in healthcare services to
provide delivery of information to patients at the point of need.
In this way, patients can be equipped with powerful tools and
support systems that can help them in their everyday health
management, and patients can get more involved in decision-
making regarding their own health [1][2]. Problems related to
increasing healthcare costs and the higher demand for
healthcare personnel and services can be addressed and reduced
[3].

However, due to security and usability requirements
development of ubiquitous healthcare systems introduces new
challenges and unresolved issues. Utilization of standard
mobility management mechanisms raises a question of who is
the responsible entity in charge for implementing and enforcing
security mechanisms during migration of user´s session to new
terminal/network, and who ensures that patient privacy is
managed in accordance with laws and regulations. Policy for
protection of patient information differs between countries, and
healthcare systems must adhere to national requirements. In the
USA, Health Insurance Portability and Accountability Act
(HIPAA) compliance is required, but only general
requirements are set. Implementation rules and strength of the
required security mechanisms are not defined by HIPPAA [4].
In Norway, a PKI system is mandated and certificates must be
used for authentication and encryption [5]. PKI-based system is
used for certain public web-based solutions with external
authentication devices. For mobile applications the
requirements are so high that no services are offered today. In
the CONNECT (Care Online: Novel Networks to Enhance
Communication and Treatment) project we have developed a
prototype of a secure mobile access system managing security
issues at the application level [6]. The proposed security
architecture addresses all requirements set for healthcare
information systems and have been submitted for approval to
Norwegian local authorities. Due to various legislation
requirements defined in different countries managing security
of healthcare information systems have to be tailored to
specific characteristics of a system and context of use.

Additionally, for healthcare applications and services
usability, user-friendliness, and usefulness of the system are
very important due to great spectrum of potential future users
and variety of their needs and expectations from system’s
functionalities. Adaptation of interface elements and user
interaction to different contexts of use (e.g., types of devices
and their characteristics, OSs, and communication network
types) is primary requirement. The way in which mobility
issues (e.g., session transfer, handoff between networks) are
managed can also greatly influence usability of the system due
to additional requirements for user interaction and adaptation of
interface for a new context of use.

This work was supported by The Research Council of Norway under
Grant Verdikt 176823/S10 - Communication and Information Sharing
between Patients and Their Care Providers. PervasiveHealth 2012, May 21-24, San Diego, United States

Copyright © 2012 ICST
DOI 10.4108/icst.pervasivehealth.2012.248594

The work presented in this paper is part of the CONNECT
project, which has as its main goal to develop and test a suite of
context-sensitive communication and information tools for
accessing a patient-clinician shared Personal Healthcare Record
(PHR) [7]. The CONNECT system allows patients to monitor
and record their symptoms in their PHR and lets them stay
connected with their care providers between clinical
encounters. Providing patients mobile and seamless access to
the CONNECT system is one of the main requirements in our
project. Patients are enabled to receive information at the point
of need regardless of space and time, utilizing in this manner
the full potential and purpose of developed patient support
tools.

In this paper, we present a design and architecture
framework for the development of ubiquitous patient support
systems with session management and content adaptation
functionalities (the CONNECT framework). Through the
proposed framework, we describe how mobility, session
management, and content management and adaptation can be
addressed in mobile healthcare information services.
Additionally, we describe how security and usability issues are
managed as part of the proposed framework, and how they are
adjusted to specific requirements set for healthcare services.
We describe a generic framework for developing patient
support tools that is not dependent on a specific developer
platform, access network or device type.

This paper is structured as follows. In Section 2, we
describe ubiquitous patient support system usage scenarios and
discuss challenges that must be addressed during development.
Section 3 discusses related work. In Section 4, we describe the
CONNECT framework and its modules for server and client
applications. Section 5 gives a description of an implemented
prototype and presents results from testing. Finally, in section
6, we present final conclusions and describe planned future
work.

II. UBIQUITOUS PATIENT SUPPORT SYSTEM SCENARIO
For enabling patient mobility and seamless access to patient

support systems, there are numerous requirements that must be
addressed, such as providing security during session
management and migration and providing usability of the
application and adaptation of application content to different

devices and access networks. The possible usage scenarios for
a ubiquitous patient support system are presented in Figure 1.
The patients have their user accounts on the patient support
system and can access the service from hospitals or their
homes, cars, or offices using different types of networks (e.g.,
Ethernet, WiFi, GPRS, 3G, 4G, and ADSL). The patient
support system is usually deployed as a part of a hospital
information system and is connected to the EHR system. Using
the system, patients can contribute to their everyday health and
symptom management. Information submitted by patients can
also be made available for primary care physicians, primary
care nurses, specialist care providers and other healthcare
personnel, when approved by the patient.

Application mobility as defined in [8] enables a user to start
interacting with the service using one device and transfers the
session to another device automatically when a new
communication channel is opened. While the session is
transferred, an additional mechanism to warrant session
consistency must be provided to protect storage and to avoid
transfer of invalid session data. Application mobility must also
be provided within an acceptable time frame. Due to the
different network types that can be utilized, it is highly possible
that communication can be interrupted unexpectedly and that a
system must be able to save current session data and enable a
user to continue a previously started session without
information loss. When the application is resumed on the same
terminal over a different network or on a new terminal, a new
authentication process must protect security. Because this may
happen frequently, it is necessary that the renewed
authentication is both user-friendly and secure.

One example of application mobility is described in the
following scenario. A patient in a hospital uses a hospital tablet
PC to start a session with the patient support system and starts
writing a message to a doctor with a question regarding a
current health problem. In the meantime, a nurse comes with
discharge papers and tells the patient to go home. The patient
simply turns off the application, ending communication with
the patient support system, and leaves the hospital. Before the
communication session ended, the session state was stored on
the server so that the patient can seamlessly resume the session.
On the way home in a bus, the patient starts the mobile
application, chooses the option to resume the session, and the
exact state is retrieved, enabling the patient to continue writing
the message from where he/she left. Assuming patchy mobile
coverage, the session may lose connectivity or the user may be
interrupted again, but this is no problem. At home, the patient
is given the option to retrieve the pending session from the
mobile phone or to use another communication device (e.g., a
PC, laptop, or a personal tablet PC) to finish and send the
message to the doctor.

To provide this functionality, there are numerous
challenges that must be addressed. There are many types of
devices and user interfaces that must provide access to a patient
support system. Each device and device type has different
properties and capabilities (e.g., screen size, input capabilities,
operating system, computational power, and type of network
interfaces). To enable a user-friendly service, content presented
to a user on one terminal should be adjusted to a terminal’s
characteristics. Additionally, different features should be

Figure 1. Possible usage scenarios.

presented on different devices, enabling the user to perform
actions suitable for the specific terminal and context of use. As
a result, not all session states should be transferred to all
terminals, thus requiring adaptation of the session state
depending on the context of use.

Terminal mobility provides support for accessing the same
system over different network types. The communication
channel and roaming interruptions must be taken into
consideration because multiple devices and networks are
supported. As an example, roaming between multiple WLAN
Access Points in a hospital is very different from roaming from
a WLAN connection in the hospital to a 3G network available
when the patient moves.

It is necessary to assure that all communication is protected
from unauthorized users as patient data are transferred through
different communication networks and that the architecture
conforms to health service security requirements. This question
is addressed in more detail in [6].

III. RELATED WORK
In the literature, we have found very few projects that

address mobility and session management in healthcare
services for patients. The projects addressing these issues
usually describe systems and services accessible to healthcare
providers and not to patients.

Project Ubidoctor [9] presents a middleware-based service
infrastructure for the support of ubiquitous medical
applications enabling doctors to use the system independent of
their current place and time. The proposed middleware
architecture supports session management and content
adaptation for healthcare applications for physicians. Although
we find this work to be the closest to ours, it still does not
address the issues of terminal mobility (e.g., it does not
describe what happens when network handoff is performed).
The Ubidoctor project does not describe what requirements are
needed from client applications and how those requirements
can be implemented, and does not say if and how security is
managed in the proposed middleware.

One other project is Activity Based Computing [8], which
describes an architecture supporting local mobility within
hospitals. This project analyzes mobile medical work in one
hospital environment and proposes architecture for supporting
the mobility of medical personnel. This project is focused more
on managing application mobility across different terminals
(application roaming), without terminal mobility and support of
roaming through different network types (use of the application
is limited just to hospital environment). Additionally, the
proposed services can be provided solely through a web
browser that can limit usability and user-friendliness of a user-
interface. Using just web browser for accessing service on all
devices does not offer possibilities for utilization of terminal
specific characteristics and adaptation to specific context of
use.

Generic support for terminal mobility is known from the
literature using technologies such as Mobile IP, Mobile VPN,
and SIP [10][11]. Mobile IP provides seamless connectivity
across heterogeneous networks, but it requires operator or

enterprise support mechanisms such as the hosting of a Mobile
IP Home Agent and the provisioning of mobile user
credentials. Unfortunately, Mobile IP has not reached adoption
in popular mobile terminals, and few operators and enterprises
use the technology. Mobile VPN is popular in enterprise
environments but is not well suited for operation and use in the
general public, as it adds an additional level of encryption,
authentication and user provisioning, which adds to the
communication overhead. Additionally, for both Mobile IP and
Mobile VPN solutions, additional software must be installed on
the mobile device for the service to be available to end users.
SIP is well suited to register a mobile client [11] and has
terminal support, but SIP does not provide seamless
connectivity for the application as the terminal moves. SIP
would also duplicate some of the application-specific
mechanisms we need in the CONNECT application. SIP is
primarily designed as a registration service, where the mobile
terminal can be reached from the network (using SIP URIs),
but for a patient service, our requirement is only connectivity
from the patient to the service, and the reverse is not needed.

In the paper [12] it is described a unified middleware that
isolate mobile healthcare applications from mobility
management, client discovery, and transport of multimedia
traffic. The proposed all IP-based framework describes how
SIP can be improved and used for performing mobility
management, session establishment and handover
functionalities. The tests of the proposed solution provides
improved handling of handovers over heterogeneous networks
with better QoS and low packet loss during transitions.
However, in the presented work the issues of security and
protection of patients sensitive data during handover is not
addressed, and security provided only by the SIP protocol is
not acceptable for healthcare applications and protection of
private patients medical data. For example, authentication of
the user in SIP protocol session initiation process can be done
using HTTP digest mechanisms or S/MIME mechanisms [13]
and utilization of these mechanisms for protection for patients
medical data is not always acceptable.

One approach on how application mobility can be handled
by adding proxy server in system architecture that recognize
session migration request and forwards connection from one
client to other is given in [14]. For maintaining sessions in
application migration scenarios SOCKETv5 [15] proxy is used.
The paper presents only how session migration is handled, and
do not describe how and if terminal mobility is supported.
When session is transferred authentication of the user is
performed only using the application and device IDs. This
means that any person with the device that is previously
registered for this specific service can get access to the system,
and this type of security implementation is not acceptable for
mostly healthcare applications.

From previous work, we can see that the number of projects
addressing mobility and session management issues for
healthcare services is very low and security mechanisms
implemented are not always acceptable for protection of
patients’ private data. Additionally, due to the diversity of
possible terminal types, access networks and users
requirements usability issues and adaptation to specific
terminal must be addressed in more depth. We have also

considered standards-based mobility solutions and found that
the traditional methods of Mobile IP and Mobile VPN are not
well suited for general public use in healthcare services; the use
of SIP would duplicate services that we must have in the
application framework. We find that research work in this area
is lacking, and our work presented in this paper addresses the
main issues regarding the development of a ubiquitous patient
support system, which allows patient mobility and seamless
access.

IV. CONNECT FRAMEWORK DESCRIPTION
To overcome the identified challenges, we propose and

implement a generic architecture framework called the
CONNECT framework for developing context sensitive patient
support systems with support for handling security, session
management, and content adaptation. Utilizing the proposed
framework could facilitate implementation, maintenance and
adaptation of healthcare services for different types of client
terminals, operating systems and access networks available to
patients by saving development time.

We develop and describe a generic and modular
architecture and design framework. The main reasons for
choosing a modular architecture are the ease of integration with
other systems, its functionalities, and the possibility of utilizing
the same modules in different types of services and
applications on the same types of terminals. Additionally,
adding new features can be accomplished by including new
modules, without changes to other parts of the system. Note
that the proposed framework is not dependent on any specific
developer platform and can be applied to any type of service
and development environment.

Session management is performed as part of the framework.
Information about the current patient session is stored in a
database repository, and each user has one item in the session
database referred to by the user identifier. During the time that
a user is using the service, changes in session state are stored
locally, in the application cache. The changes to the database
repository are made only when the communication with the
client side is finished or interrupted. Every session could have
one of the following states: active, finished, or interrupted. A
session is active when it is used frequently. A session is
finished when the user logs out and shuts down the client
application. When the session is finished, data about the
session are removed from the database. A session is in an
interrupted state when the user loses the connection with the
service. When the session has an active or interrupted status,
the user will be given the option to continue a previously
started session or to start a new session when he/she logs in.

Different types of terminals have different device
characteristics, different software and OSs, and support
different communication networks. For this reason, it is
difficult to find a unique solution to develop a client application
that is supported and adjusted for most access terminals. One
approach to have a single solution for all devices is using a web
application. In this way, service could be accessed using a web
browser that is available on all devices with an Internet
connection. However, due to low usability and poor client
acceptance of web browsing applications on all devices

(especially mobile terminals) [16][17], we propose the
development of applications that are adjusted to each specific
terminal type and can be optimized for each device with regard
to a specific user interface and design guidelines. To facilitate
this process, we propose a client framework for the
development of applications that are not dependent on device
type and operating system and can be easily adjusted and used
on different developer platforms. Following the same
framework during the development of different client
applications, developers can save time and provide a more
consistent and easily managed application that can adapt user
interfaces according to terminal characteristics. Additionally,
when proposed modules are developed for one client
application, they can be easily reused in other applications
developed for the same platform.

Separate modules in the proposed framework are in charge
for providing security and protection of the user private
information. We do not specify which security mechanisms
should be implemented in the security modules. The
implementations of the security mechanisms in the real-life
system depend on many different factors (e.g., type of service
and privacy of information that is provided, legislation
requirements, and type of device and communication network).
Putting security management as part of the proposed
framework enables more flexible security management and
adjustments of used security mechanisms for specific context
of use (for example, different authentication mechanisms can
be used for different types of devices and they can be adapted
to device’s specific characteristics). In the CONNECT
framework, we address security issues related to handling
terminal mobility. When user changes access network he/she
must be re-authenticated over the new communication channel,
and intermittent connectivity is handled only by retransmission
capabilities in Transmission Control Protocol (TCP). This
choice avoids the requirement of a specific terminal mobility
technology (such as Mobile IP), and most importantly enables
managing security issues at the application level.

The framework supports both application mobility and
terminal mobility at the application level. Placing session
management in the application layer introduces more
development work compared to using services from lower
layers; however, this solution allows a more generic framework
applicable for any type of client device and communication
network. Additional reasons for implementing terminal
mobility within the framework (and for not using related
methods such as Mobile IP and Mobile VPN) are:

1) Security. When a network changes, we want to perform a
re-authentication at the correct level (towards the PHR system)
and not only to the mobility provider (such as the mobile
operator). We claim that it is necessary for users to be asked to
re-authenticate when networks change, ensuring that the
session migration is performed for the right user.

2) User friendliness. Session management and terminal
mobility can result in additional requirements for user
interaction. If additional user interaction and user interface is
not implemented as part of the application, this can lead to
inconsistent application interface and extra load on the users
which is not acceptable for healthcare services that must be

useful, easy to use, and adapted to different types of users (e.g.,
elderly and people with specific needs). In our framework the
interface for managing terminal mobility is implemented on the
application level, and the interface elements is consistent with
the rest of the application. Additionally, requirements from user
during mobility management must be minimal (e.g., no
additional installations/settings of third party software should
be needed).

The proposed framework describes both server and client-
side system architecture (Figure 2). In the following, we will
describe details about the framework and its modules. Each
module will provide an Application Programming Interface
(API) for the simple reuse of the mobility features across
applications and operating systems.

A. Server architecture framework
The server architecture framework provides support for the

implementation of security mechanisms, application logic, and
session management and the generation of application data
adjusted to the user terminal, the network characteristics and
the session state. The proposed server architecture framework
consists of five main modules:

• Context Management Module process information
received from a user regarding the context in which a
service is used (e.g., device type, location, and network
type), and provide this information to other modules
for selection of content adaptation, security, and
session management policies.

• Session Management Module performs storage,
maintenance and retrieval of session data.

• Content Adaptation and Management Module is
responsible for managing user data and for generating
responses for a client application adapted for current
context of use.

• User Data Management Module implements
communication with the User Database where all
users’ private data are stored.

• Authentication Manager makes sure that the user is
correctly authenticated before access to the service is
enabled. Different sub modules can be used for
implementation of different security mechanisms
applicable for different contexts of use (e.g., type of
service, characteristics of client terminal,
communication network, users, and laws and state
policies regarding the protection of healthcare data).

• Server Application Controller is responsible for
managing the communication process with the client
and for implementing application logic.

B. Client architecture framework
In addition to the server architecture framework, we

propose an architecture framework for developing client
applications. The client architecture framework consists of the
six main modules:

• Context Information Collector gathers and provides
context information (e.g., user location, device type,
screen resolution, input method, and communication
network type) to other application modules. This
information can be used to determine the context in
which the application is used and to detect changes in
the user environment.

• Communication Manager is in charge of performing
communication with the server side.

• Terminal Mobility Manager enables user roaming over
different types of networks, and, when it detects that
the network is changed, it initiates a new authentication
process, so the user can continue the current session
without exiting the application.

• User Interface Manager is responsible for the
organization of widgets and interface elements,
additional adaptation of content on the screen and user
interactions based on specific device characteristics,
and for the implementation of events and actions
related to a user’s commands.

• Secure Data Manager is in charge for application
specific secure data management (e.g., secure data
deletion and ensures that all data are deleted and
nothing is stored in permanent memory for security
reasons).

• Session Manager performs storage, maintenance and
retrieval of session data.

• Local Cache Manager is responsible for storing
application related data that do not endanger a user’s

Figure 2. The CONNECT mobility framework.

privacy in permanent device storage (e.g., log data,
interface preferences).

• Client Application Controller is the main application
controller used for implementing application logic.

V. PROTOTYPE IMPLEMENTATION AND TESTING RESULTS
For testing purposes, we developed a server application and

three types of client applications: a mobile phone Java client
application, an iOS client application and a web client
application.

For development of the server application, we used a Java
Standard Edition platform. Each module is implemented
through a separate package, and the server application is
deployed on an Apache Tomcat server. The Tomcat server is
running on the CentOS 5.5 with 512 MB of RAM. We used a
MySQL 5.5.11 database for implementing the session database
repository. The client application for mobile phones was
developed using the Java Micro Edition (Java ME). For
development and testing of the mobile application, we used the
Sun Java Wireless Toolkit. Due to the high popularity and wide
acceptance of iOS devices, we also decided to develop mobile
applications for the iPhone and iPad. For the development and
testing of the applications, we utilized Xcode (the toolset for
the development of software for iOS). Using the Java platform,
we developed a client web application to enable user access to
the service using web browsers.

In the original CONNECT system, there are numerous
functionalities offered by the patient support tools (e.g.,
exchange of messages with health personnel, registration of
problems and difficulties, access to databases of advice and
help information, and a forum for communication with other
patients). For testing purposes, we developed applications that
enable access to the messaging module. Functionalities
currently implemented are: login to the service, preview of all
messages (categorized into three groups: inbox, sent and draft),
preview of one message with the message text, sending new
and reply messages, and saving a message in drafts. Images of
different user interfaces are shown in Figure 3.

The proposed framework is focused on mobility and
session persistence, and is compatible with several

authentication methods. Secure authentication for mobile
healthcare applications are proposed and evaluated in [6].

A. Mobility handling scenario
Session and mobility management in our testing

environment are implemented in accordance with a proposed
framework, and one possible mobility scenario is described in
Figure 4.

First, the user starts using a service on his/hers mobile
phone, and after inputting a credentials, a login request is sent
to the server. When the Server Application Controller receives
the request, it verifies the user’s credentials utilizing
functionalities of the Authentication Manager. If the credentials
are correct, the server identifies and stores the current user’s
context using the Context Management Module. In our test
service, a user’s context information is the type of client
application that accesses the service, and this information is
transferred in an HTTP request header. Afterward, the
information is checked for whether there is an active or an
interrupted session for this specific user stored in the Session
Database Repository. If there is no session data stored, the
login response is returned to the user, and he/she can start using
the application. When the client application requires a user’s
data, it sends a request to the server. The request is forwarded
to Content Adaptation and Management Module, which gather
data regarding the current context from the Context
Management Module and generate a response for the user. The
Server Application Controller performs a session refresh
operation and sends the response to the client application. If
there is an interruption in the session, and the user tries to login
from his/her computer after a delay, a login procedure will start
in the same manner. However, because an interrupted session is
identified, a response from the login request will notify the
client application about the current session, and the user will be
asked if he/she wants to continue the previous session. If the
response is yes, the session information will be gathered from
the Session Database Repository, and the response containing
the session data will be sent to the client application. When it
receives session data, the client application can load the last
saved session state.

Figure 3. Different client types.

Figure 4. Mobility scenario – message flow.

TABLE I. TIME OVERHEAD FOR SESSION MANAGEMENT
FUNCTIONALITY

Application
type

Session management
overhead [seconds]

J2ME 1.05

iOS 1.1

Web browser 0.57

B. Session management time overhead
To determine how much time is needed to perform session

management tasks, we tested two usage scenarios and
compared results. In both scenarios, we measured the time
needed for a user to log in to the application. In the first
scenario, session management functionality is disabled, while
in the second scenario, session management functionality is
enabled. We identified login functionality as the most time-
consuming operation in the proposed session management
process, and we wanted to find out how system performance is
affected when session management functionalities are
supported. We performed testing on three types of client
applications developed for different client device platforms:
J2ME, iOS and a standard web browser. Each user scenario is
repeated 10 times, and the difference in the mean values for
two user scenarios for three client applications are shown in
Table 1. If we include time to perform a secure authentication
for J2ME and iOS terminals, we have measured overhead for
two-factor authentication including SMS push over WiFi
network to be around 25 seconds [6]. Thus, a secure login
process require only 4% additional overhead to include session
management support. Our conclusion is that this overhead does
not present a problem, and time used for session management
is dominated by time needed for an authentication process.

C. Scalability
Next, we measured how the session management

functionality affects the scalability of the system. For
simulating an extra load on the server, we used Pylot software,
a open source tool for testing the performance and scalability of
web services [18]. We measured scalability using only the web
application. Pylot software is used to generate requests for 10,
20, 50, 70 and 100 users simultaneously. Simulated user
actions consist of the following steps: logging into the
application, going to the messages menu, going to the list of
inbox messages, going back to the main menu and logging off
the application. We tested this scenario on the client application
where session management is supported and on the client
application without session management functionality
implemented. For the purpose of analysis, we used the average
value of the response times for 10 users for all of the performed
tests. The results of testing that shows measured times when
session management is enabled and when session management
is disabled are shown in Table 2. The time difference of the
mean values for all of the testing scenarios is shown in Figure
5.

From the graph, we see that the extra time needed for
session management varies from 0.1 to 0.6 seconds, depending

TABLE II. RESULTS OF SERVICE SCALABILITY TESTING

Mean (SD) Number
of users Without session

management
With session
management

10 0.356 (0.022) 0.418 (0.027)

20 0.665 (0.057) 0.744 (0.05)

50 1.612 (0.114) 2.027 (0.125)

70 2.37 (0.158) 2.792 (0.373)

100 3.76 (0.529) 4.3597 (1.43)

on the number of simultaneous users. We can conclude that the
time overhead measured is acceptable and that the scalability of
the system is not substantially affected by adding session and
content management functionality based on the described
framework.

From the results, we calculated that session management
functionality takes an average 15% of a server’s response time.
Assuming that the maximum acceptable time for a server
response (keeping the user’s attention focused on the dialogue)
is 10 seconds [19][20], we set a maximum acceptable session
management time to 1.5 seconds. Based on the results
presented and the trend analysis, we can say that the proposed
test environment is able to support approximately 300
simultaneous users per server. Assuming intermittent use of the
servers while using the mobile application, the number of users
per server can be up to a thousand active users. From the
results obtained, we can conclude that general scalability of the
testing environment is acceptable for testing purposes and for a
limited number of users. For implementation in a real hospital
environment, where the number of patients is higher (e.g.
thousands or millions of potential users) additional capacity
could be easily added with multiple servers with higher
performance characteristics.

Figure 5. Session management time overhead.

VI. CONCLUSION
In this paper, we describe a framework for the

implementation of content adaptation and session and mobility
management in ubiquitous patient support systems. We
describe a generic and modular architecture and a design
framework that provides support for seamless application
mobility across any terminals. The framework also provides
support for handling terminal mobility between wired
connections, WLAN, 4G, 3G, and 2G networks on secure and
user friendly manner. Handling security issues as part of a
framework enable easy integration of different security
mechanisms and solutions that comply with security
regulations and laws. The CONNECT mobility framework is
easily applicable on different terminals and operating systems
and can be used by multiple services on the same terminal. The
framework enables the development of user friendly and
terminal-specific interfaces with advanced session, content, and
mobility management functionalities.

Through the implementation of the framework and several
demonstration applications, we showed that the framework
could be used for different client platforms and that
performance and scalability are not severely affected by adding
mobility support. Support for terminal mobility was also
proposed and implemented, requiring users to re-authenticate
when network access changes, protecting user communication
from unauthorized use. Additional tests of the terminal
mobility functionalities and security handling are planned as
the future fork.

We have proposed placing session, security, and content
management functionality into a common framework that can
be used by multiple applications. The CONNECT framework
has been implemented on relevant mobile terminals such as
J2ME, iOS and web. We claim that the use of this framework
simplifies the development of mobile healthcare applications
with similar security and mobility requirements, but we
conclude that the user interface of the applications must be
written specifically for each platform to fully utilize the
potential of the mobile terminal. With this architecture, it is a
challenge that mobility services must be available for different
platforms. Thus, we propose to standardize features similar to
the CONNECT framework for application mobility in both
client and server operating systems.

REFERENCES

[1] E. Murray, J. Burns, T.S. See, R. Lai, I. Nazareth. Interactive Health
Communication Applications for people with chronic disease. Cochrane
Database Syst Rev. 2005 Oct 19;(4):CD004274.

[2] D. McGeady, J. Kujala, K. Ilvonen. The impact of patient-physician web
messaging on healthcare service provision. International Journal of
Medical Informatics 2008 Jan;77(1):17-23.

[3] J. Mirkovic, H. Bryhni, and C. Ruland, “Review of projects using
mobile devices and mobile applications in healthcare”, Proc.
Scandinavian conference on Health Informatics, 2009.

[4] Appari, A., Anthony, D. L., Johnson, E. M.. “HIPAA Compliance: An
Examination of Institutional and Market Forces”, Paper presented at the
The 8th Workshop on Economics of Information Security, London,
2009.

[5] Ministry Of Government Administration, Reform and Church affairs,,
Requirements specification for PKI for the public sector, January 2005.
Available: http://www.regjeringen.no/en/dep/fad/Documents/Acts-and-
regulations/retningslinjer/2010/requirements-specification-for-pki-in-
th.html?id=611085

[6] J. Mirkovic, H. Bryhni, and C. Ruland, “Secure Solution for Mobile
Access to Patient's Health Care Record”, Proc. 13th International
Conference on E-health Networking, Application & Services, Columbia,
MO, 2011.

[7] C. Ruland, A. Jeneson, T. Andersen, R. Andersen, L. Slaughter, B.
Schjødt-Osmo, et al, “Designing Tailored Internet Support to Assist
Cancer Patients in Illness Management”, AMIA Annual Symposium.
Chicago, IL, pp. 635-639, 2007.

[8] J. Bardram, T.A.K. Kjær, and C. Nielsen. Supporting Local Mobility in
Healthcare by Application Roaming Among Heterogeneous Devices.
Mobile HCI2003, Udine , Italy, 2003, pp.161-176.

[9] J. R.B. Diniz, C.A.G. Ferraz, and H. Melo. An architecture of services
for session management and contents adaptation in ubiquitous medical
environments. In Proceedings of the 2008 ACM symposium on Applied
computing (SAC '08). ACM, New York, NY, USA, pp. 1353-1357.

[10] F. Steuer, M. Elkotob, H. Bryhni, and T. Lunde. Seamless mobility over
broadband wireless networks. Proc. IST Mobile and Wireless Summit,
Dresden, Germany, 2005.

[11] F. Panken, H. Bryhni, P.E. Engelstad, L. Hansson, G. Hoekstra, M. Gilje
Jaatun, and T. H. Johannessen. Open Access Networks - Architecture for
Sharing Residential Access with Roaming WLAN Users, Special issue
on Open Access Networks, Telektronikk Vol. 3, No.4, 2006.

[12] Soomro, A., Schmitt, R. “A framework for mobile healthcare
applications over heterogeneous networks”, Paper presented at the 13th
IEEE International Conference on e-Health Networking Applications
and Services (Healthcom), 2011.

[13] Tat, C., Sengodan, S. “On applying SIP security to networked
appliances”, Paper presented at the IEEE 4th International Workshop on
Networked Appliances, 2002.

[14] Højgaard-Hansen, K., Huan Cong, N., Schwefel, H. “Session mobility
solution for client-based application migration scenarios.” Paper
presented at the Eighth International Conference on Wireless On-
Demand Network Systems and Services (WONS), 2011.

[15] M. Leech, M. Ganis, Y. Lee, R. Kuris, D. Koblas, and L. Jones,
“SOCKS Protocol Version 5,” RFC 1928 (Proposed Standard), Mar.
1996. [Online]. Available: http://www.ietf.org/rfc/rfc1928.txt

[16] J. Mirkovic, H. Bryhni, and C. Ruland, “Designing User Friendly
Mobile Application to Assist Cancer Patients in Illness Management”,
Proc. The Third International Conference on eHealth, Telemedicine, and
Social Medicine, Gosier, France, 2011 Feb, pp. 64-71.

[17] Jakob Nielsen's Alertbox. iPhone Apps Need Low Starting Hurdles.
Retrieved May 30, 2011, from http://www.useit.com/alertbox/mobile-
apps-initial-use.html.

[18] PYLOT: Performance & Scalability Testing – Web Services. Retrieved
May 30, 2011, from http://www.pylot.org/.

[19] J. Nielsen, Usability Engineering, Chapter 5: Response Times: The 3
Important Limits (Morgan Kaufmann, San Francisco, 1993).

[20] Java Look and Feel Design Guidelines: Advanced Topics. 2001.
Retrieved May 30, 2011,
http://java.sun.com/products/jlf/at/book/Responsiveness5.html.

